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ABSTRACT: Developing superior lines based on a simultaneous 

response from many traits of agronomic importance is a fundamental 

strategy to expand papaya cultivar supply, mainly the much-needed 

cultivars belonging to group Formosa. Our goal was to associate 

the pedigree method with REML/Blup procedure to select plants 

of progenies F2:3 with superior agronomic performance. The 

variance components and genetic parameters were estimated 

using REML approach, and the genetic values were predicted 

using Blup methodology. The combined selection was performed 

using the IG2 selection index based on weights associated with 

agronomic values to indicate the best progenies and lines. The 

heritability estimates of progeny mean were high in most traits and 

evidenced significant genetic variability between progenies. The 

narrow-sense individual heritability was moderate in traits such 

as commercial fruits and soluble solid contents, which indicates a 
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favorable condition for selections within progenies. The index was 

consistent in the selection of six superior progenies according to 

the assessed traits. This index also enabled promising genetic 

gains in traits of great interest such as yield and pulp thickness. 

Although the progenies are derived from self generations, they 

proved to be superior in traits of significant importance such as 

yield, commercial fruits, and pulp thickness when compared to 

the Tainung-01 hybrid, which is a worldwide-planted cultivar used 

as a reference to Formosa representatives. Six lines were selected 

within the superior progenies to continue the Formosa group-lines 

development program. The association of the pedigree method 

with REML/Blup procedure can be useful to assist breeders in an 

autogamous breeding program.

Key words: Carica papaya, combined selection, segregating 

populations.
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INTRODUCTION

Brazil is the second largest papaya producer in the world; 
it produced 1.6 million tons in 2014, which represented 
12.7% of world production (FAO 2017). However, although 
papaya is important to the agribusiness in the country, the 
commercial plantations use a reduced number of cultivars, 
resulting in a narrow genetic base (Dias et al. 2011) and, 
consequently, in-plant vulnerability to biotic and abiotic 
stress. Commercial plantations of large-fruit Formosa-
standard papaya strongly rely on Taiwan’s hybrid seed 
imports; however, it increases the risks of having new 
pests and diseases affecting the crops, besides the high 
cost of the seeds. Thus, it is necessary broadening the 
genetic base in the crop, as well as developing cultivars 
with desirable agronomic traits, tolerance against abiotic 
stress and resistance against the main pests and diseases 
in order to meet the requirements of the internal and 
external markets (Dantas and Lima 2001).

The development of cultivars depends on the availability 
of genetic variability and the favorable simultaneous genotype 
response to most traits of agronomic importance (Ramos 
et al. 2014a). The genetic variability found in segregating 
papaya generations may be used to identify transgressive 
genotypes, as well as to develop lines in order to obtain 
pure-line cultivars. In the papaya crop, studies carried out 
in segregating populations showed a wide genetic variability 
for several traits of economic importance, thus allowing the 
selection of superior genotypes (Karunakaran et al. 2010; 
Oliveira et al. 2012; Ramos et al. 2014a; Cortes et al. 
2018). Different methods may conduct these segregating 
generations. In the papaya, the backcrossing method 
was used to conduct segregating generations to transfer 
genomic regions that control hermaphroditism (Silva 
et al. 2007) and tolerance to physiological disturb (Pinto et al. 
2013). The single seed descent method was used to obtain 
recombinant inbred lines from the Formosa group (Cortes 
et al. 2018). The pedigree method was used for the advanced 
and conduction of segregating populations derived from 
backcrossing in order to select recombinant inbred lines 
to obtain hybrids (Ramos et al. 2014a; Barros et al. 2017).

Moreover, the recombinant inbred lines may be used 
as parents in hybridization programs to the exploitation of 
heterosis. It is possible to obtain papaya lines and hybrids 
because papaya plants can be subjected to selfing without 
significant inbreeding depression (Dantas and Lima 

2001). The development of genotypes with commercial 
hybrid-like traits allows saving the money used to import 
seeds and helps to prevent phytosanitary issues. The 
development of inbred lines – mainly those belonging 
to group Formosa – enables small- and medium-sized 
farmers to produce their seeds at low cost, as well as to 
reuse them in subsequent crops.

The successful selection of superior lines depends 
on the effectiveness of breeding methods. The pedigree 
method is mostly used in the genetic improvement of 
autogamous plants to develop superior lines (Ramalho 
et al. 2013). Several cultivars of autogamous plants species 
were developed using this method, for example, soybean 
(Miranda et al. 2003), castor bean (Savy Filho et al. 
2007), wheat (Scheeren et al. 2007), and beans (Carbonell 
et al. 2010). One of its main advantages is that it allows 
knowing the genealogy of the selected lines. The REML/Blup 
procedure has significantly increased the efficiency of the 
method, mainly when the relationship matrix is applied 
to estimate genetic values (Ramalho et al. 2013). The 
REML/Blup procedure has been successfully used to select 
superior papaya genotypes (Oliveira et al. 2012; Pinto 
et al. 2013; Ramos et al. 2014b; Cortes et al. 2018). Also, 
this strategy has effectively increased the genetic gains 
in long-cycle autogamous plants, as well as speed up the 
development of lines (Ramalho et al. 2013).

Thus, the current study aimed to select superior lines 
among F2:3 progenies belonging to group Formosa via 
pedigree method using the REML/Blup procedure.

MATERIALS AND METHODS
Development of population

Thirty progenies F2:3 were used in this study. These 
progenies were derived from the selection of 30 individuals 
of the F2 generation from crosses between Sekati and JS12 
lines (Cortes 2017b3). Both parents are endogamous lines 
belonging to the same heterotic group, Formosa group, 
however, contrasting for agronomic and sensorial traits. 
The Sekati parent produces large fruits, excellent pulp 
firmness, and median soluble solid contents.

