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INTRODUCTION

Ischemic stroke is one of the leading causes of disability and
death in adults worldwide.1 Currently, intravenous throm-
bolysis and intravascular thrombectomy are effective treat-

ments for ischemic stroke.2 However, the strict therapeutic
time window limits their clinical application, and many
patients die or become disabled due to lackof timely therapy.
Therefore, it is necessary to explore effective treatment
strategies for ischemic stroke outside the therapeutic time

Keywords

► Astrocytes
► Ischemic Stroke
► Neurogenesis
► Phagocytosis
► Ischemic

Preconditioning
► Neuroprotective

Agents

Abstract Astrocytes are themost abundant cell subtypes in the central nervous system. Previous
studies believed that astrocytes are supporting cells in the brain, which only provide
nutrients for neurons. However, recent studies have found that astrocytes have more
crucial and complex functions in the brain, such as neurogenesis, phagocytosis, and
ischemic tolerance. After an ischemic stroke, the activated astrocytes can exert
neuroprotective or neurotoxic effects through a variety of pathways. In this review,
we will discuss the neuroprotectivemechanisms of astrocytes in cerebral ischemia, and
mainly focus on reactive astrocytosis or glial scar, neurogenesis, phagocytosis, and
cerebral ischemic tolerance, for providing new strategies for the clinical treatment of
stroke.
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Resumo Os astrócitos são os subtipos de células mais abundantes no sistema nervoso central.
Estudos anteriores acreditavam que os astrócitos são células de suporte no cérebro,
que apenas fornecem nutrientes para os neurônios. No entanto, estudos recentes
descobriram que os astrócitos têm funçõesmais cruciais e complexas no cérebro, como
neurogênese, fagocitose e tolerância isquêmica. Após um acidente vascular cerebral
isquêmico, os astrócitos ativados podem exercer efeitos neuroprotetores ou neurotó-
xicos através de uma variedade de vias. Nesta revisão, discutiremos os mecanismos
neuroprotetores dos astrócitos na isquemia cerebral, e focaremos principalmente na
astrocitose reativa ou cicatriz glial, neurogênese, fagocitose e tolerância isquêmica
cerebral, para fornecer novas estratégias para o tratamento clínico do acidente vascular
cerebral.
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window. Excitatory amino acid toxicity, oxidative stress,
calcium overload, and inflammatory response caused by
cerebral ischemia can seriously impair the functions of
neurons, glial cells, and endothelial cells, which lead to
platelet activation, glial hyperplasia, immune cells activa-
tion, and death of neurocytes.3,4

Although cerebral ischemia affects all cell components in
the brain, including neurons, glial cells, endothelial cells
etc., most studies often focus on the protection of neurons
and fail to become effective clinical treatments.5,6 Merely
protecting damaged neurons may not be enough to find
effective treatment strategies. Therefore, it is necessary to
consider therapeutic approaches that benefit multiple cell
types.

Astrocytes are the most abundant cell type in the brain,
accounting for about 40% of all brain cells.7 According to the
morphology and tissue locations, brain astrocytes mainly
include the following types: radial astrocytes around the
ventricle, fibrous astrocytes in white matter, protoplasm
astrocytes in gray matter, and velate astrocytes in cerebellar
granular layer, among others.7,8

Under physiological conditions, astrocytes have a variety
of functions such as metabolic support, nutrition, as well as
regulating neurotransmitters, participating in the forma-
tion of the blood-brain barrier, regulating synapsis, and
promoting neurogenesis.9–11 Astrocytes are activated rap-
idly and have a dual role in cerebral ischemia, showing two
different functional phenotypes, namely, the neurotoxic
type A1 astrocytes mainly induced by inflammation and
the neuroprotective A2 type reactive astrocytes induced by
ischemia (►Figure 1).12,13 These cells play essential roles in
the brain and may become novel therapeutic targets of
ischemic stroke. Consequently, we will review the endoge-
nous neuroprotective mechanisms of astrocytes after an
ischemic stroke, and introduce reactive astrocytosis or glial
scar, neurogenesis, phagocytosis, and cerebral ischemia
tolerance.

