
ABSTRACT: An accurate, efficient and informative statistical method for analyses of genotype 

× environment (G × E) interactions is a key requirement for progress in any breeding program. 

Thus, the objective of this study was to quantify individual variation in reaction norms using 

random regression models fitted through Legendre polynomials in eucalyptus (Eucalyptus spp.) 

breeding. To this end, a data set with 215 eucalyptus clones of different species and hybrids 

evaluated in four environments for diameter at breast height (DBH) and Pilodyn penetration (PP) 

was used. Variance components were estimated by restricted maximum likelihood, and genetic 

values were predicted by best linear unbiased prediction. The best-fitted model for DBH and PP 

was indicated by the Akaike information criterion, and the significance of the genotype effects 

was tested using the likelihood ratio test. Genetic variability between eucalyptus clones and very 

high accuracies (rĝg > 0.90) were detected for both traits. Reaction norms and eigenfunctions 

generated genetic insights into G × E interactions. This is the first study that quantified individual 

variation in reaction norms using random regression models fitted through Legendre polynomials 

in eucalyptus breeding and demonstrated the great potential of this technique.
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INTRODUCTION

Eucalyptus (Eucalyptus spp.) is widely cultivated in tropical and subtropical regions. Its cultivation is mainly intended 
to produce pulp, bio-oil, firewood, and charcoal. The international pulp trade and the intense search for alternative energy 
sources have increasingly motivated the establishment of eucalyptus plantations in several countries worldwide (Fonseca et al. 
2010). In this sense, eucalyptus breeding programs have sought to identify more efficient selection techniques to increase 
yield and quality of traits of industrial interest.

The genotype × environment (G × E) interactions are characterized by the differential behavior of genotypes in relation to 
environmental variations (Resende 2015). These interactions can be expressed in various ways and with different intensities and 
can generate significant obstacles for genetic selection (Li et al. 2017; van Eeuwijk et al. 2016), including eucalyptus (Nunes et al. 
2017; Resende et al. 2017; 2018). Thus, the use of accurate, efficient and informative statistical methods that capture the 
information present in this source of variation and advantageously exploit its effects is fundamental in any breeding program.
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Recently, mixed model methodology has become very popular for analyses of G × E interactions (Li et al. 2017; van 
Eeuwijk et al. 2016). There are numerous reasons for their use, including the fact that they allow estimation of variance 
components and prediction of genetic values simultaneously, deal with unbalanced data, describe heterogeneity of genetic 
covariances and residual variances across environments, and modeling spatial trends (Resende 2016; van Eeuwijk et al. 2016).

Within the context of mixed model methodology, individual variation in reaction norms can be quantified using 
random regression models fitted through Legendre polynomials (Resende et al. 2014). Random regression models involve 
a parsimonious covariance structure that provides predicted genetic values in specific environments or as a trend over 
environments (Alves et al. 2020); and Legendre polynomials have been considered to have better convergence properties 
as the regression are orthogonal (Mrode 2014) and are the easiest to apply (Schaeffer 2016).

Random regression models are widely used in longitudinal data analyses (Mrode 2014; Resende et al. 2014). In perennials 
breeding, random regression models have been used to model growth over time (Resende et al. 2001; Rocha et al. 2018). 
Besides that, reaction norms have been commonly used for genomic and phenotypic selection in multi-environment trials 
(Jarquín et al. 2014; Morais Júnior et al. 2018; Alves et al. 2020).

However, no study considering random regression models fitted through Legendre polynomials has been described in 
forest tree breeding for analyses of G × E interactions. Thus, the objective of this study was to quantify individual variation 
in reaction norms using random regression models fitted through Legendre polynomials in eucalyptus breeding.

