
ABSTRACT: Oxisols are important soils that have been converted from native vegetation to 

croplands, and can affect soil biological properties such as microbial biomass and enzyme 

activity. Thus, the aim of this study was to evaluate the changes on soil microbial biomass and 

enzyme activity when native vegetation (NV) was converted to cropland (CL), such as maize 

or sugarcane in six oxisols from São Paulo state, Brazil. Soil microbial biomass C (MBC) and N 

(MBN), and the activity of arylsulphatase, dehydrogenase and fluorescein diacetate hydrolysis 

(FDA) were assessed in samples collected at 0-0.20 m. In general, MBC was higher under NV 

than CL (about + 40%), while MBN and FDA did not show a consistent pattern between 

NV and CL. All soils showed higher values of arylsulfatase (increased from 101 to 717%) and 

dehydrogenase (increased 15 to 220%) under NV than CL. In conclusion, soil microbial biomass 

C is usually higher under native vegetation than cropland. Arylsulphatase and dehydrogenase 

were the attributes that presented better differentiation between native and cropped soils.
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INTRODUCTION

Oxisols are soils found almost exclusively in tropical areas from South America and Africa, being important to agriculture 
(Buol and Eswaran 1999). In Brazil, these soils cover about 100 million hectares, being described as highly weathered, and acidic, 
containing small amounts of plant nutrients (Gomes et al. 2019). However, liming and chemical fertilization can make these soils 
suitable for agriculture. Therefore, about 70 million hectares of Brazilian oxisols have been converted to cropland (Balota et al. 2015).

Although important for food production, the conversion from native soils to cropland decreases soil C storage as native 
vegetation is removed and replaced by crops which support lower soil C content and plant biomass (Fujisaki et al. 2015). 
Also, conventional tillage and mineral fertilization, applied in these soils, have promoted soil degradation (Dorneles et al. 2015). 
As consequence, there is a decrease in the soil biological processes (Gmach et al. 2020).

Soil biological processes, such as organic matter decomposition and nutrients cycling, are important to soil fertility and 
plant growth (Petter et al. 2019). Particularly, soil microbial biomass (SMB), the living part of soil organic matter (SOM), 
acts on the biological processes. Thus, soil degradation and C losses may alter negatively the size and activity of SMB, which 
affect soil biological and biochemical processes (Ferreira et al. 2016). Moreover, soil enzymes are indicators of biochemical 
functions and can provide quantitative changes on SOM. Some important enzymes, such as dehydrogenase, hydrolysis of 
fluorescein diacetate and arylsulphatase, are involved in the biogeochemical cycles (C, N and S) and consequently may 
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reflect changes in the soil metabolic processes (Notaro et al. 2018). In addition, these enzymes occur in all intact and viable 
microbial cells and may be with oxidative potential of SMB (Burns et al. 2013). Thus, soil microbial biomass and enzymes may 
be sensitive indicators of the effect of soil management on soil biological properties (Cardoso et al. 2013; Petter et al. 2019).

In this study, the hypothesis is that the conversion from native vegetation to cropland would change the status of soil 
biological properties. It could be expected since agricultural soils have different management and inputs which influence the 
soil properties. To address this hypothesis, this study assessed the changes on soil microbial biomass and enzyme activities in six 
different oxisols soils from São Paulo state, Brazil, that were converted from native vegetation to cropland (maize and sugarcane).

MATERIAL AND METHODS

Soil samples were selected according a survey of soils from São Paulo state, Brazil: red-yellow oxisol (RYO), red oxisol 
(RO), acriferric red oxisol (ARO), yellow oxisol (YO), acricferri1 yellow oxisol (AYO), and dark red oxisol (DRO). The soil 
is classified as oxisol and ferralsol by USDA and FAO, respectively. These soils are present in all state of São Paulo, under 
different climatic conditions and use (native vegetation, sugarcane or maize) as shown in Table 1.

Red-yellow oxisol and DRO soils were cropped with maize over the past 5 years using the no-tillage cropping system, while 
RO, ARO, YO and AYO were cropped with sugarcane. For comparison between soils and their management, soil samples 
were collected in each soil under native sites and cropland. Therefore, each plot was codified as RYO1, RO1, ARO1, YO1, AYO1 
and DRO1 for soil under native Cerrado; while RYO2, RO2, ARO2, YO2, AYO2 and DRO2 was codified for soil under cropland.

Each area under cropland or native forest was divided in four transects (100 m2) where soil sampling was done. In each transect, 
ten subsamples were randomly collected in the 0–0.20 m layer to form a composite sample. For chemical and granulometric 
analyses, portions of soil samples (300 g) were air-dried, sieved (2 mm) and homogenized. The chemical (Table 2) and granulometric 
(Table 3) analyses were done according to the methods described by van Raij and Quaggio (2001) and Donagema et al. (2011), 
respectively. For biological analysis, samples were passed through a 2-mm sieve, and a 300-g aliquot of each sample was separated, 
placed in plastic bags, and stored in refrigerator at 4–8 °C for later determination of biological properties and enzymatic activity.

Soil microbial biomass C (MBC) and N (MBN) were determined according to Vance et al. (1987) with extraction of C 
and N from fumigated and unfumigated soils by 0.5 mol.L−1 K2SO4. Dehydrogenase (DHA), fluorescein diacetate hydrolysis 
(FDA) and arylsulphatase (ARYL) activities were analyzed as indicative measures of soil microbial activity. The FDA was 
determined according to the method of Schnürer and Rosswall (1982), DHA was determined using the method described 
in Casida Junior et al. (1964) and ARYL was determined according to Tabatabai and Bremner (1970).

Table 1. Climate characterization and information of the soils (classification, localization and management).