REACTIVE ASTROCYTES AND ISCHEMIC STROKE

When an ischemic stroke occurs, the morphology, function,
and molecular expression profile of astrocytes change signifi-
cantly. Within minutes of brain ischemia, cytokines produced
bydamagedneurons, aswell asglial cells in the core area of the
infarct and the penumbra, trigger astrocyte activation.8 This is
also known as reactive astrogliosis, and it is characterized by
cell hypertrophy, proliferation, and increased expression of
glialfibrillaryacidicprotein (GFAP), changing theexpressionof
manymolecules involved in cell structure, energymetabolism,
gene transcription, intracellular signal transduction, and
membrane transport proteins.14,15

Within a few days of ischemia, the reactive astrocytes form
glial scars aroundthe ischemic lesion.Glial scars can isolatethe
injured site and prevent the expansion of inflammation, but
the astrocytes in the scars also release related molecules that
inhibit axon regeneration.16,17 Furthermore, the activated
astrocytes can mediate neuroinflammation by releasing pro-
or anti-inflammatory factors, which may subsequently play a
neurotoxic or neuroprotective role in ischemic strokes.

Additionally, during the later stages of ischemic stroke,
activated astrocytes release extracellular matrix molecules
such as thrombospondin,18 hevin,19 and secreted protein
acidic rich in cysteine (SPARC),20 which may induce synaptic
structure and function, thereby protecting the brain from
synaptic damage caused by ischemia. Therefore, induction of
the different astrocyte phenotypes in a controlled manner
may be essential for the development of new methods to
limit harmful neuroinflammation and promote neuropro-
tection or neurorestoration after ischemic stroke.

REACTIVE ASTROCYTOSIS AND GLIAL SCAR
AFTER ISCHEMIC STROKE

During acute ischemic strokes, in addition to restricting the
lesion to minimize the area of inflammation, reactive

Figure 1 Diagram showing the pro-inflammatory and anti-inflammatory reactive astrocytes in the ischemic brain. After ischemic stroke, astrocytes
become activated and polarized into pro-inflammatory A1 and anti-inflammatory A2 phenotypes. Abbreviations: BDNF, brain derived neurotrophic factor;
IGF-1, insulin-like growth factor 1; EPO, hemopoietin; IL-6, interleukin-6; TNF-α, tumor necrosis factor–α; IFN-γ, interferon-gamma.
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astrocytes may also limit the secretion of diffusion factors
from the injured area into remote region.21 Depending upon
the degree of injury, mild astrogliosis can disappear over
time, while in more severe injuries the glial scar formation
can be permanent.14,22 This is consistent with astrocytosis in
the chronic infarct lesions of stroke patients.23

Compared to normal astrocytes, those devoid of GFAP
and vimentin (GFAP�/�Vim�/�), as well as those exposed to
oxygen-glucose deprivation/reperfusion (OGD/R), have a
reduced ability to scavenge reactive oxygen species and
increased cell death, indicating that the astrocyte’s inter-
mediate filament system plays an important role in oxida-
tive stress.24 It has been reported that GFAP and scar
formation were significantly lessened in the CD36 (a class
B scavenger receptor) knockout (KO) mice after cerebral
ischemia, suggesting that targeting CD36 may offer effective
strategies for reducing glial scar formation in ischemic
strokes.25 Consistently, GFAP�/�Vim�/�mice reduce glial
hyperplasia and scar formation, with longer posttraumatic
healing time and more significant synaptic loss.26 Tradi-
tionally, astrocytes in glial scars secrete a large amount of
growth-inhibiting extracellular matrix dominated by chon-
droitin sulfate proteoglycans (CSPG), which forms a physical
barrier to inhibit axon regeneration and neural circuit
rewiring.27,28

However, accumulating evidence indicates that they can
also perform beneficial functions. In the early stages of
injury, the glial scar may separate the injured site from
workable tissue and play significant roles in limiting the
spread of the lesion and controlling the scope of inflamma-
tory response. In GFAP �/� Vim�/�mice induced cerebral
hypoxia-ischemia, a study found that reactive astrocytes
are similar in number but lose their hypertrophy and other
reactive hyperplasia phenotypes, and the expression of CSPG

around the lesion of GFAP �/� Vim�/�mice is reduced while
the infarct is significantly increased.29

Additionally, a recent study found that the ablation of
reactive astrocytes surrounding cortex infarction signifi-
cantly increases blood loss and impairs the remodeling of
neurovascular units, while vascular structures in non-is-
chemic brains are not affected by focal astrocyte ablation,30

showing that reactive astrocytes are a key component in
vascular repair and cell medium remodeling after cerebral
ischemia.However, the premature inhibition of glial scar
formation at the edge of the ischemic core area may cause
the spread of damage from the lesion region.29,31 Conse-
quently, the glial scar in the early stages of ischemia is
essential to maintain tissue integrity and reduce further
inflammatory damage.