MATERIAL AND METHODS

Experimental data

The data used in this work come from evaluation of a clonal field test of different eucalyptus species (E. grandis, 
E. urophylla, E. saligna, and E. pellita) and hybrids [E. grandis × E. urophylla, E. urophylla × E. maidenii, E. grandis × E. saligna, 
E. urophylla × E. saligna, E. urophylla × E. globulus, E. pellita × E. grandis, E. grandis × E. maidenii, E. grandis × E. dunnii, 
E. grandis × E. globulus, E. globulus × E. tereticornis, E. urophylla × E. deanei, E. urophylla × E. tereticornis, E. urophylla × 
(E. grandis × E. urophylla), E. globulus × (E. grandis × E. urophylla), E. grandis × (E. grandis × E. urophylla), E. urophylla × 
(E. camaldulensis × E. grandis), E. saligna × (E. grandis × E. urophylla), E. robusta × (E. grandis × E. urophylla), E. grandis 
× (E. dunnii × E. grandis), E. maidenii × (E. grandis × E. urophylla), E. saligna × (E. urophylla × E. grandis), E. urophylla × 
(E. grandis × E. globulus), E. urophylla × (E. tereticornis × E. saligna), E. urophylla × (E. urophylla × E. grandis), (E. grandis 
× E. kirtoniana) × (E. robusta × E. tereticornis), and (E. grandis × E. urophylla) × (E. urophylla × E. globulus)], implemented 
in September 2007, in four experimental areas of the CMPC Company, which are located in the state of Rio Grande do 
Sul, Brazil. The geographic location and annual climatic conditions of each environment are presented in Table 1. In each 
environment, a field trial in a randomized block design was established, with 215 clones in single tree plots and 30 replications. 
Trees were planted at a spacing of 3.5 m between rows and 2.6 m between plants.

Table 1. Geographic location (GL) and annual climatic conditions (ACC) of each environment (E).

GL and ACC E1 E2 E3 E4

Geographic coordinates
Latitude: 30°11’09” S Latitude: 30°29’45” S Latitude: 30°27’19” S Latitude: 30°14’46” S

Longitude: 52°00’10” W Longitude: 52°19’35” W Longitude: 52°39’ 53” W Longitude: 53°49’7” W

Altitude (m) 141 378 250 301

Average temperature (°C) 17.5 16 17 16.8

Absolute minimum temperature (°C) -0.9 -1.7 -0.6 0.0

Absolute maximum temperature (°C) 32.3 30.7 33.3 34.7

Rainfall (mm) 1422 1564 1368 1133

Source: CMPC Company.
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This work used data from the assessment of all surviving trees at three-years of age in the field tests (22,295 trees in total) 
for diameter at breast height (DBH) (cm) and Pilodyn penetration (PP) (mm). The DBH was measured using a diameter 
tape and the PP using a Pilodyn. According to Greaves et al. (1996), PP, which is an indirect method to determine the basic 
density of wood, has been effective to evaluate eucalyptus.

Statistical analyses

In order to use Legendre polynomials, phenotypic mean of each environment (μi) must be scaled to range from -1 to 
+1. The environmental gradient values (Ei) were obtained as follows (Eq. 1) (Schaeffer 2016):

  (1)

Variance components were estimated by restricted maximum likelihood (REML) (Patterson and Thompson 1971) and 
genetic values were predicted by best linear unbiased prediction (BLUP) (Henderson 1975). Random regression models 
were fitted through Legendre polynomials for DBH and PP as follows (Eq. 2):

  (2)

where Yijk is the ith genotype (i = 1, 2, …, 215) in the jth environment (j = 1, 2, 3, 4) in the kth replication (k = 1, 2, …, 30); μ 
is the overall mean; Sj is the fixed effect of environment j; R/Sjk is the fixed effect of replication k nested in environment j; 
d is the polynomial degree, ranging from 0 to D (D = number of environments - 1); αid is the random regression coefficient 
for the Legendre polynomial for the genotype effect; Φijd is the dth Legendre polynomial for the jth environment for the ith 
genotype; and eijk is the residual random effect associated with Yijk.

