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VIEW AND REVIEW

ABSTRACT 
Background: Intracranial pressure (ICP) monitoring has been used for decades in management of various neurological conditions. The gold 
standard for measuring ICP is a ventricular catheter connected to an external strain gauge, which is an invasive system associated with 
a number of complications. Despite its limitations, no noninvasive ICP monitoring (niICP) method fulfilling the technical requirements for 
replacing invasive techniques has yet been developed, not even in cases requiring only ICP monitoring without cerebrospinal fluid (CSF) 
drainage. Objectives: Here, we review the current methods for niICP monitoring. Methods: The different methods and approaches were 
grouped according to the mechanism used for detecting elevated ICP or its associated consequences. Results: The main approaches 
reviewed here were: physical examination, brain imaging (magnetic resonance imaging, computed tomography), indirect ICP estimation 
techniques (fundoscopy, tympanic membrane displacement, skull elasticity, optic nerve sheath ultrasound), cerebral blood flow evaluation 
(transcranial Doppler, ophthalmic artery Doppler), metabolic changes measurements (near-infrared spectroscopy) and neurophysiological 
studies (electroencephalogram, visual evoked potential, otoacoustic emissions). Conclusion: In terms of accuracy, reliability and therapeutic 
options, intraventricular catheter systems still remain the gold standard method. However, with advances in technology, noninvasive 
monitoring methods have become more relevant. Further evidence is needed before noninvasive methods for ICP monitoring or estimation 
become a more widespread alternative to invasive techniques. 
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RESUMO 
Introdução: O uso da monitorização da pressão intracraniana (PIC, em sua sigla em inglês) é adotado há décadas no manejo de diversas 
condições neurológicas. O padrão ouro atual é a monitorização invasiva intraventricular, que está relacionada a inúmeras complicações. 
Apesar dessas limitações, até o momento nenhum método de monitorização não invasiva (niPIC, em sua sigla em inglês) conseguiu substituir 
a técnica invasiva. Objetivos: Revisar os métodos não invasivos de monitorização da PIC. Métodos: As diferentes modalidades e abordagens 
foram agrupadas de acordo com o mecanismo utilizado para detectar elevação da PIC ou suas consequências. Resultados: As técnicas 
descritas foram: o exame físico, neuroimagem (tomografia computadorizada e ressonância magnética de crânio), estimativas indiretas da PIC 
(fundoscopia, deslocamento da membrana timpânica, elasticidade craniana), avaliação do fluxo cerebral (doppler transcraniano e doppler 
da artéria oftálmica), alterações metabólicas (Espectroscopia próxima do infravermelho) e estudos neurofisiológicos (eletroencefalograma, 
potencial evocado visual e emissões otoacústicas). Conclusão: Considerando a acurácia, confiabilidade e opções terapêuticas, o sistema 
de cateteres intraventricular ainda permanece como padrão ouro. No entanto, com os avanços tecnológicos, os métodos não invasivos 
têm se tornados mais relevantes. Mais evidências são necessárias antes que essas modalidades de monitorização ou estimativas não 
invasivas se tornem uma alternativa mais robusta às técnicas invasivas.

Palavras-chave: Lesão Encefálica; Hipertensão Intracraniana; Acidente Vascular Cerebral; Pressão Intracraniana; Trauma Craniano.
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INTRODUCTION

Intracranial pressure (ICP) monitoring has been used 
for decades in management of various neurological con-
ditions (Table 1) and has become a staple of neurocritical 
care1. While management of ICP is of clear benefit, there is 
no consensus in the literature about whether ICP monitoring 

provides any clinical benefit, compared with management 
based only on the patient’s neurological examination, imag-
ing findings and the clinician’s judgment2,3. While some 
studies have shown that ICP monitoring is associated with 
improved survival rates, others have suggested that this not 
only is fruitless but also may, in fact, lead to worse clinical out-
comes, including increased mortality, longer hospitalization, 
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increased complication rates and increased hospitaliza-
tion costs, compared with a non-ICP monitoring approach 
in patients with traumatic brain injury (TBI)4. The only ran-
domized trial assessing the effect of invasive ICP monitoring 
on clinical outcomes, conducted by Chesnut et  al.5 among 
patients with severe TBI, found that there was no significant 
difference in six-month mortality. These results indicate that 
there is still room for improvement of clinical management of 
ICP monitoring findings, which could assist in better clinical 
decisions and improved outcomes for critically ill patients2,4.