3Cortes, D. F. M. (2017b). Desenvolvimento de linhagens de 
mamoeiro assistido por imagens digitais (Ph.D. Thesis). Campos 
dos Goytacazes: Universidade Estadual do Norte Fluminense 
Darcy Ribeiro. In Portuguese.
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On the other hand, the JS12 parent diverges from 
Sekati in the last two traits, since it presents moderate 
pulp firmness and high soluble solid contents. Thus, the 
Sekati parent was used as pulp firmness source, whereas 
the JS12 parent was used as a flavor source. According 
to studies about the inheritance resistance to fungal 
diseases, the Sekati parent stood out for having phoma 
spot, black spot, and powdery mildew resistant alleles 
(Vivas et al. 2013).

The F2 generation was obtained by selfing of F1 
plants derived from crosses between Sekati and JS12 
parents. A population of 294 plants derived from the 
selfing of F1 plants was tested in the field. IG2 (Ramos 
et al. 2014a) selection index based on weights associated 
with agronomic values was used to select 30 superior 
individuals (Cortes 2017b).

Phenotyping of F2:3 progenies

The experiment was conducted under field conditions 
in Linhares County, Espírito Santo State, Brazil (19°06’ and 
19°18’ S; 39°45’ and 40°19’ W; altitude 30 m). The 30 F2:3 

progenies previously selected the parents and a commercial 
hybrid (Tainung 01). Plants were arranged in rows, spaced 
3.60 m between rows and 1.50 m between plants using eight 
holes per row. Three seedlings were planted per hole and three 
months after planting the plants were sexed, maintaining 
only the hermaphrodite plants. The plants were conducted 
according to the pedigree method, which proposes the 
selection of plants within and between lines in segregating 
F2:3 progenies, making the identification of lines and plants 
within the rows, taking individual data and registers in the 
spreadsheets to keep information about kinship.

The study was carried out using the randomized 
complete block experimental design with 30 F2:3 progenies, 
four blocks, and eight plants per plot, totaling 32 plants 
per progeny. Two assessments were performed six and 
nine months after transplanting (MAT).

A methodology based on digital image analysis, which 
was validated and described by Cortes et al. (2017a) to 
phenotyping of papaya plants, was used to measure the 
following traits: plant height (PH) and first fruit-insertion 
height (FFIH), both expressed in cm; stem diameter 
(SD), expressed in mm; number of commercial fruits 
(NCF); number of deformed fruits (NDF); and number 
of fruitless leaf axils (FLLA).

The following traits were also measured: mean fruit 
mass (FM), expressed in kg and measured in an analytical 
balance; fruit length (FL) and fruit diameter (FD), expressed 
in cm and measured in a caliper; soluble solid contents (SS), 
expressed in °Brix and measured in a digital refractometer; 
fruit firmness (FF) and pulp firmness (PF) expressed in N 
and measured using a digital bench-mounted penetrometer; 
pulp thickness (PT), expressed in cm and measured using 
a ruler. These traits were measured in fruits presenting 
characteristics of the one maturity stage (green skin with 
a light yellow stripe; pulp exhibits some areas with orange 
color, is very hard and contains large amounts of latex) 
determined according to Basulto et al. (2009). Besides, it 
was estimated the plant production (PROD), expressed in 
kg and determined by multiplying NCF by FM.

Statistical analyses
Estimation of variance components and genetic 
parameters

The statistical analyses of traits NCF, NDF, FLLA, 
and PROD, took into consideration the sum of the two 
assessment periods (six MAT + nine MAT). In turn, the 
statistical analyses of traits FFIH, PH, and SD took into 
account the mean of the two periods. On the other hand, the 
statistical analyses of FM, FL, FD, SS, FF, PF, and PT took 
into account the second period. The variance components 
and genetic parameters were estimated through the REML 
procedure, whereas the genotypic values were predicted 
through the Blup procedure.

The genetic assessment used the following statistical 
model (Eq. 1):

(1)
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𝒚𝒚 = 𝑿𝑿𝒃𝒃 + 𝒁𝒁𝒁𝒁 + 𝑾𝑾𝑾𝑾 +  𝜺𝜺                                                                                            (1) 

where: y is the vector of observation; b is the vector of block effects (assumed as fixed) 

added to the general mean; a is the vector of individual additive genetic effects (assumed as 

random); c is the vector of plot effects; and ε is the vector of errors or residues (random). 

The capital letters (X, Z, and W) represent the incidence matrices of the aforementioned 

effects. The distributions and variance structures associated with the model’s terms were set 
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through: y│b, V ~ N(Xb, V); a│A𝜎𝜎𝑎𝑎
2 ~ N(0, A𝜎𝜎𝑎𝑎

2); c│𝜎𝜎𝑐𝑐
2 ~ N(0, I𝜎𝜎𝑐𝑐

2); ε│𝜎𝜎𝜀𝜀
2 ~ N(0, I𝜎𝜎𝜀𝜀

2). The 

random effects were set through: Cov (a, c’) = 0; Cov (a, e’) = 0; Cov (c, e’) = 0. 

 The variance structures in the model were set through: V = ZA𝜎𝜎𝑎𝑎
2Z' + WI𝜎𝜎𝑐𝑐

2W' + I𝜎𝜎𝜀𝜀
2; 

wherein A is the additive genetic relationship matrix comprising all the individuals.  