In the matrix notation, the above model is described as follows (Eq. 3):

  (3)

where y is the vector of phenotypic data; β is the vector of the replication-environment combination that comprises the 
fixed effects of environment and replication within the environment, added to the overall mean; α is the vector of genotype 
effects (random); and e is the vector of residuals (random). Uppercase letters represent the incidence matrices for these effects. 
In addition, α~N(0,Kg ⊗ I215) and e~N(0,R), where I215 is an identity matrix of order 215, ⊗ denotes the Kronecker product, 
Kg is the covariance matrix for the coefficients of genetic effects, and R represents the matrix of residual variances.

The polynomial order in random regression models were selected using the Akaike Information Criterion (AIC) (Akaike 
1974) as follows (Eq. 4):

  (4)

where LogL is the logarithm of the maximum (L) of the restricted likelihood function, and p is the number of estimated 
parameters. Besides that, different residual variance structures (homogeneous and heterogeneous) were tested.

The significance of the genotype effects was tested using the likelihood ratio test (LRT) (Wilks 1938) as follows (Eq. 5):

  (5)

where LogLR is the logarithm of the maximum (LR) of the restricted likelihood function of the reduced model (without 
genotype effects).

Estimates of genetic variance (σ̂g
2) and predicted genetic values (~gij), in the original scale, were obtained by Eqs. 6 and 7 

(Kirkpatrick et al. 1990):
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  (6)

  (7)

Phenotypic variance (σ̂p
2), broad-sense individual heritability (h2

g), and accuracy (rĝ g) were estimated by Eqs. 8–10 
(Resende et al. 2014):

  (8)

  and (9)

  (10)

where σ̂e
2 is the residual variance and PEV is the prediction error variance, obtained by the diagonal elements of the inverse 

of the coefficient matrix (information matrix) of the mixed model equations.
The eigenfunctions (ψf) of the genetic coefficient covariance matrix, aiming to study the G × E interactions, were obtained 

by Eq. 11 (Kirkpatrick et al. 1990):

  (11)

where (Cψf)d is the dth element of the fth eigenvector of K
^

g, and Φd is the normalized value of the dth Legendre polynomial.
The areas under the reaction norms (A), aiming to rank the clones, were obtained by Eq. 12:

  (12)

where xd is the environmental gradient.
Statistical analyses were performed using the ASReml 4.1 (Gilmour et al. 2015) and R (R Core Team 2018) software. 

The ASReml program files are available in supplementary material.

RESULTS

Selection of models

According to the AIC (Akaike 1974), the best model for DBH and PP is denoted by Leg.4.Rhe (Legendre polynomial of 
the three degree for genotype effects, with a heterogeneous residual variance structure) (Table 2), since the lower AIC value 
reflect a better overall fit. Thus, this model was adopted to estimate the variance components and to predict the genetic values 
along the environmental gradients. According to the LRT, genetic variability (p < 0.01) was detected for DBH and PP (Table 2).

Variance components and genetic parameters

For DBH, genetic variance was not stable over the environmental gradient, ranging from 0.9073 (E2) to 2.5426 (E4); 
and residual and phenotypic variances increased over the environmental gradient (Table 3). Heritability estimates were not 
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stable over the environmental gradient, ranging from 0.22 (E1) to 0.39 (E3); and mean accuracies were higher than 0.90 
in all environments (Table 3).

For PP, genetic, residual, and phenotypic variances were not stable over the environmental gradient (Table 3). 
Genetic variance ranged from 3.6123 (E1) to 4.6763 (E2); and residual and phenotypic variances reached a peak in E2 
(Table 3). Heritability estimates were not stable over the environmental gradient, ranging from 0.45 (E2) to 0.63 (E3); and 
mean accuracies were higher than 0.95 in all environments (Table 3).

Reaction norms

Genotypic plasticity and G × E interactions (nonlinear) were observed for DBH (Fig. 1a) and PP (Fig. 1b), since the 
reaction norms intersected, diverged, or converged (van Eeuwijk et al. 2016).

Eigenfunctions

For DBH, first, second, third and fourth eigenfunctions explained, respectively, 78.26, 15.54, 4.68 and 1.51% of the 
genetic variation (Fig. 2a). For PP, first, second, third, and fourth eigenfunctions explained, respectively, 66.80, 32.48, 0.56, 
and 0.15% of the genetic variation (Fig. 2b).