A ventricular catheter connected to an external strain 
gauge is the gold standard for measuring ICP. This is an invasive 
system associated with a number of complications, including 
hemorrhage, obstruction, mispositioning, infection and loss of 
accuracy for asymmetric hemispheric lesions, besides requir-
ing a neurosurgical procedure6,7. However, despite its limita-
tions, no noninvasive ICP monitoring (niICP) method fulfilling 
the technical requirements for replacing invasive techniques 
has yet been developed, not even in cases requiring only ICP 
monitoring without cerebrospinal fluid (CSF) drainage8,9.

Here, we review the current methods for monitoring niICP 
and the neurological consequences of increased ICP, such as 
reduced cerebral blood flow (CBF) and metabolic changes10. 
The different methods and approaches were grouped accord-
ing to the mechanism used for detecting elevated ICP or its 
associated consequences. The main approaches reviewed 
here were: physical examination, brain imaging (magnetic 
resonance imaging [MRI], computed tomography [CT] and 
optic nerve sheath ultrasound [ONS-US]), indirect ICP esti-
mation techniques ( fundoscopy, tympanic membrane dis-
placement and skull elasticity), cerebral blood flow velocity 
(transcranial Doppler [TCD] and ophthalmic artery Doppler), 
metabolic changes measurements (near-infrared spectros-
copy [NIRS]) and neurophysiological studies (electroen-
cephalogram [EEG], visual evoked potential [VEP] and oto-
acoustic emissions) (Table 2). Although this topic has been 
addressed by other authors before, we present an updated 
review of the literature with a discussion of new methods not 
previously evaluated in narrative reviews. 

Physical examination
Because patients requiring ICP monitoring usually have 

severe and acute neurological conditions, neurological 

parameters in such patients are often derived from the 
Glasgow Coma Scale (GCS), which is the most common scor-
ing system used in these settings. Only three physical exam-
ination findings, which had been evaluated in an adequate 
number of relevant studies and were included in a meta-anal-
ysis, correlated with increased ICP: pupillary dilation; motor 
posturing, defined by GCS motor score ≤3; and decreased 
level of consciousness, defined by total GCS≤8. The presence 
of pupillary dilation had a sensitivity of 28.2% and specific-
ity  of 85.9% for the diagnosis of elevated ICP, whereas the 
presence of motor posturing had a sensitivity of 54.3% and 
specificity of 63.6%. Lastly, a decreased level of consciousness 
had a sensitivity of 75.8% and specificity of 39.9% for the diag-
nosis of elevated ICP1.

Neuroimaging

Computed tomography and magnetic resonance 
imaging of the brain

CT and MRI of the brain are routinely used for diagnosing 
neurological disorders and can provide qualitative informa-
tion about ICP. A variety of gross anatomical changes associ-
ated with elevated ICP can be detected using brain imaging 
techniques, including lateral ventricle compression, mid-
line shift, ventricular dilation and loss of cortical-subcortical 

Table 2. Noninvasive indications for intracranial pressure 
monitoring methods. 

Methods studied

Physical examination

Neuroimaging

CT and MRI of the brain

US of the optic nerve sheath

Metabolic changes
Near-infrared spectroscopy

Indirect ICP monitoring

Skull elasticity

Anterior fontanelle pressure

Venous ophthalmodynamometry

Acoustic elasticity

Pupillometry

Tympanic membrane displacement

Metabolic changes

Near-infrared spectroscopy 

Neurophysiology

Electroencephalogram

Visual evoked potential

Otoacoustic emissions

Cerebral blood flow 

Transcranial Doppler

ICP: indications for intracranial pressure.

Table 1. Potential indications for intracranial pressure monitoring.