 The mixed model equations are (Eq. 2): 

[
𝑏̂𝑏
𝑎̂𝑎
𝑐̂𝑐

] [
𝑋𝑋′𝑋𝑋 𝑋𝑋′𝑍𝑍 𝑋𝑋′𝑊𝑊
𝑍𝑍′𝑋𝑋 𝑍𝑍′𝑍𝑍 + 𝐴𝐴−1((1 − ℎ2 − 𝑐𝑐2)/(ℎ2)) 𝑍𝑍′𝑊𝑊
𝑊𝑊′𝑋𝑋 𝑊𝑊′𝑍𝑍 𝑊𝑊′𝑊𝑊 + 𝐼𝐼−1((1 − ℎ2 − 𝑐𝑐2)/(𝑐𝑐2))

]
−1

= [
𝑋𝑋′𝑦𝑦
𝑍𝑍′𝑦𝑦
𝑊𝑊′𝑦𝑦

] (2) 

where: ℎ̂2 = 𝜎𝜎𝑎𝑎
2 𝜎̂𝜎𝑎𝑎
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−1
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𝐶𝐶11 𝐶𝐶12 𝐶𝐶13

𝐶𝐶21 𝐶𝐶22 𝐶𝐶23

𝐶𝐶31 𝐶𝐶32 𝐶𝐶33
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2 + 𝜎𝜎𝑒𝑒

2); narrow-sense individual 

heritability between progenies, adjusted to plot effects: ℎ̂𝑎𝑎𝑎𝑎
2 =  𝜎𝜎𝑎𝑎

2 𝜎̂𝜎𝑎𝑎
2 + 𝜎𝜎𝑒𝑒

2⁄ ; mean progeny 
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where: y is the vector of observation; b is the vector of block 
effects (assumed as fixed) added to the general mean; a is 
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e ; mean progeny 
heritability:
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2𝑡𝑡𝑡𝑡(𝐶𝐶33]/𝑠𝑠. Wherein: C22 and C33 

result from: 𝐶𝐶−1 = [
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13
𝐶𝐶21 𝐶𝐶22 𝐶𝐶23
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]; C = matrix of the mixed 

model equation coefficients; tr = matrix trace operator given by the sum of the diagonal 

matrix elements; r(X) = place or number of linearly X-independent columns; N, q, s = total 

number of observations, number of individuals and number of plots, respectively. 

 The following variances and genetic parameters were also estimated through the 

following estimates, according to Viana and Resende (2014): 

 Individual phenotypic variance: 𝜎𝜎𝑓𝑓
2 = (𝜎𝜎𝑎𝑎

2 + 𝜎𝜎𝑐𝑐
2 + 𝜎𝜎𝑒𝑒

2); narrow-sense individual 

heritability between progenies, adjusted to plot effects: ℎ̂𝑎𝑎𝑎𝑎
2 =  𝜎𝜎𝑎𝑎

2 𝜎̂𝜎𝑎𝑎
2 + 𝜎𝜎𝑒𝑒

2⁄ ; mean progeny 
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2 ~ N(0, A𝜎𝜎𝑎𝑎
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2). The 
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2W' + I𝜎𝜎𝜀𝜀
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2 𝜎̂𝜎𝑎𝑎

2 + 𝜎𝜎𝑐𝑐
2⁄ + 𝜎𝜎𝑒𝑒

2 is narrow-sense heritability in the block; 𝜎𝜎𝑎𝑎
2 = additive 

genetic variance; 𝜎𝜎𝑐𝑐
2 = variance between plots; 𝜎𝜎𝑒𝑒

2  = residual variance (environmental + 
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model equation coefficients; tr = matrix trace operator given by the sum of the diagonal 
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number of observations, number of individuals and number of plots, respectively. 

 The following variances and genetic parameters were also estimated through the 
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 Individual phenotypic variance: 𝜎𝜎𝑓𝑓
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2 + 𝜎𝜎𝑐𝑐
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2); narrow-sense individual 

heritability between progenies, adjusted to plot effects: ℎ̂𝑎𝑎𝑎𝑎
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The variance structures in the model were set through: 

wherein A is the additive genetic relationship matrix 
comprising all the individuals. 

The mixed model equations are (Eq. 2):

(2)

where h ˆ2 = σ ˆ 2 
a / σ ˆ 2 

a + σ ˆ 2 
c  + σ ˆ 2 

e   is narrow-sense heritability 
in the block; σ ˆ 2 

a = additive genetic variance; σ ˆ 2 
c = variance 

between plots; σ ˆ 2 
e = residual variance (environmental + 

non-additive); c2 = σ ˆ c 
a / σ ˆ 2 

a  + σ ˆ 2 
c  + σ ˆ 2 

e is the correlation 
resulting from the common environment between plots. 
The variance component estimators via EM algorithm 
were set through:

wherein: C22 and C33 result from:

C = matrix of the mixed model equation coefficients; 
tr = matrix trace operator given by the sum of the diagonal 
matrix elements; r(X) = place or number of linearly 
X-independent columns; N, q, s = total number of observations, 
number of individuals and number of plots, respectively.

The following variances and genetic parameters were 
also estimated through the following estimates, according 
to Viana and Resende (2014): 

Individual phenotypic variance: σ ˆ 2 
f  = (σ ˆ 2 

a + σ ˆ 2 
c + σ ˆ 2 

e); 
narrow-sense individual heritability between progenies, 
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heritability: ℎ̂𝑚𝑚
2 = 𝜎𝜎𝑎𝑎

2 [𝜎𝜎𝑎𝑎
2 + 1

4 𝜎𝜎𝑐𝑐
2 + (1

2 𝜎𝜎𝑎𝑎
2 + 𝜎𝜎𝑒𝑒

2 32⁄ )]⁄ . Wherein: 4 is the number of blocks, 

and 32 is the number of blocks multiplied by the number of plants per plot (8); progeny 

selection accuracy: 𝐴𝐴𝐴𝐴 =  √ℎ𝑚𝑚2 ; additive heritability estimate within the plot ignoring the 

dominance genetic variance fraction (1/4): ℎ̂𝑎𝑎𝑎𝑎
2 = 1

2 𝜎𝜎𝑎𝑎
2 (1

2 𝜎̂𝜎𝑎𝑎
2 + 𝜎𝜎𝑒𝑒

2)⁄ ; individual additive 

genetic variation coefficient ignoring the dominance genetic variance fraction (1/4): 𝐶𝐶𝐶𝐶𝐶𝐶 =

 100√𝜎̂𝜎𝑎𝑎2 𝑚̂𝑚⁄ ; residual variation coefficient: 𝐶𝐶𝐶𝐶𝐶𝐶 = (100√𝜎̂𝜎𝑎𝑎2 + 1
8 𝜎𝜎𝑒𝑒2 + 𝜎𝜎𝑐𝑐2) 𝑚̂𝑚⁄ ; relative 

variation coefficient: 𝐶𝐶𝐶𝐶𝐶𝐶 =  𝐶𝐶𝐶𝐶𝐶𝐶/𝐶𝐶𝐶𝐶𝐶𝐶. 