Table 2. Akaike information criterion (AIC) and likelihood ratio test (LRT) for the genetic effects for diameter at breast height (DBH) and 
Pilodyn penetration (PP) in eucalyptus.

Modela Pb
DBH PP

AIC LRT AIC LRT

Leg.1.Rho 2 18922.90 16259.36** 15358.70 7289.60**

Leg.2.Rho 4 18497.30 15829.72** 15024.10 6950.98**

Leg.3.Rho 7 17967.90 15294.28** 14889.50 6810.44**

Leg.4.Rho 11 17044.90 14363.30** 14058.50 5971.36**

Leg.1.Rhe 5 -2005.80 -3653.17** -5577.20 -13339.02**

Leg.2.Rhe 7 -2360.00 -4011.37** -6088.10 -13853.96**

Leg.3.Rhe 10 -3084.60 -4741.95** -6274.50 -14046.32**

Leg.4.Rhe 14 -4000.00 -5665.31** -6929.40 -14709.24**

a: models tested are referred to as Leg.O.R_, where O represent the Legendre polynomials orders fitted for the genetic random effects, and R_ may assume a 
homogeneous (Rho) or heterogeneous (Rhe) residual variance structure; b: number of parameters; and **: significant at 0.01 probability of error type I by the 
chi-square test.

Table 3. Estimates of variance components and genetic parameters for diameter at breast height (DBH) and Pilodyn penetration (PP) in 
eucalyptus, in each environment (E).

Component / 
parameter

DBH PP

-1.00 (E2) -0.44 (E3) 0.52 (E1) 1.00 (E4) -1.00 (E1) -0.34 (E2) -0.05 (E4) 1.00 (E3)

σ̂ g
2 0.9073 2.2010 1.3649 2.5426 3.6123 4.6763 4.2168 4.2046

σ̂ e
2 2.8782 3.4388 4.9018 6.5113 3.9234 5.7182 3.5848 2.4856

σ̂ p
2 3.7855 5.6399 6.2667 9.0539 7.5357 10.3945 7.8017 6.6901

hg
2 0.24 0.39 0.22 0.28 0.48 0.45 0.54 0.63

r–ĝ g 0.95 0.97 0.94 0.95 0.98 0.98 0.98 0.99

σ̂ g
2: genetic variance, σ̂ e

2: residual variance, σ̂ p
2: phenotypic variance, hg

2: broad-sense individual heritability, and r–ĝ g: mean accuracy.
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Figure 1. Reaction norms for diameter at breast height (DBH) (a) and Pilodyn penetration (PP) (b) over environmental gradient. Each curve 
represents one eucalyptus clone. 
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Figure 2. Estimates of the eigenfunctions for diameter at breast height (DBH) (a) and Pilodyn penetration (PP) (b) over environmental gradient. 
Their proportional eigenvalues for the genetic covariance function are in parentheses.
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Area under the reaction norms

The areas under the reaction norms ranged from 6.14 (clone 204) to 18.12 (clone 24) cm2 for DBH (supplementary  
material – Table S1), and from 9.95 (clone 91) to 29.79 (clone 43) mm2 for PP (Supplementary material – Table S1).

DISCUSSION

Random regression and model selection

The covariance functions developed by Kirkpatrick and Heckman (1989) that uses orthogonal base functions, such 
as Legendre polynomials, allows the fit of virtually any shape of growth curves or reaction norms (Calus et al. 2004). 
Reaction norms model the trajectory of genetic values along the environmental gradient, i.e., as a deviation from other fixed 
and random effects included in the model (Resende et al. 2014). Kirkpatrick et al. (1990) demonstrated the equivalence 
between random regression and covariance functions.

Among the various criteria for selection of models, the AIC is prominent (Cavanaugh and Neath 2019). The selected 
model fits heterogeneous residuals (i.e., one residual variance for each environment), and the genetic effects was modeled 
by Legendre polynomials of degree three for DBH and PP. This implies the estimation of 14 parameters of covariance. 
Heterogeneous residuals were also reported by Resende et al. (2017) evaluating clonal trials of eucalyptus.