Traumatic brain injury

Intracranial hemorrhage 

Subarachnoid hemorrhage 

Cerebral edema

Hydrocephalus

Hepatic encephalopathy

Cerebral ischemia
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differentiation11,12(Figures 1A and 1B). Most CT-based studies 
have been conducted on patients with TBI, and the Marshall 
classification is the most commonly used classification 
of head injury, based primarily on CT findings13 (Table  3). 
However, it is worth emphasizing that most brain injury rat-
ing scales were designed for prognostic purposes and not 
necessarily for ICP monitoring. The presence of other CT 
and MRI signs in the setting of brain injury, suggestive  of 
raised  ICP, has also been used to guide the management 
of elevated ICP (Table 4)14.

A normal brain CT at admission among patients with 
TBI does not rule out the risk of either early intracranial 
hypertension or possible development of elevated ICP, 

with predictive values ranging from 0 to 88%15. A small 
study demonstrated that it was possible to differentiate 
between normal and elevated ICP using a CT-determined 
ratio of CSF volume to total intracranial volume, with a 
predictive accuracy of 67%8,11. However, CT-based crite-
ria have high specificity but low sensitivity, and thus high 
false-negative rates11.

MRI is more sensitive but rarely available and more time 
consuming than CT. Thus, it is not widely applied for ICP 
monitoring. In a small pilot study, an MRI-based technique 
for estimating ICP by assessing net transcranial blood and 
CSF flow was able to differentiate between patients with nor-
mal or elevated ICP12. An elastance index was derived from 
the ratio of intracranial pressure to volume change. Briefly, 
pulsatile arterial, venous and CSF flow in and out of the cra-
nial vault during the cardiac cycle causes a small volume 
change that was measured. The elastance index correlated 
extremely well with the invasively measured ICP (r2=0.965; 
p<0.005). However, care is required in selecting representa-
tive images on slides and a representative blood vessel, and 
the technique offers only a picture of ICP within a particular 
time frame12.

In short, even though neuroimaging techniques continue 
to be used qualitatively, these methods are currently not suf-
ficiently reliable as monitoring tools for elevated ICP16.

Optic nerve sheath diameter
At the point at which the optic nerve exits the intracra-

nial space into the orbit, it is still surrounded by the dural 
sheath. As such, the subarachnoid space (SAS) surround-
ing the nerve is contiguous with the intracranial subarach-
noid space. Elevation of ICP can transmit through the CSF 
in the subarachnoid space, leading to dilation of the optic 
nerve sheath (ONS), which can be detected using transocu-
lar ultrasonography14,17.

Several studies have demonstrated a correlation between 
invasively measured ICP and ultrasonographic ONS diame-
ter (ONSD) measurements, with overall sensitivity and speci-
ficity of 0.95 and 0.92 for detecting elevated ICP, depending 
on the cutoff for detection of raised ICP, which ranges from 
4.8 mm14 to 5.6 mm18. A few reasons for such variations have 
been put forward. One is that the there are two different mea-
surement techniques: coronal and axial techniques, with dif-
ferent accuracies. The coronal technique presents less vari-
ability, but the axial method provides a better estimate of ICP. 
A second reason is that studies have either averaged mea-
surements between eyes or chosen to evaluate the highest 
measurement between the eyes, which naturally creates the 
discrepancies found in the literature18. 

At present, this variation in the optimal ONSD cut-
off makes a formal meta-analysis approach impractical16. 
The ONSD is measured at a depth of 3 mm from the poste-
rior pole of the globe, as this point is most reflective of the 
changes in ICP (Figure 2). While intra and interobserver 

Table 3. Marshall scale.

Type Types of abnormalities on CT scanning

I No visible pathological condition on CT scan

II Cisterns present with midline shift 0–5 mm;  
no lesion >25 mL

III Cisterns compressed or absent with midline  
shift 0–5 mm; no lesion >25 mL

IV Midline shift >5 mm; no lesion >25 mL

V Any lesion surgically evacuated

VI Lesion >25 mL not surgically evacuated

CT: computed tomography; MRI: magnetic resonance imaging; 
CT: computed tomography.

Table 4. Computed tomography/magnetic resonance imaging 
findings suggestive of elevated indications for intracranial pressure.

1) Diffuse sulcal effacement

2) Effacement of basal cisterns

3) Hydrocephalus defined as:

Both temporal horns >2 mm

Evans’ index*

4) Midline shift >5 mm

5) Transtentorial or uncal herniation

*The Evans’ index is the ratio of maximum width of the frontal horns of the 
lateral ventricles, divided by the maximum internal diameter of the skull at 
the same level, used in axial computed tomography and magnetic resonance 
imaging images.