 The values of the coefficients associated with the number of blocks (b = 4) and a 

number of plants per plot (c = 8) of the expressions are obtained assuming 100% plant 

survival. However, due to the loss of 35% of the plants caused by the incidence of the 

disease, the coefficient values were adjusted to perform the statistical analysis. The 

incidence of Papaya Ringspot Virus may have contributed to reducing the number of 

experimental units since this virus led to plants loss. 

 The heritabilities between and within progenies were inflated by the dominance 

genetic variance fraction (1/4). However, it should not affect the selection of individuals, 

since the two heritabilities were used to calculate the genetic values (Resende 2016). The 

genotypic values of all progenies, estimated through Blup, were found by adding each 

genotypic effect (g) to the overall mean of the experiment (μ). 

 The analyses were performed in the Selegen-REML/Blup software, model 59 

(Resende 2016). This model was designed to assess individuals of F3 progenies in 

autogamous plants derived from F2 generations considering multiple observations per plot. 
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where 4 is the number of blocks, and 32 is the number of 
blocks multiplied by the number of plants per plot (8); 
progeny selection accuracy: Ac = √h 2 

m; additive heritability 
estimate within the plot ignoring the dominance genetic 
variance fraction (1/4):

individual additive genetic variation coefficient ignoring 
the dominance genetic variance fraction (1/4):

residual variation coefficient: 

relative variation coefficient: 

The values of the coefficients associated with the 
number of blocks (b = 4) and a number of plants per 
plot (c = 8) of the expressions are obtained assuming 
100% plant survival. However, due to the loss of 35% 
of the plants caused by the incidence of the disease, the 
coefficient values were adjusted to perform the statistical 
analysis. The incidence of Papaya Ringspot Virus may 
have contributed to reducing the number of experimental 
units since this virus led to plants loss.

The heritabilities between and within progenies were 
inflated by the dominance genetic variance fraction (1/4). 
However, it should not affect the selection of individuals, 
since the two heritabilities were used to calculate the 
genetic values (Resende 2016). The genotypic values of 
all progenies, estimated through Blup, were found by 
adding each genotypic effect (g) to the overall mean of 
the experiment (μ).

The analyses were performed in the Selegen-REML/Blup 
software, model 59 (Resende 2016). This model was 
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designed to assess individuals of F3 progenies in autogamous 
plants derived from F2 generations considering multiple 
observations per plot.

Selection between and within superior progenies

The combined selection was carried out using the 
IG2 weight index, which was developed to select papaya 
genotypes, according to Ramos et al. (2014a). Also, the 
combined selection was performed between progenies 
in order to select superior progenies, as well as based in 
the plants in order to identify the best lines. A selection 
intensity of 20% was used to indicate the best progenies 
and lines. The index estimator was expressed through Eq. 3:

Besides, the genetic gains obtained with the selection of 
the best progenies and the best lines were estimated. The 
gains were estimated using the following estimator (Eq. 4):
where G ˆ

s = genetic gain; y ˆ
s – μ0= selection differential; 

h ˆ2 = heritability based on the mean of the progenies (h ˆ 2 
m) 

where vgi = standardized additive genetic value of trait i; 
p = economic weight attributed to trait i with positive or 
negative sign according to the selected direction. The weights 
assigned to the 13 traits were: PH (1), FFIH (1), SD (5), 
NCF (100), NDF (–20), FLLA (–20), FM (1), FL (1), FD 
(1), SS (100), FF (100), PF (100) and PT (70). The weight 
relation was experimentally set based on the agronomic 
importance of the traits, as described by Silva et al. (2008).

(3)

(4)

10 
 

Selection between and within superior progenies 

 The combined selection was carried out using the IG2 weight index, which was 

developed to select papaya genotypes, according to Ramos et al. (2014a). Also, the 

combined selection was performed between progenies in order to select superior progenies, 

as well as based in the plants in order to identify the best lines. A selection intensity of 20% 

was used to indicate the best progenies and lines. The index estimator was expressed 

through Eq. 3: 

𝐼𝐼𝐼𝐼2 = ∑ (𝑣𝑣𝑣𝑣𝑣𝑣 ×  𝑝𝑝𝑝𝑝)𝑛𝑛
𝑖𝑖=1 (3)

where: vgi = standardized additive genetic value of trait i; p = economic weight attributed 

to trait i with positive or negative sign according to the selected direction. The weights 

assigned to the 13 traits were: PH (1), FFIH (1), SD (5), NCF (100), NDF (–20), FLLA (–

20), FM (1), FL (1), FD (1), SS (100), FF (100), PF (100) and PT (70). The weight relation 

was experimentally set based on the agronomic importance of the traits, as described by 

Silva et al. (2008). 

 Besides, the genetic gains obtained with the selection of the best progenies and the 

best lines were estimated. The gains were estimated using the following estimator (Eq. 4): 

𝐺𝐺𝑠𝑠 = (𝑦̂𝑦𝑠𝑠 − 𝜇𝜇0)ℎ̂2                                                                                                        (4) 

where: 𝐺𝐺𝑠𝑠 = genetic gain; 𝑦̂𝑦𝑠𝑠 − 𝜇𝜇0 = selection differential; ℎ̂2 = heritability based on the 

mean of the progenies (ℎ̂𝑚𝑚
2 ) for the selection of best progenies, or additive heritability 

within plots for the selection of lines within best progenies (ℎ̂𝑎𝑎𝑎𝑎
2 ). 