ASTROCYTE-MEDIATED NEUROGENESIS
AFTER ISCHEMIC STROKE

Neurogenesis is exceedingly limited in the adult brain. This is
true for most mammals, except for the especial astrocytes in
the subventricular zone and hippocampal dentate gyrus that
have stem cell characteristics and constantly produce new
neurons’. However, in response to cerebral ischemia, a grow-
ing number of studies have found that astrocytes in the
striatum can be transformed into neurons.32,33 Both in vivo
and in vitro studies have shown that astrocytes have the
characteristics of stem cells and can differentiate into neu-
rons under certain conditions34–37 (►Figure 2).

Interestingly, small molecules efficiently reprogram hu-
man astrocytes in culture into functional neurons, and
human astrocyte-converted neurons can survive in the
mouse brain and integrate into the local neural circuits in
vivo.38 Using a model of cerebral ischemia in mice, with cell

Figure 2 Molecular mechanisms of astrocytes promote neurogenesis in ischemic stroke. In ischemic brain injuries, IL-17A (through p38MAPK
signaling pathway) and VEGF secreted by reactive astrocytes promote neurogenesis. Overexpression of transcription factors (Pax6, NeuroD1,
Oct4, Sox2, and Ngn2) and inhibition of Notch signaling pathways enhance the transdifferentiation of astrocytes into functional neurons.
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tracing technology, researchers found that astrocytes are
transformed into neurons at the injury site by inhibiting
theNotch signaling pathway, which promotes nerve repair.33

A recent study used single-cell RNA sequencing to analyze
the inherent genetic characteristics of astrocytes exposed to
middle cerebral artery occlusion (MCAO) conditions,39 reveal-
ing howastrocytes in thebrain acquire the ability to formnew
neurons. This approachuncoverswhich genes are turnedonor
off, resulting in an analysis of the gene activity profile for each
astrocyte. In Rbpjfl/fl mice, an infusion of epidermal growth
factor can enable stalled striatal astrocytes to initiate the
transit amplifyingdivisions and resumeneurogenesis.39These
results demonstrate that parenchymal astrocytes display neu-
ral stem cell properties and that targeted interventions can
guide them to complete neuronal differentiation.

Current studies have confirmed that under certain condi-
tions, or by intervening in some signals, such as cytokines,40

transcription factors,38 and small molecule compounds,41

astrocytes have the potential to transdifferentiate or repro-
gram into neurons.42 For example, studies have found that
astrocytes secrete inflammatory factors that promote stroke
recovery.43

Interleukin-17 A is mainly secreted by astrocytes. When
activated, these cells release IL-17A through p38 mitogen-
activated protein kinase (MAPK) signaling the pathway to
induce neuronal differentiation, while downregulation of IL-
17A inhibits neuronal differentiation.43 Additionally, the
vascular endothelial growth factor (VEGF) promotes trans-
differentiation of striatal astrocytes into new, mature neu-
rons after ischemic brain injury.44

Astrocytes can be reactivated in response to ischemic or
traumatic brain injury, characterized by increased expres-
sion of related proteins. For example, octamer-binding tran-
scription factor 4 (Oct4), self-renewing and pluripotency
with neural stem cells (Sox2), and participating in self-
renewal of undifferentiated embryonic stem cells (Pax6)45

can convert astrocytes into neurons.40

Additionally, neurogenin2 (Ngn2) is an important
transcription factor involved in neuronal differentiation,
and in the mouse model of traumatic brain injury, it was
found that astrocytes can target the formation of neuronal
lineage via the overexpression of Ngn2.46 Remarkably,
NeuroD1 is an endogenous neural transcription factor.
Recent studies have shown that in rodents or non-human
primates with induced cerebral infarction, the NeuroD1-
mediated transformation of astrocytes into neurons in situ
can regenerate a large number of functional neurons after
ischemic brain injury, thereby promoting the recovery of
nerve function.47,48

Astrocytes in glial scars are reprogrammed into functional
neurons,49 showing the therapeutic potential of nerve tissue
regeneration after brain injury. Furthermore, the astrocyte-
converted neurons not only help to replace lost neurons, but
also reduce growth inhibitory factors, creating a more suit-
ablemicroenvironment for neuronal outgrowth and synaptic
integration. Thus, a functional neuronal regeneration of
reactive astrocytes provides a potential therapeutic strategy
for ischemic stroke.