Figure 1. Computed tomography findings in intracranial 
hypertension (A) loss of cortical-subcortical differentiation 
and cortical subarachnoid hemorrhage. (B) temporal horn 
dilation and cisternal subarachnoid hemorrhage.
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variability seem to be lower than that of transcranial 
Doppler (TCD), this method cannot be used in patients 
with face trauma or lesions of the orbit such as Grave’s 
disease and sarcoidosis. Additionally, there is some evi-
dence that the specificity of ONSD declines when there 
are acute fluctuations in ICP17. Nevertheless, ONSD mea-
surements seem to be useful as a screening test for ICP in 
settings where invasive monitoring is not promptly avail-
able. Other ophthalmological approaches such as optical 
coherence tomography (OCT) have also been evaluated 
for ICP measurement19. The ONSD can also be measured 
using CT and MRI, but the accuracy of measurements by 
these two methods is lower20.

Cerebral blood flow evaluation

Transcranial Doppler
In the neurocritical setting, transcranial Doppler 

(TCD) is most commonly used as a tool for monitoring 

changes in cerebral blood flow (CBF) velocity in the set-
ting of subarachnoid hemorrhage (SAH) and its complica-
tions, including vasospasm21. A number of models using 
TCD-derived parameters have been used to assess corre-
lations with invasively measured ICP22. These models have 
used measurements of flow velocity (FV) in the middle 
cerebral artery (MCA), arterial blood pressure and pulsa-
tility index (PI)23. PI is derived from the TCD waveform and 
is defined as the difference between systolic and diastolic 
flow velocities, divided by the mean FV. Wakerley et  al.24 
developed a formula to predict ICP using PI − ICP = 10.93 
× PI − 1.28 (Figure 3). Some studies have shown good cor-
relation between ICP and PI values in patients with TBI, 
with sensitivity and specificity of 0.89 and 0.92, respec-
tively, for detecting elevated ICP23.

Other studies have reported more modest results. 
Zweifel et  al.25 prospectively analyzed a cohort of 
290  patients with TBI and found a poor correlation 
between PI and ICP (0.31; p=0.001). They concluded that 
the value of PI for assessing ICP was limited. On the other 
hand, Schmidt et  al.26 applied a black-box mathematical 
model for niICP assessment with good results. A recent 
prospective study found that using a model that combined 
all TCD-derived data was superior to a model in which 
these data were accessed individually for estimating ICP, 
with a correlation coefficient of r=0.47 (p<0.05) and an 
area under the curve of 0.73 (p<0.05). However, TCD has 
some limitations: it requires training and repetitive exer-
cise; there is intra and interobserver variability; it is not 
useful for patients requiring continuous monitoring; and 
it cannot be used on 10–15% of the patients due to a lack 
of bone window27.

Other methods using Doppler technology include venous 
transcranial Doppler28 and ophthalmic artery Doppler29, but 
few studies have been conducted and both of these tech-
niques have technical difficulties that prevent their wide-
spread adoption into clinical care.

Figure 3. Transcranial Doppler measurement of right middle cerebral artery flows, demonstrating a PI of 1.26.

Figure 2. Optic nerve sheath and the globe are evident. The optic 
nerve sheath is a linear hypoechoic structure posterior to the 
globe. Line 1 identifies the site of optic nerve sheath diameter 
measurement 0.3 cm behind the retina. Line 2 measures the 
optic nerve sheath diameter (0.34 cm in this case).
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Metabolic changes

Near-infrared spectroscopy
Near-infrared spectroscopy (NIRS) is a noninvasive 

technology that has been under development for assess-
ment of ICP-related alterations in cerebral oxygenation30. 
NIRS sensors emit near-infrared (NIR) light onto the sur-
face of the head and work on the principle of differential 
absorption of light in the vicinity of the infrared spectrum 
to detect changes in oxygen and hemoglobin concentra-
tion. Changes to the underlying tissue characteristics affect 
light absorption and diffusion, and spectral analysis can 
be used to garner information about tissue state and esti-
mated intracranial oxygen saturation, which consequently 
reflects brain metabolism. This can also be used to detect 
changes in brain tissue oxygenation, cerebral blood volume 
and cerebral blood flow30.