RESULTS 

Genetic parameter estimates 

10 
 

Selection between and within superior progenies 

 The combined selection was carried out using the IG2 weight index, which was 

developed to select papaya genotypes, according to Ramos et al. (2014a). Also, the 

combined selection was performed between progenies in order to select superior progenies, 

as well as based in the plants in order to identify the best lines. A selection intensity of 20% 

was used to indicate the best progenies and lines. The index estimator was expressed 

through Eq. 3: 

𝐼𝐼𝐼𝐼2 = ∑ (𝑣𝑣𝑣𝑣𝑣𝑣 ×  𝑝𝑝𝑝𝑝)𝑛𝑛
𝑖𝑖=1 (3)

where: vgi = standardized additive genetic value of trait i; p = economic weight attributed 

to trait i with positive or negative sign according to the selected direction. The weights 

assigned to the 13 traits were: PH (1), FFIH (1), SD (5), NCF (100), NDF (–20), FLLA (–

20), FM (1), FL (1), FD (1), SS (100), FF (100), PF (100) and PT (70). The weight relation 

was experimentally set based on the agronomic importance of the traits, as described by 

Silva et al. (2008). 

 Besides, the genetic gains obtained with the selection of the best progenies and the 

best lines were estimated. The gains were estimated using the following estimator (Eq. 4): 

𝐺𝐺𝑠𝑠 = (𝑦̂𝑦𝑠𝑠 − 𝜇𝜇0)ℎ̂2                                                                                                        (4) 

where: 𝐺𝐺𝑠𝑠 = genetic gain; 𝑦̂𝑦𝑠𝑠 − 𝜇𝜇0 = selection differential; ℎ̂2 = heritability based on the 

mean of the progenies (ℎ̂𝑚𝑚
2 ) for the selection of best progenies, or additive heritability 

within plots for the selection of lines within best progenies (ℎ̂𝑎𝑎𝑎𝑎
2 ). 

RESULTS 

Genetic parameter estimates 

Table 1. Variance components and Genetic parameters estimated for 14 morpho-agronomic traits in papaya F2:3 progenies.

Trait σ ˆ 2 
a σ ˆ 2 

e σ ˆ 2 
f h ˆ 2 

a h ˆ 2 
aj

c2 h ˆ 2 
m

Ac h ˆ 2 
ad

CVg CVe CVr m ˆ

FFIH 49.25 127.10 213.36 0.23 0.28 0.17 0.79 0.89 0.19 11.22 11.63 0.96 62.56

PH 152.50 476.50 812.32 0.18 0.24 0.23 0.72 0.85 0.17 7.520 9.49 0.80 164.20

SD 0.38 1.16 1.99 0.19 0.25 0.23 0.72 0.85 0.17 5.77 7.21 0.80 10.72

NCF 20.29 50.29 85.78 0.24 0.29 0.18 0.79 0.89 0.20 22.84 23.51 0.97 19.72

NDF 0.75 8.19 9.50 0.08 0.08 0.06 0.65 0.81 0.05 24.25 35.41 0.68 3.56

FLLA 11.39 49.12 63.93 0.18 0.19 0.05 0.83 0.91 0.12 22.71 20.81 1.09 14.86

FM 88.66 80.32 204.33 0.43 0.52 0.17 0.89 0.94 0.55 17.35 12.42 1.40 1.72

FL 579.20 1035.00 1620.40 0.36 0.36 0.00 0.94 0.97 0.28 9.46 4.57 2.07 254.50

FD 9.50 534.50 716.52 0.01 0.02 0.24 0.14 0.37 0.01 2.57 12.91 0.20 119.80

FF 4.17 110.90 126.56 0.03 0.04 0.09 0.4 0.63 0.02 1.88 4.65 0.41 108.30

PF 4.41 54.26 65.77 0.07 0.08 0.11 0.56 0.75 0.04 2.56 4.55 0.56 81.93

PT 0.02 0.05 0.09 0.30 0.29 0.22 0.79 0.89 0.26 5.54 5.62 0.98 2.80

SS 0.32 0.68 1.20 0.30 0.32 0.18 0.81 0.90 0.24 7.45 7.11 1.04 7.58

PROD 46.34 213.3 346.76 0.13 0.18 0.25 0.62 0.79 0.11 20.24 31.71 0.64 33.64
 
σ ˆ 2 a = additive genetic variance; σ ˆ 2 e = residual variance; σ ˆ 2 f = individual phenotypic variance; σh ˆ 2 a = broad-sense individual heritability between progenies;  
h ˆ 2 aj = narrow-sense individual heritability between progenies, adjusted to plot effects; c2 = correlation resulting from the common environment between 
plots; h ̂ 2 m = mean progeny heritability; Ac = progeny selection accuracy; h ̂ 2 ad = additive heritability within the plot; CVg% = individual additive genetic 
variation coefficient; CVe% = residual variation coefficient; CVr = relative variation coefficient; m ˆ = mean. PH = plant height (cm); FFIH = first fruit-insertion 
height (cm); SD = stem diameter (cm); NCF = number of commercial fruits; NDF = number of deformed fruits; FLLA = number of fruitless leaf axils; FM = 
fruit mass (g); FL = fruit length (mm); FD = fruit diameter (mm); SS = soluble solid contents (ºBrix); FF = fruit firmness (N); PF = pulp firmness (N); PT = 
pulp thickness (cm); PROD = plant production (Kg).

for the selection of best progenies, or additive heritability 
within plots for the selection of lines within best progenies 
(h ˆ 2 

ad).