ASTROCYTE-MEDIATED PHAGOCYTOSIS
AFTER ISCHEMIC STROKE

Until now, phagocytosis has been thought to be limited to
specialized phagocytes, such as the microglia in the
brain.50,51 However, there is increasing evidence that non-
professional phagocytes (e. g. astrocyte) can also take part in
this process.52,53 Large numbers of debris from dying/dead
cells can overwhelm the phagocytic capacity of microglia,54

allowing astrocytes to function as powerful supportive
clearance systems.

Recent studies have found that astrocytes have a strong
phagocytic ability, and that they participate in the elimination
of synapses and axons,53,55 as well as neuronal fragments in
the brain,56 even under normal conditions. Notably, human
astrocytes show phagocytic capacity and strengthen the
phagocytic function of microglia in coculture experiments.57

A genetic analysis study showed that astrocytes are
enriched in genes that participate in phagocytic pathways,
such as phagocytic receptors, integrins, and opsonins.58 Both
in vivo and in vitro studies have shown that astrocytes engulf
synapses through MEGF10 and MERTK (two phagocytic
receptors) pathways, and actively promote activity-depen-
dent synaptic elimination.59

More importantly, a recent study has confirmed for the
first time that the astrocyte is an important participant in the
elimination of synapses, consistently eliminating excessive
adult excitatory synaptic connections in response to neuro-
nal activity, indicating that astrocytes are essential for
controlling the number and plasticity of synapses.53

Wanet al. found the increased lipocalin-2 (LCN2) and low-
density lipoprotein receptor-related protein 1 (LRP1) im-
proved astroglial myelin phagocytosis, and Lcn2 ablation or
Lrp1 knockdown alleviated demyelination and reversed
white matter lesions, suggesting that astrocyte LCN2/LRP1
signaling is required formyelin phagocytosis and subsequent
demyelination after focal cerebral ischemia.60 Therefore,
regulating the phagocytosis of astrocytes to restore synaptic
connectivity or myelination may be a new therapeutic
strategy of ischemic stroke.

Recent studies have shown that the reactive astrocytes
induced by ischemia are involved in phagocytosis to clear
neuronal debris.61 Astrocytes can swallow neuronal materi-
als including synapses, apoptotic neurons, and degenerated
axons, as well as various toxic proteins. The ATP-binding
cassette transporter A1 (ABCA1) and the molecules in its
pathway, such as multiple EGF-like-domains 10 (MEGF10)
and the engulfment adapter phosphotyrosine binding do-
main containing 1 (GULP1), are the responsiblemolecules for
phagocytosis.

A recent research reported that reactive astrocyte highly
Increases ABCA1 and its related protein, MEGF10, after
ischemia.61 Further studies have found that knockdown or
knockout of ABCA1, MEGF10, or GULP1 can significantly
reduce the phagocytic capacity of astrocytes and increase
cerebral infarct volume, indicating that the removal of
neuronal fragments via an ABCA1-MEGF10-GULP1 path-
way-mediated phagocytosis of the reactive astrocyte is
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essential for nerve recovery. However, the phagocytic kinet-
ics of professional and nonprofessional phagocytes are very
different, with professional phagocytes having a stronger
phagocytic ability.51,62 Comparedwith themicroglial phago-
cytosis, the astrocytic phagocytosis starts later but lasts
longer.52 Even in pathological circumstances, astrocytes do
not move as fast as microglia, indicating astrocytes may not
participate in the acute clearance of injured tissues in the
ischemic core area.63 Therefore, phagocytic astrocytes may
promote brain microenvironment remodeling and nerves
recovery in the ischemic penumbra.

REACTIVE ASTROCYTES AND ISCHEMIC
TOLERANCE AFTER STROKE

Ischemic preconditioning (IPC) or tolerance is an endoge-
nous neuroprotective mechanism. In this way, a mild ische-
mic attack can make the brain resistant to subsequent, more
severe, ischemic damage.