Even though NIRS has been successfully used for moni-
toring oxygenation in various procedures, its reduced accu-
racy as a result of the effects of scalp and skull injury, as 
well as possible pathological changes in baseline saturation, 
has made this technology unreliable for widespread use31. 
Additionally, it cannot be used to estimate absolute ICP 
but, rather, changes in cerebral perfusion pressure (CPP) 
and brain oxygenation. Lastly, most brain injuries are het-
erogeneous and the technology does not take these varia-
tions into account.

Neurophysiology

Electroencephalogram
Numerous studies have explored the concept that 

neurophysiological changes may actually precede ICP 
changes in patients with intracranial hypertension32,33. 
Because  changes in ICP affect cerebral perfusion, neuro-
nal activity and brain metabolism, some EEG patterns may 
be useful for ICP monitoring32,33. Specific EEG tracings cor-
relate closely with changes in cerebral blood flow (CBF). 
In  particular, changes in ICP correlate significantly with 
EEG burst duration34. Other studies have investigated more 
complex technologies such as power spectrum analysis35, 
entropy and bispectral index (BIS) and their correlations 
with CPP and ICP, but no significant applicability within 
clinical practice was found36. 

Visual evoked potential
York et al.37 demonstrated a good relationship between 

ICP elevation and a shift in latency of the N2 wave of the 
visual evoked response. The N2 wave is normally found 
at 70 ms and corresponds to a cortical phenomenon. It is 
therefore likely to be sensitive to cerebral cortical injuries 
and increased ICP. Despite some positive results, Andersson 
et  al.38 demonstrated that VEP has a wide range of laten-
cies, amplitudes and waveforms across normal subjects. 

In addition, a large proportion of their subjects also had 
high intra-individual variability over time, which made VEP 
unreliable as a marker for ICP.

Indirect intracranial pressure estimation

Pupillometry
In 1983, Marshall et al. established the fact that the oval 

pupil represented a stage between the normal pupil and the 
fixed unreactive pupil of patients with high ICP, and  con-
cluded that an oval pupil was indicative of high ICP39. 
However, their study did not indicate any specific numeri-
cal values of ICP correlating with pupillary shape changes. 
Since then, many studies have been conducted to assess 
pupillary changes in severely ill patients, to assess their 
outcome and clinical management. More recently, Chen 
et al. introduced the neurological pupillary index (NPI) as 
an early indicator of increased ICP40. Quantitative assess-
ment of pupillary reactivity measured using a pupillometer 
showed excellent accuracy in comparison with invasively 
measured ICP. However, there still is no direct correlation 
between NPI and real values of ICP, and pupillometers can-
not be used to continuously monitor ICP in intensive care 
units (ICUs)40.

Skull elasticity
The Monro–Kellie doctrine states that after closure of 

the fontanelles, the volume inside the cranium remains con-
stant at all times, and that there is no deformation of the 
skull caused by changes in ICP41,42,43. However, questions aris-
ing from this assertion have recently created a new avenue of 
study in the field of ICP monitoring. The notion of measuring 
minute expansions of the skull as a reflection of increasing 
ICP was first explored in dogs and cadavers by Pitlyk et al.44 
in 1985, but the technology that they used did not allow them 
to go any further. In 2009, Yue and Wang confirmed the previ-
ous findings and showed that there was a positive correlation 
between increasing ICP and skull deformation in rats, with 
excellent instrument sensitivity45.

More recently, a novel noninvasive technology 
(Brain4care®) was developed to detect very small variations 
in the volume of the skull caused by changes in ICP, with-
out the need for surgery or even for the patient’s head to 
be shaved. In this device, a strain sensor is placed in con-
tact with the skin surface at the temporoparietal transition, 
lateral to the sagittal suture46,47. Non-invasive contact with 
the skull is achieved by applying adequate pressure directly 
on the scalp, using a pin, which requires minimal training. 
At the current stage of development, the device does not dis-
play calibrated pressure values in mmHg, but it can deliver 
continuous, real-time information about the ICP wave-
form and, consequently, brain compliance. The information 
shows great similarity to the curves obtained using invasive 
methods (Figures 4A and 4B)46,47,48.
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Intracranial pressure waveforms and skull elasticity
In order to better understand this technology, it is impor-