The random regression model can be considered a reduced and simplified multiple-trait model, which allows the same 
parameters of interest (heritability and genetic correlation among all pairs of environments) to be estimated, but with lower 
parameterization and with less computational effort (Resende et al. 2001). These models directly define covariance functions, 
and since there are reliable estimates of variance components, they allow the prediction of genetic values of a genotype in 
different environments, based on evaluation in only one environment (Alves et al. 2020).

Variance components and genetic parameters

The estimation of variance components and prediction of genetic values are essential procedures in any breeding program. 
Currently, REML/BLUP is the standard procedure for estimation of variance components and optimal selection in plant 
breeding (Resende 2016). Knowledge of genetic parameters is of great importance in plant breeding, since the breeding 
strategy to be used depends on the information obtained from these parameters (Resende 2002).

According to Resende (2015), DBH has heritabilities of moderate magnitude (0.15 < h2
g < 0.50), and PP has heritabilities 

of moderate (0.15 < h2
g < 0.50) to high (h2

g >0.50) magnitudes. Moderate heritability (h2
g = 0.18, for DBH) were also reported 

by Nunes et al. (2017), who used the compound symmetry model for genetic evaluation of eucalyptus clones.
One of the most relevant parameters for evaluation of the effectiveness of the inference about the predicted genetic 

value of a genotype is selective accuracy (Resende and Duarte 2007). This parameter indicates the correct arrangement of 
the genotypes for selection and recommendation purposes. This parameter does not only depend on the magnitude of the 
residual variation and the number of replications, but also on the ratio between the genetic and residual variations associated 
with the traits under evaluation (Resende and Duarte 2007). In this study, very high accuracies (rĝ g ≥ 0.90) were estimated 
for DBH and PP in all environments, indicating high reliability and a favorable scenario for recommendation of superior 
clones since high accuracy allows correct ranking of the genotypes.

Reaction norms

The presence of G × E interactions is very clear since the reaction norms are non-constant, the genotypes show genotypic 
plasticity; and when the reaction norms intersect, a complex G × E interaction occurs (van Eeuwijk et al. 2016). This type 
of G × E interactions has more severe consequences for breeders as it changes the rank of genotypes in accordance with 
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environmental conditions, i.e., it indicates that the superior genotype in one environment will not normally perform as 
well in another environment (Resende 2015).

Genotypic plasticity is essential for genotype performance in changing environments (Rocha et al. 2018). Reaction norms 
shows that the evaluated clones present various forms of genotypic plasticity. In this context, genotypic plasticity can be 
considered as favorable or unfavorable changes for genotype adaptedness (van Eeuwijk et al. 2016).

Resende et al. (2018) investigated the environmental uniformity, site quality and tree competition interact to determine 
stand productivity of clonal eucalyptus and showed the importance of adopting environmental gradient-based approaches in 
tree genetic testing and clone recommendation as a way to more accurately match genotypes to specific sites. Marchal et al. 
(2019) investigated the role of genotypic plasticity on construction of hybrid larch (Larix decidua × Larix kaempferi) heterosis 
and on expression of its quantitative genetic parameters. They used random regression models fitted through Legendre 
polynomials to model reaction norms of ring width and wood density with respect to water availability and concluded 
that hybrid larch appeared to be the most plastic taxon as its superiority over its parental species increased with increasing 
water availability.

Eigenfunctions

The estimation of covariances between the random regression coefficients produces estimates of covariance functions 
(Kirkpatrick et al. 1990), which refer to a continuous description of the covariance structure of the trait along the environmental 
gradient. The analyses of the eigenfunctions are given by the total variance decomposition considering the principal 
components analyses (Arnal et al. 2019). This approach is similar to genetic correlations among the environments (Van 
der Werf et al. 1998).