RESULTS
Genetic parameter estimates

The magnitudes of the experimental variation coefficient 
(CVe) ranged from 4.55% to 35.41% (Table 1). Traits such 
as PF, FL, FF, PT, SS, SD, and PH showed low magnitudes 
(CVe ≤ 10), thus indicating high experimental accuracy. 
On the other hand, FFIH, FM, and FD showed medium 
magnitudes (10 ≤ CVe ≤ 20), thus evidencing good accuracy. 
NCF and FLLA showed high magnitudes (20 ≤ CVe ≤ 30), 
whereas NDF and PROD showed very high magnitude 
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(CVe > 30). The magnitudes of the determination coefficient 
of plot effects (c2) ranged from low to high (0% to 25%). 
The c2 measures the variability within blocks and it may be 
classified as low (c2 < 0.10) and high (c2 > 0.10) (Sturion and 
Resende 2010). Low c2 magnitudes were found in FL, FF, 
NDF, and FLLA, whereas high magnitudes were found in 
the other traits. The magnitudes of the individual additive 
genetic variation coefficient (CVg) ranged from low to high 
(1.88% to 24.25%). All the herein assessed traits showed low 
to moderate magnitudes (1.88% to 17.35%), except for PROD, 
NCF, FLLA, and NDF, which showed high magnitudes. The 
relative variation coefficient (CVr) values ranged from 0.2 
to 2.08. Magnitudes higher than the unity were found in FL, 
FM, SS, and FLLA. On the other hand, magnitudes close to 
the unit were found in PT, NCF, FFIH, PH, and SD. The other 
traits showed moderate magnitudes, except for FD and FF.

The heritability in the selection within progenies (h ˆ 2 
ad) 

showed magnitudes similar to those of the narrow-sense 
individual heritability (h ˆ 2 

a) in all traits. Low magnitudes 
(0.01 ≤ h2 ≤ 0.15) were found in FD, FF, PF, PROD, NDF, 
and FLLA. On the other hand, medium magnitudes 
(0.15 ≤ h2 ≤ 0.50) were found in FFIH, NCF, PH, SD, SS, 
PT, and FL, whereas high magnitude (h2 > 0.50) was found 
in FM. The standard deviations around each h ˆ 2 

ad estimate 
ranged from low to moderate; it showed that the estimated 
heritability values were statistically different from zero.

The heritability based on the mean of the progenies 
(h ˆ 2 

m) showed magnitudes significantly higher than those of 
the narrow-sense individual heritability. Low h ˆ 2 

m magnitudes 
were estimated in FD (0.14), whereas median magnitudes 
were estimated in FF (0.40). The other traits showed high 
h ˆ 2 

m  coefficients, which ranged from 0.56 (in PF) to 0.94 (in 

FL). The accuracy values in the present study ranged from 
0.37 to 0.97; they were considered high, except for FD (0.37).

Selection between and within progenies

The genetic gains of the six progenies indicated through 
the IG2 index ranged from 3.07% to 26.61% for PROD, from 
15.02% to 29.78% for NCF, from –27.98% to –12.62% for 
NDF, from –12.25% to 20.41% for FLLA, and from –3.44% to 
3.43% for PT (Table 2). These values were satisfactory if one 
takes into consideration the mean gains estimated for each 
trait. It is worth highlighting that these gains were positive 
in PROD, NCF and PT, and negative in FLLA and NDF. The 
highest mean gains were found in PROD; mean increases 
of 13.28%, 21.67%, –18.12%, and 0.83% were predicted for 
PROD, NCF, NDF, and FLLA, respectively.

The IG2 index was also used in the present study to 
select the best plants within the best progenies, taking 
into consideration the 20% selection intensity. The gains 
predicted for the individual selection decreased when they 
were compared to the analysis based on the mean of the 
progenies in traits such as PROD and NCF (Table 3). The 
highest gain was estimated in NCF (–0.32% ≤ Gs 2.62%), 
followed by PROD (–0.23% ≤ Gs ≤ 1.05%). Progenies 6 and 
5 presented the highest gains in PROD and NCF, although 
of low magnitude.

In addition to the genotypes selected through combined 
selection, the direct selection based on SS, FF, and PF was 
conducted to keep the SS, FF, and PF source genotypes in 
the breeding population. The gains for the direct selection 
ranged from 2.83% to 3.53% for FF and PF, and from 1.34% 
to 1.60% for SS (Table 4).

Table 2. Genetic gains (Gs) and new predicted averages (X 
–

s) in five traits of great importance in papaya breeding for the progenies 
selected by the IG2 index.

Progeny

Plant production 
(kg)

Number of 
commercial fruits

Number of 
deformed fruits Fruitless leaf axils Pulp thickness 

(cm)

Gs X  
–

s Gs X  
–

s Gs X  
–

s Gs X  
–

s Gs X  
–

s

6 26.61 57.03 15.02 26.43 –27.98 5.69 –12.25 2.45 3.43 3.02

16 13.92 45.88 17.60 27.58 –21.28 7.89 –10.22 2.64 0.82 2.85

14 12.82 44.91 23.41 30.18 –12.62 10.72 –7.88 2.85 –3.44 2.59

9 12.35 44.49 29.78 33.02 –14.69 10.05 4.09 3.93 –0.08 2.80

5 10.90 43.22 21.27 29.22 –16.25 9.53 20.41 5.40 –2.60 2.64

21 3.07 36.33 22.95 29.97 –15.92 9.64 10.80 4.54 2.00 2.93

Mean 13.28 45.31 21.67 29.40 –18.12 8.92 0.83 3.63 0.02 2.80

Tainung 44.37 27.85 7.13 14.19 2.83
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Table 3. Genetic gains (Gs) and new predicted averages (X 
–

s) in plant production (PROD) and a number of commercial fruits (NCF) to 
plants selected within the superior progenies.