tant to note that mean ICP is a time-average of the ICP 
waveform. The ICP waveform consists of three components: 
respiratory waveforms (0.1–0.3 Hz) associated with the respi-
ratory cycle, pulse pressure waveforms of frequency equal to 
the heart rate and slow vasogenic waveforms (e.g. Lundberg 
A and B waves)2,3 (Figure 4A). The pulse pressure waveform 
is subdivided into three waves: P1 (percussion wave), which 
represent arterial pulsation transmitted from the choroid 
plexus; P2 (tidal wave), which reflect rebound pulsations of 
the brain parenchyma and are a proxy for intracranial com-
pliance; and P3 (dicrotic wave), which represent pressure 
transmission as a result of aortic valve closure (Figure 4C). 
Elevated ICP also affects the characteristics of the ICP wave-
form. For example, an increase in the amplitudes of the three 
peaks indicates an increase in mean ICP; a reduction in the 
P1 amplitude suggests decreased cerebral perfusion; and an 
increase in P2 indicates loss of brain compliance (Figure 4C). 
Fusion of the peaks P1, P2 and P3 in association with high 
mean amplitude is an indicator of loss of cerebrovascular 
autoregulation and loss of cerebral perfusion. In addition, the 
presence of Lundberg A waves, which are sustained increases 
in mean ICP lasting 5–20 min, may also signify diminished 
compliance. Lundberg B waves, which are clustered cyclic 
elevations in ICP occurring at a rate of 0.33–3 cycles per min 
with overall cluster duration of 5–30 min, are non-specific 
indicators of elevated ICP, given that they can also be present 
in patients with normal ICP2,3.

It is important to emphasize that in this novel technol-
ogy, monitoring responds promptly to variations in ICP, with 
either increases or decreases, without delay or rebounds, 
thus confirming that no bone hysteresis occurs49 (i.e. the ten-
dency of a system to preserve a deformation effected by a 
stimulus). Thus, micrometric deformations of the skull bones 
that are caused by and correlate linearly with changes in ICP 
can be detected. Measurements of ICP waveforms using this 
technology have been made in animal models and in human 
adults and children50,51,52.

OTHER METHODS

Venous ophthalmodynamometry, which is based on the 
idea of measuring central retinal vein (CRV) pressure as a 
surrogate of ICP, was first proposed in 192553. However, it 
was only at the end of the last century that the idea was 
explored in a study54. It was concluded that CRV pressure 
measurement or ophthalmodynamometry showed good 
correlation with invasive ICP monitoring. However,  this 
technology is not useful for continuous monitoring. 
Subsequent refinements to the technology have improved 
its accuracy (sensitivity of 84.2% and specificity of 92.8%) for 
predicting raised ICP55.

The concept of using tympanic membrane displace-
ment (TMD) as a surrogate for ICP is based on the proxim-
ity of the stapes and the oval window. The assumption is 
that the cochlear fluid pressure, which would be a function 

Figure 4. Waveform analysis. (A) Components of the indications for intracranial pressure waveform: pulse pressure waveform and 
respiratory waveform. (B) Comparison of indications for intracranial pressure waveforms obtained with an invasive sensor (iICP) 
and the noninvasive Brain4care® system. (C) indications for intracranial pressure waveforms measured using the Brain4care® 
sensor. A: normal waveform (P1>P2). B: abnormal waveform (P2>P1). The report provides quantitative information about ICP wave 
morphology to assist in patient assessment and follow-up. P2/P1 ratio: the ratio between the amplitudes of peaks P2 and P1; 
TTP: time to peak, defined as the time, from the start of the pulse, at which the ICP waveform reaches its highest peak.
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Table 5. Comparison of the main noninvasive indications for intracranial pressure monitoring methods.