According to Kirkpatrick et al. (1990), the first eigenfunction clustered general adaptability genes that was equally expressed 
in all environments. This can be interpreted as the genetic correlation that exists among the environments. The second 
eigenfunction clustered specific adaptability genes that expressed themselves depending on environmental differences. 
This can be interpreted as a lack of genetic correlation among the environments. The third and fourth eigenfunctions showed 
small eigenvalues and represent deformations for which there is little (or no) genetic variation.

Area under the reaction norms

In plant breeding, G × E interactions can reduce heritability and genetic gain with the selection. Li et al. (2017) comment 
that breeders have been adopting two selection strategies in the presence of significant G × E interactions: selecting stable 
genotypes that are not sensitive to environmental changes or selecting genotypes for specific environments in order to 
maximize genetic gain with the selection at that environment. In context of the present work, both selection strategies can 
be applied.

The genotype ranking was performed based on the areas under the reaction norms. The advantage of this strategy 
is that selection response can be predicted not only in genotypic expression in any environment but also in quantifying 
the environmental sensitivity of the trait through the reaction norm (robustness or responsiveness to changes in the 
environment), and it can be used for any number of environments. It is important to highlight that in this study, 
random regression models were used to fit realistic reaction norms, allowing investigation of changes in genetic 
covariances along the environmental gradient, as suggested recently by several authors (Marcatti et al. 2017; Li et al. 
2017; Marchal et al. 2019).

Spatial genotypic plasticity is generally what interests’ breeders most because of the operational implications for 
deployment of varieties (Marchal et al. 2019). For DBH, clones with larger area under the reaction norms are desirable 
as they relate directly to the volume of the tree (Alves et al. 2018). However, for PP, which is related to the basic density 
of wood, the direction of the selection depends of the purpose of raw material (pulp, bio-oil, firewood, charcoal, among 
others) (Fonseca et al. 2010).
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CONCLUSION

The results showed that random regression models fitted through Legendre polynomials are a powerful technique 
to quantifying individual variation in reaction norms and therefore can be efficiently applied in the genetic evaluation 
of eucalyptus. Besides that, for untested environments, the genetic selection can be made based on the areas under the 
reaction norms.
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SUPPLEMENTARY MATERIAL

ASReml program file - DBH
!WORKSPACE !RENAME !ARGS 1 2 // !DOPART $1
Title: RRM_dbh.
environment * !A
clone * !I
rep *
grad *
dbh !M 0
data.dbh.txt !SKIP 1 !MAXITER 1000
!PART 1 # residue homogeneous
!CYCLE 0 1 2 3
dbh ~ mu environment.rep !r leg(grad,$I).clone !f mv
0 0 1
leg(grad,$I).clone 2
leg(grad,$I) 0 US !GP
(($I^2+3*$I+2)/2)*0
clone
!PART 2 # residue heterogeneous
!CYCLE 0 1 2 3
dbh ~ mu environment.rep !r leg(grad,$I).clone !f mv
4 1 1
6352 0 ID
6422 0 ID
6416 0 ID
6419 0 ID
leg(grad,$I).clone 2
leg(grad,$I) 0 US !GP
(($I^2+3*$I+2)/2)*0
clone
ASReml program file - PP
!WORKSPACE !RENAME !ARGS 1 2 // !DOPART $1
Title: RRM_PP.
environment * !A
clone * !I
rep *
grad *
pp !M 0
data.pp.txt !SKIP 1 !MAXITER 1000
!PART 1 # residue homogeneous
!CYCLE 0 1 2 3
pp ~ mu environment.rep !r leg(grad,$I).clone !f mv
0 0 1
leg(grad,$I).clone 2
leg(grad,$I) 0 US !GP
(($I^2+3*$I+2)/2)*0
clone
!PART 2 # residue heterogeneous
!CYCLE 0 1 2 3
pp ~ mu environment.rep !r leg(grad,$I).clone !f mv
4 1 1
6416 0 ID
6352 0 ID
6419 0 ID
6422 0 ID
leg(grad,$I).clone 2
leg(grad,$I) 0 US !GP
(($I^2+3*$I+2)/2)*0
clone

http://data.pp
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Table S1. Genotype ranking according to areas under the reaction norms (A) for diameter at breast height (DBH) and Pilodyn penetration 
(PP) in eucalyptus.