Currently, most studies on ischemic tolerance or IPC only
focus on neuronal cells, but ischemic tolerance can be
induced by multistep mechanisms through a variety of cell
types, including neurons, astrocytes, and microglia.64,65 An
increasing number of studies have confirmed that astrocytes
play a key role in inducing ischemic tolerance and protecting
neurons.66,67

Astrocytes take up glucose via the glucose transporter
(GLUT). The expression of this transporter is significantly
increased in reactive astrocytes,68 which produce lactic acid
through glycolysis, being controlled by 6-phosphofructo-
2-kinase/fructose-2, 6-bisphosphatase-3 (Pfkfb3),69 or gly-
cogenolysis in ischemic conditions.70 Lactate can then be
transported from the cell by themonocarboxylate transport-
er 1 or 4 (MCT1/4) and exported into neurons via MCT2.71

Under ischemic conditions, researchers found an increased
flux on lactate production reactions in human astrocytes via
the genome-scale reconstruction.72

The IPC in astrocytes transfers ischemic tolerance to
neurons, and the underlying factor that mediates this pro-
tective effect is the soluble transport of lactic acid.73 Studies
have found that after ischemic preconditioning, astrocytes
increase cell survival rate by up-regulation of GLUT1 and
GLUT3.74,75 The nuclear erythroid 2-related factor 2 (Nrf2) is
an antioxidant transcription factor, and IPC protects astro-
cytes against oxygen glucose deprivation by the Nrf2 path-
way.76 In the OGD-induced astrocyte injury model, studies
have confirmed that ischemic preconditioning protects
astrocytes from ischemic damage by inducing 14-3-3γ (a
multifunctional scaffolding protein) expression and main-
taining energy metabolism in a variety of ways.77

Additionally, astrocytes are sensitive to environmental
changes and can be affected by even minor injuries, such as

Figure 3 The neuroprotective mechanisms of astrocytes in reactive astrocytosis, neurogenesis, phagocytosis, and ischemic tolerance after
ischemic stroke.
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transient ischemia or IPC.78,79 Astrocytes exert neuropro-
tective effects by releasing neurotransmitters such as ATP
and glutamate,80,81 which, in turn, act on transducers of
ischemic tolerance to provide neuroprotection against suc-
ceeding severe injure.82 The glial glutamate transporter-1
(GLT-1) is primarily distributed in astrocytes and is respon-
sible for 90% of glutamate uptake. Many studies have showed
that GLT-1 upregulation plays a vital role in inducing ische-
mic tolerance by preventing excessive glutamate accumula-
tion and terminating multiple downstream death-signaling-
cascades.83,84 Compared with normal astrocytes, activated
astrocytes in the ischemic area are closely related to the
spatiotemporal pattern of ischemic tolerance after IPC.65,85

The P2X7 receptor, as an ion channel forming ATP recep-
tor, is selectively upregulated in activated astrocytes. Studies
have shown that the P2X7 receptor is required for ischemic
tolerance. Further research found that hypoxia-inducible-
factor-1a (HIF-1a) is upregulated by IPC in a P2X7 receptor-
dependent manner. The increase of HIF-1a is persistent in
astrocytes, and the receptor also exhibits a slow and endur-
ing expression.81 This time difference of the P2X7 receptor
may allow HIF-1a of astrocytes to induce ischemic tolerance,
which, in turn, can produce many neuroprotective mole-
cules, such as erythropoietin and vascular endothelial
growth factor.85,86 Thus, astroglia-mediated ischemic toler-
ance provides a powerful and lasting neuroprotective effect
against ischemic injuries.

SUMMARY AND PROSPECTS

Astrocytes are the most abundant cell type in the central
nervous system and play a vital role in maintaining normal
brain function. This review summarizes the role of reactive
astrocyte hyperplasia and glial scars in ischemic strokes, as
well as the recent advances in the neuroprotective regulations
of reactive astrocyte-mediated neurogenesis, phagocytosis,
and ischemic tolerance after cerebral ischemia (►Figure 3).
However, the regulatory mechanism of astrocytes is not yet
fully understood. Moreover, because of the limited access to
human brain tissue and technical limitations, there’s particu-
larly little study on human astrocytes induced by ischemia.

As a matter of fact, reactive astrocytes have neuroprotec-
tive or neurotoxic effects, and can regulate the astrocytes to
promote the recovery of brain injury and nerve function,
which brings new directions and challenges to therapeutic
approaches for ischemic stroke.

In conclusion, the evidenceof astrocyte-mediated neuronal
transformation, phagocytosis and ischemic tolerance opens a
novel perspective for the treatment of ischemic strokes. After
cerebral ischemia, reactive astrocytes are highly plastic and
heterogeneous in termsofmorphology,proliferation, andgene
expression. Therefore, further studies on the dynamics of
reactive astrocytes at the molecular and cellular levels will
provide new therapeutic strategies of ischemic stroke.
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