CT/MRI TCD ONSD NIRS Pupillometry Skull elasticity EEG

Portability No Yes Yes Yes Yes Yes Yes

Operator experience No Yes Yes No No No Yes

Continuous monitoring No No No No No Yes Yes

Cost per patient Moderate low low low low low low

Complications Yes No No No No No No

CT: computed tomography; MRI: magnetic resonance imaging; TCD: transcranial doppler; ONSD: optic nerve sheath diameter; NIRS: near-infrared spectroscopy; 
EEG: electroencephalogram.

of the ICP, could affect the stapedial excursions56. The evi-
dence available has shown that TMD is a good screen-
ing tool that can be useful in assessment and follow-up 
of patients at risk of increased ICP. However, TMD does 
not allow establishment of specific ICP values, is not use-
ful for continuous monitoring and requires intact auditory 
anatomy57,58. Another technique that uses the ear as a sur-
rogate for ICP is distortion-product otoacoustic emissions 
(DPOAE)59. Studies correlating DPOAE with ICP in experi-
mental models and humans have shown good correlation 
with invasive methods. DPOAE measurements can possi-
bly be an effective tool in non-invasive monitoring of ICP. 
However, the technique has some limitations: it does not 
allow absolute measurement of ICP; there is substantial 
inter-individual variability; and it can only be used in nor-
mal-hearing subjects60,61.

Tissue resonance analysis62 and acoustoelasticity63 use 
the tissue-specific ultrasound resonance of the brain and 
have shown good correlation with ICP in experimental mod-
els. However, there is a scarcity of studies on humans and the 
level of evidence remains poor.

In infants, the anterior fontanelle is open, and ante-
rior fontanelle pressure monitoring presents a window for 
measuring ICP noninvasively64,65. However, despite multiple 
studies and various devices used to measure anterior fon-
tanelle pressure, ICP monitoring in infants is currently not 
feasible in clinical practice through non-invasive methods66. 
Similarly, attempts to correlate intraocular pressure (IOP) 
with ICP using ocular tonometry, despite its potential, are 
not supported by the current evidence as a form of nonin-
vasive ICP monitoring67,68,69.

DISCUSSION

The search for a completely noninvasive intracranial pres-
sure (niICP) technique capable of real-time monitoring is 
the Holy Grail of neurocritical care practice and research1,3. 
If available, it would have a wide range of applications in neu-
rosurgery, neurosciences and translational medicine, from 
exercise physiology to aerospace medicine.

Despite recent advances that have led to development 
of various noninvasive techniques for monitoring ICP, 

the current noninvasive techniques cannot be used as an 
alternative to the invasive ones70. Ideally, a niICP monitor-
ing technique should have the following attributes: to be 
simple and convenient to use; to depend little on opera-
tor experience and bone window; to be readily available 
throughout the hospital; to provide continuous moni-
toring; to be quantitative rather than qualitative; track 
dynamic changes in ICP and CPP; to be less influenced by 
the patient’s cardiovascular instability; and, obviously, to 
be accurate. All noninvasive techniques have their own 
advantages and disadvantages, but no method currently 
satisfies all the criteria for replacing invasive ICP monitor-
ing (Table 5). 

Promising prospects include continuously combin-
ing noninvasive methods with other clinical or invasive 
parameters and integrating the data to improve patho-
physiological understanding in suspected or confirmed 
cases of intracranial hypertension. This would help in 
identifying which types of monitoring can ideally be com-
bined (e.g. oxygenation + compliance+ hemodynamics) 
and in which clinical setting they can contribute to the 
care and outcome of neurocritical patients (initial screen-
ing and continuous or intermittent monitoring). One limi-
tation of this and other reviews of the topic is the lack of 
systematic evaluation of the data. In order to perform a 
systematic review and calculate accuracy between meth-
ods, good-quality data comparing all the methods with the 
gold standard (invasive intracranial pressure monitoring) 
would be needed. Unfortunately, such data are not avail-
able in the current literature2,8,16. The challenge of continu-
ous and accurate niICP monitoring remains daunting, but 
the reward for patients and for science as a whole makes 
every effort sensible and commendable.

ICP monitoring has become established as a useful 
method for predicting outcomes and guiding therapy for 
patients suffering from a range of neurological conditions. 
In terms of accuracy, reliability and therapeutic options, 
intraventricular catheter systems still remain the gold stan-
dard method. However, with advances in technology, non-
invasive monitoring methods have become more relevant. 
Further evidence is needed before noninvasive ICP moni-
toring can become a more widespread alternative to inva-
sive techniques. 
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