Rank
DBH PP

Clone A Clone A

1 24 18.12 43 29.79

2 154 17.58 57 29.53

3 50 17.50 90 29.13

4 206 17.18 139 28.03

5 152 17.07 44 27.84

6 70 17.00 101 27.65

7 170 16.96 126 27.10

8 43 16.90 40 27.07

9 195 16.72 78 26.66

10 18 16.72 131 26.59

11 149 16.66 33 26.13

12 199 16.60 51 25.56

13 54 16.51 148 25.47

14 95 16.48 89 25.42

15 131 16.44 93 25.28

16 159 16.36 19 24.95

17 105 16.28 130 24.58

18 60 16.23 97 24.52

19 10 16.19 144 24.27

20 23 16.18 196 24.19

21 215 16.17 128 24.18

22 182 16.11 23 24.09

23 192 16.11 192 24.06

24 94 16.06 203 24.06

25 114 16.03 200 23.96

26 141 16.03 208 23.87

27 210 16.01 121 23.73

28 96 15.98 215 23.70

29 46 15.95 9 23.67

30 11 15.91 157 23.54

31 119 15.90 58 23.35

32 71 15.90 179 23.11

33 65 15.88 47 23.00

34 3 15.87 188 22.49

35 111 15.79 37 22.37

36 133 15.61 49 22.25

37 32 15.52 36 22.19

38 150 15.41 201 22.16

39 130 15.39 104 22.05

40 101 15.38 178 21.91

41 27 15.37 99 21.76

42 136 15.37 110 21.74

43 122 15.36 204 21.62

44 97 15.36 100 21.62

45 61 15.33 20 21.44
Continue...
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Rank
DBH PP