Progeny
Plant

PROD NCF Progeny
Plant

PROD NCF

Gs (%)  (Kg) Gs (%) X  
–

s Gs (%)  (Kg) Gs (%) X  
–

s

6-5 1.05 48.90 2.62 24.17 9-2 1.04 40.92 1.56 27.76

6-1 0.61 48.68 1.43 23.89 9-5 0.20 40.58 0.97 27.60

6-4 0.65 48.70 1.59 23.92 9-2 0.05 40.52 –0.01 27.33

6-3 0.16 48.47 0.22 23.60 9-7 0.23 40.59 1.56 27.76

6-3 0.33 48.55 0.74 23.72 9-1 0.44 40.67 –0.27 27.26

6-1 0.41 48.59 0.39 23.64 9-6 0.48 40.69 1.27 27.68

16-3 0.81 41.73 1.91 24.69 5-4 2.98 40.91 4.17 26.18

16-4 0.48 41.59 0.61 24.38 5-8 0.59 39.97 1.34 25.47

16-5 0.06 41.42 –0.26 24.17 5-3 0.52 39.94 1.79 25.58

16-3 0.61 41.64 1.99 24.71 5-6 –0.06 39.71 –0.30 25.06

16-2 0.13 41.44 0.32 24.30 5-1 0.32 39.86 1.66 25.55

16-7 0.23 41.49 0.61 24.38 5-7 0.45 39.91 1.19 25.43

14-1 0.50 41.24 0.20 25.98 21-2 0.09 35.83 0.64 25.87

14-2 0.25 41.14 0.40 26.03 21-2 –0.11 35.76 0.14 25.74

14-4 0.25 41.13 0.11 25.96 21-3 –0.10 35.77 1.07 25.98

14-3 –0.14 40.97 0.40 26.03 21-2 –0.23 35.72 –0.32 25.63

14-1 –0.07 41.00 0.09 25.95 21-1 –0.14 35.75 0.01 25.71

14-1 –0.04 41.02 0.42 26.04 21-1 0.14 35.85 0.44 25.82

Table 4. Direct selection for three traits of agronomic importance for papaya breeding.

Trait Progeny Plant f a u + a Gs X  
–

s

SS 26 3 11.46 1.6 9.19 1.60 9.19

SS 26 1 10.42 1.33 8.91 1.47 9.05

SS 19 3 10.66 1.22 8.81 1.38 8.97

SS 19 4 9.51 1.2 8.79 1.34 8.92

PF 3 1 101.30 3.53 85.46 3.53 85.46

PF 3 5 98.33 3.41 85.34 3.47 85.40

FF 12 2 135.94 2.85 111.18 2.85 111.18

FF 12 6 135.05 2.82 111.15 2.83 111.17
 
SS = soluble solids content (°Brix); PF = pulp firmness (N); FF = fruit firmness (N); f = phenotypic value; a = additive genetic effect; u + a = additive genetic 
value; Gs = genetic gain (%);  X 

–
s = new average of the selected individuals.

DISCUSSION

Our team of plant breeding studied the combination 
Sekati × JS12 in studies of combining ability and testers 
for development of hybrids (Ide et al. 2009), diallel trials 
and heterosis studies (Cardoso et al. 2014) and resistance 
to fungal diseases (Vivas et al. 2013), since we are trying to 
obtain cultivars with characteristics of the Formosa 
group to reduce dependence on the import of hybrid 
seeds from Taiwan. Therefore, we propose optimizing 

methods to generate advanced breeding lines to evaluate 
and select superior homozygous genotypes (recombinant 
inbred lines) for traits related to yield and fruit quality. 
We approach the conduction and selection of lines using 
the pedigree method and mixed models (REML/Blup 
procedure), simultaneously performing the selection 
and recombination phases in order to reduce the time 
necessary to obtain superior genotypes.

The high magnitudes of heritability based on the mean 
of progenies for most of the traits indicate high genetic 
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variability among progenies. This variability observed 
in traits associated with fruit quality as soluble solids 
content, pulp firmness and pulp thickness in segregating 
progenies was an expected result, since it is F2:3 generation 
derivate from parents that are divergent for such traits. In 
contrast, the low h ˆ 2 

m magnitudes estimated in fruit diameter 
indicated low genetic variability between progenies. High 
h ˆ 2 

m coefficients in papaya-segregating progenies were also 
estimated for plant height, first fruit height, number of 
commercial fruits, mean fruit mass, soluble solid contents, 
pulp thickness (Ramos et al. 2014b) and production (Silva 
et al. 2008), whereas low coefficients were estimated for 
fruit diameter (Ramos et al. 2014b). The heritability is 
not only related to the traits, but also to the population 
and to the environmental circumstances the individuals 
are subject to. Thus the heritability magnitude may be 
affected if one of the phenotypic and genetic variance 
components changes (Falconer 1987).

The moderate heritability within the plot in traits 
as commercial fruits, pulp thickness, plant height, stem 
diameter, and solid soluble content and high heritability 
observed in fruit mass indicates favorable variability 
situation to the selection of lines within progenies and 
to obtaining considerable genetic gains. The selection 
within progenies did not allow significant gains in traits as 
production, pulp firmness, and fruit firmness due to low 
heritability; thus, the selection between progenies is more 
relevant in this case. The low magnitudes may be explained 
through the genetic nature of the herein assessed progenies. 
According to Hallauer et al. (2010), the expected genetic 
variance between F3 progenies is σ2F3 = σ2A + 1/4σ2D, 
whereas the expected genetic variance within progenies 
is σ2F3 = 1/2σ2A + 1/2σ2D. It means that there is more 
genetic variance between than within progenies. Therefore, 
the individual heritability magnitudes are smaller than 
those of the heritability when the mean of the progenies 
is taken into account. Also, the individual selection shows 
the strong environmental influence and less experimental 
accuracy because of the higher residual variance, since 
there is no replication of individuals. The heritability 
estimate based on the mean of the progeny is even more 
accurate because the residual variance is adjusted to the 
number of replications.