Clone A Clone A

46 44 15.29 185 21.37

47 41 15.29 81 21.29

48 156 15.25 187 21.24

49 126 15.24 42 21.17

50 171 15.23 17 21.15

51 68 15.23 45 21.14

52 140 15.21 32 21.06

53 129 15.08 146 21.05

54 4 15.06 31 21.03

55 25 15.05 213 21.00

56 81 15.03 143 20.95

57 158 14.98 75 20.87

58 161 14.97 122 20.72

59 189 14.96 214 20.66

60 145 14.95 132 20.44

61 100 14.94 186 20.37

62 89 14.92 65 20.35

63 178 14.86 160 20.35

64 62 14.84 52 20.34

65 93 14.84 27 20.29

66 33 14.83 124 20.25

67 90 14.80 191 20.24

68 213 14.80 106 20.07

69 153 14.79 135 20.05

70 83 14.79 190 20.02

71 184 14.78 120 20.01

72 99 14.73 96 19.84

73 36 14.72 145 19.80

74 127 14.71 88 19.71

75 40 14.70 176 19.69

76 193 14.69 35 19.64

77 45 14.64 77 19.60

78 2 14.61 71 19.56

79 69 14.60 107 19.51

80 74 14.59 182 19.49

81 183 14.52 153 19.39

82 21 14.50 62 19.38

83 107 14.49 69 19.36

84 106 14.45 169 19.35

85 137 14.43 129 19.32

86 214 14.43 61 19.30

87 17 14.41 41 19.28

88 115 14.37 212 19.15

89 121 14.36 74 19.13

90 202 14.36 189 19.09

Continue...
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Rank
DBH PP

Clone A Clone A

91 196 14.36 60 19.08

92 169 14.34 103 19.05

93 29 14.32 118 18.82

94 162 14.26 166 18.79

95 35 14.24 123 18.78

96 139 14.17 73 18.66

97 172 14.16 72 18.62

98 128 14.14 80 18.61

99 160 14.13 117 18.58

100 38 14.12 29 18.54

101 148 14.08 183 18.52

102 124 14.07 195 18.49

103 39 14.06 173 18.47

104 190 14.05 133 18.45

105 103 13.98 111 18.36

106 52 13.96 151 18.34

107 72 13.95 141 18.19

108 163 13.90 68 18.18

109 66 13.87 210 18.07

110 203 13.87 30 18.06

111 176 13.85 50 18.01

112 30 13.78 10 17.99

113 164 13.77 26 17.98

114 143 13.76 165 17.98

115 194 13.75 115 17.93

116 120 13.75 116 17.77

117 9 13.69 125 17.67

118 167 13.63 87 17.67

119 82 13.61 34 17.64

120 22 13.58 11 17.62

121 112 13.58 59 17.55

122 125 13.51 109 17.54

123 177 13.49 114 17.49

124 20 13.48 211 17.45

125 134 13.45 98 17.43

126 19 13.41 46 17.40

127 109 13.39 66 17.38

128 173 13.38 54 17.36

129 168 13.36 7 17.35

130 51 13.31 171 17.31

131 16 13.27 161 17.29

132 34 13.27 207 17.21

133 179 13.26 53 17.12

134 56 13.24 92 17.00

135 48 13.23 112 17.00

Continue...
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Rank
DBH PP

Clone A Clone A

136 157 13.22 28 16.93

137 108 13.21 149 16.90

138 80 13.11 158 16.90

139 49 13.08 174 16.89

140 208 12.96 76 16.88

141 185 12.94 24 16.87

142 180 12.91 206 16.82

143 187 12.89 180 16.80

144 37 12.81 198 16.79

145 147 12.78 83 16.76

146 86 12.77 55 16.72

147 207 12.74 86 16.71

148 58 12.65 205 16.64

149 87 12.62 155 16.60

150 26 12.61 95 16.41

151 197 12.58 8 16.35

152 132 12.52 199 16.32

153 53 12.50 175 16.31

154 135 12.49 172 16.29

155 181 12.46 94 16.25

156 166 12.42 82 16.20

157 174 12.38 2 16.20

158 12 12.35 147 16.20

159 64 12.32 39 16.19

160 138 12.28 184 16.16

161 198 12.25 127 16.10

162 116 12.24 21 15.95

163 13 12.22 140 15.94

164 88 12.22 113 15.93

165 14 12.13 167 15.93

166 212 12.10 152 15.90

167 5 12.07 137 15.87

168 117 12.06 16 15.77

169 67 12.03 13 15.77

170 191 11.96 150 15.76

171 77 11.93 159 15.64

172 144 11.90 38 15.56

173 47 11.87 105 15.55

174 151 11.85 119 15.53

175 188 11.83 85 15.49

176 165 11.81 63 15.31

177 118 11.79 64 15.29

178 7 11.60 209 15.28

179 78 11.46 162 15.22

180 146 11.39 154 15.10

Continue...
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Rank
DBH PP

Clone A Clone A

181 155 11.36 164 14.92

182 92 11.31 170 14.92

183 110 11.29 134 14.83

184 57 11.21 18 14.76

185 31 11.11 108 14.61

186 28 11.04 12 14.46

187 59 10.99 138 14.44

188 55 10.98 84 14.43

189 84 10.94 193 14.40

190 142 10.90 56 14.35

191 42 10.85 70 14.28

192 113 10.84 14 14.26

193 186 10.78 6 14.23

194 73 10.71 25 14.23

195 15 10.68 102 14.07

196 123 10.42 5 14.06

197 98 10.41 202 13.84

198 79 10.40 194 13.77

199 102 10.38 136 13.35

200 205 10.33 142 13.15

201 91 10.13 156 13.08

202 211 10.06 3 13.07

203 8 9.81 48 13.00

204 6 9.72 181 12.99

205 209 9.68 177 12.66

206 76 9.52 168 12.54

207 1 9.25 22 12.24

208 201 8.68 67 12.12

209 200 8.56 79 11.95

210 75 8.41 163 11.60

211 63 8.39 15 11.50

212 85 7.95 4 11.23

213 175 7.72 1 11.05

214 104 6.75 197 10.84

215 204 6.14 91 9.95

Continuation...
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