Genetic variability in the population is essential to 
select superior genotypes aiming to improve any crop 
(Nicolai et al. 2013). Furthermore, the selection method 

adopted, the genetic correlations between traits, the type 
of inheritance involved and the experimental precision 
also have an essential role in the success of a breeding 
program (Paiva et al. 2002). The quality of the genotypic 
assessment should be inferred using the parameter known 
as accuracy. This parameter expresses the correlation 
between the real genotypic value and the value predicted 
according to information resulting from field experiments; 
the lower the absolute deviations between these values, the 
higher the accuracy (Resende and Duarte 2007). The 
accuracy values should be higher than 0.5 since high 
accuracy indicates high progeny-selection precision. 
Thus, high accuracy was found in all the herein assessed 
traits, except for fruit diameter.

The high CVe magnitudes observed in NCF, NDF, 
FFLA, and PROD indicate relatively low experimental 
accuracy. In papaya experiments, the ranges of values 
of the coefficient of variation differ among the traits 
showing wide variation, justifying the need to use specific 
evaluation range for each trait (Ferreira et al. 2016). High 
CVe values have been associated with long-cycle crops, 
large-sized experiments, different genotype responses to 
high temperature and drought-related stresses, as well as 
with different genotype responses to pests, diseases, winds 
and pruning (Ferrão et al. 2008).

In studies of estimation of genetic parameters to 
assess the genetic variability of breeding populations, 
the CVe should be analyzed together with the CVg for 
more appropriate analyzes. The CVr, which refers to the 
magnitude of the relation between CVg and CVe, indicates 
how much of the existing variation results from genetic 
causes; it measures the accuracy of the inferences that may 
result from phenotypic assessments. Thus, values above 
the unit allow making inferences with high and very high 
accuracy. Magnitudes higher than and close to the unit are 
favorable to the selection of progenies based on FL, FM, 
FLLA, SS, PT, NCF, FFIH, PH and SD, thus suggesting 
that simple methods may be used to provide considerable 
genetic gains. However, more refined methods should be 
used to select superior progenies based on traits such as 
FD, FF, PF, PROD, and NDF.

Breeding values for individuals enable candidates to 
establish the best strategy to increase the efficiency of 
breeding (Barbosa et al. 2014). The main advantage of the 
BLUP method lies in the estimation of the environmental 
effect-free genotypic values. These values are the most 
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important for breeders since they are the true values 
to be predicted and represent the individuals’ genetic 
potential. Since the genetic improvement of papaya plants 
aims to select genotypes able to meet the highest number 
of desirable traits, it is essential to use indices able to 
help the combined selection of traits. The REML/Blup 
procedure allows ordering genotypes according to each 
trait through the exploration of all genotype variations 
within and between progenies (Resende 2016). However, 
papaya individuals showing favorable responses to several 
traits are considered superior in breeding programs. Thus, 
the REML/Blup procedure is not appropriate to select 
promising genotypes simultaneously based on several 
traits. It justifies the use of selection indices based on 
genotypic values in order to increase the efficiency of 
breeding programs.

The selected progenies showed no significant genetic 
gains in fruit quality-related traits such as FF, PF, and 
SS. Equivalent results were observed in competition 
trials comprising papaya hybrids (Ide et al. 2009). The 
aforementioned authors concluded that it is difficult 
combining the fruit production per plant and fruit 
quality-related traits such as total soluble solids and pulp 
firmness in the same genotypes. In addition, the authors 
consider that the negative correlation between total 
soluble solids and plant production requires breeders to 
make significant efforts such as generating large-sized 
segregating populations to identify recombinants showing 
both traits. Thus, despite the moderate and high heritability 
magnitudes estimated for FF and SS in the present study, 
it was not possible to select highly productive progenies 
showing high FF, PF, and SS.

The lower predicted gains found through the selection 
within superior progenies when compared to the gains 
found through the selection between progenies were 
expected since the heritability of the individual selection 
unit was lower than that estimated through the mean of 
the progenies. Despite the smaller gains obtained within 
progenies, it is necessary to select individuals in order to 
advance generations and continue the breeding program. 
However, it was possible to see that the means of most 
of the selected genotypes were higher than the overall 
mean of the most important agronomic traits. The FM 
may explain the negative PROD sign obtained in some 
plants since this trait results from the multiplication of 
the NCF by FM. Thus, plants with high NCF may produce 

smaller fruits. On the other hand, plants with low NCF may 
produce larger fruits. The genetic gains obtained with the 
selection within progenies allow inferring that selection 
between progenies should be performed to increase the 
mean of the traits in the advanced generations.

The direct selection based on genetic values obtained 
by Blup method has been successfully applied to fruit 
species. However, although the combined selection 
presents lower gains in comparison to the direct selection, 
it has been framed as an appropriate strategy in papaya 
breeding programs. The choice for this strategy comes 
from the high expectation of achieving success in future 
generations since it simultaneously takes into consideration 
the favorable and unfavorable traits to the papaya crop 
(Silva et al. 2008; Pinto et al. 2013; Ramos et al. 2014b).

Significant genetic variability was observed in most of 
the traits between progenies, a fact that shows the genetic 
potential these segregating generations may present in 
the development of superior lines. It is worth highlighting 
that several progenies presented higher performances than 
the Tainung-01 hybrid in traits such as plant production, 
number of commercial fruits and pulp thickness, which 
are extremely important to crop improvement (Table 2). 
It is also worth emphasizing the genetic potential of these 
progenies; although they derived from self-generation, 
their agronomic performance was similar to that of the 
Tainung-01 hybrid, which is a cultivar planted worldwide 
and used as a reference for representatives of group Formosa.

The IG2 index showed consistency in the ordering 
of the progenies and facilitated the combined selection of 
the six superior progenies based on the assessed traits. It 
also provided promising predicted genetic gains in traits 
of significant importance to papaya breeding. Six lines 
were selected within the six superior progenies in order to 
continue the superior-line development program focused 
on the Formosa group as a way to help large, medium, 
and small papaya farmers.
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