Soil1 Cover Management Localization Climate2

RYO1 NV None 22º22’12”S, 47º54’16”W CWa

RYO2 Maize No-tillage, crop rotation with 
soybean, NPK fertilization 22º22’11”S, 47º55’09”W CWa

RO1 NV None 22º15’12”S, 47º50’38”W CWa-AW

RO2 Sugarcane Conventional tillage3, NPK fertilization 22º15’19”S, 47º50’37”W CWa-AW

ARO1 NV None 21º28’11”S, 47º53’38”W AW

ARO2 Sugarcane Conventional tillage3, NPK fertilization 21º28’10”S, 47º53’38”W AW

YO1 NV None 22º24’03”S, 47º52’52”W CWa

YO2 Sugarcane Conventional tillage3, NPK fertilization 22º24’12”S, 47º52’51”W CWa

AYO1 NV None 20º13’18”S, 48º01’40”W AW

AYO2 Sugarcane Conventional tillage3, NPK fertilization 20º13’18”S, 48º01’39”W AW

1Brazilian soil classification; 2Koppen classification; 3Tillage with plowing and harrowing. CWa = mean annual air temperature and average rainfall of 26 °C and 
1500 mm·y-1; Cwa-Aw = transition between Cwai and Awi, with a mean of annual air temperature and average rainfall of 27 °C and 1440 mm·y-1; Aw = mean annual 
air temperature and average rainfall of 22 °C and 1467 mm·y-1.
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The data were evaluated for normality and subjected to analysis of variance (ANOVA) in a split plot design, being the 
land use as treatment 1 and the type of soil as treatment 2, under four replicates. To detect significant differences among 
treatments, when a significant p-value was detected, the means were compared using the Tukey’s test (p < 0.05).

RESULTS AND DISCUSSION

The soils ARO and AYO showed highest values of MBC (+ 37% and + 45% in ARO and AYO, respectively) under native 
vegetation than cropland (Table 4). In contrast, the soil RYO under cropland showed highest values (+ 136%) of MBC than 
native vegetation. The soils RO, YO and DRO did not show differences in MBC between native vegetation and cropland.

Table 2. Chemical properties of evaluated oxisols.

Soil P1

mg·dm-3
OM2

g·dm-3
pH3

CaCl2

K4 Ca5 Mg5 H+Al SB CTC V

mmolc·dm-3 %

RYO1 7 35 5.3 1.5 36 4 20 42 62 67

RYO2 29 17 4.6 0.5 11 2 28 14 42 33

RO1 14 27 4.3 0.6 12 3 52 16 68 23

RO2 27 15 4.5 0.6 6 1 60 8 68 12

ARO1 19 47 4.1 1.9 9 4 72 15 87 17

ARO2 69 36 5.5 2.4 41 25 28 68 96 71

YO1 15 36 4.5 5.2 14 9 47 28 75 38

YO2 69 36 5.5 2.4 41 25 28 68 96 71

aYO1 37 64 4.9 1.7 41 11 58 54 112 48

aYO2 41 40 5.3 4.7 28 9 38 42 80 52

DRO1 22 41 6.4 5.4 97 28 15 13 145 90

DRO2 25 28 5.6 3.7 31 17 25 52 77 67

1P extracted by ion exchange resin; 2Organic matter extracted in K2Cr2O7 + H2SO4; 
3pH measured in CaCl2; 4K extracted by Mehlich-1; 5Ca and Mg extracted in KCl. 

Red-yellow oxisol (RYO); red oxisol (RO); acriferric red oxisol (ARO); yellow oxisol (YO); acriferric yellow oxisol (AYO); dark red oxisol (DRO).

Table 3. Granulometry of different Oxisol soils under native vegetation or cropland.

Soil
Sand Silt Clay

g·kg-1

RYO1 759 20 221

RYO2 738 60 202

RO1 718 81 201

RO2 368 102 530

ARO1 141 143 716

ARO2 159 139 702

YO1 738 40 222

YO2 597 60 342

AYO1 407 123 470

AYO2 430 118 452

DRO1 109 207 684

DRO2 142 198 660

Red-yellow oxisol (RYO); red oxisol (RO); acriferric red oxisol (ARO); yellow oxisol (YO); acriferric yellow oxisol (AYO); dark red oxisol (DRO).
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Land use affected MBN, but the values were not always higher always under native vegetation (Table 4). Thus, the soils 
RYO, RO and ARO showed highest values of MBN (125, 53, and 66% in RYO, RO and ARO, respectively) under cropland. 
In contrast, YO, AYO and DRO presented the highest values of MBN (85, 110, and 205% in YO, AYO and DRO, respectively) 
under native vegetation.

Except the soil YO, the SOM content was higher under native vegetation, while P content was higher in all cropped soils. 
Other soil chemical properties varied among the soil types and land use. On the other hand, the highest values of MBN in 
cropped soils may be due to the N fertilization. In addition, there could be an interaction between SOM, P and N on the 
responses of MBN as reported by Liu et al. (2013). Under cropland, the lowest value of MBN was found in RO cropped 
with sugarcane, while the highest value was found in RYO cropped with maize.

The arylsulfatase activity ranged from 12.28 to 229.42 mg PNP·kg-1·h-1 in RO cropped with sugarcane and in DRO under 
native vegetation, respectively (Table 5). Similarly, the dehydrogenase activity ranged from 16.43 mg TTF·kg-1 soil·h-1 to 
784.43 mg TTF·kg-1·h-1 in RO cropped with sugarcane and in DRO under native vegetation, respectively. Interestingly, all 
oxisol soils showed higher arylsulfatase and dehydrogenase activities under native vegetation than cropland. Therefore, under 
native vegetation, arylsulfatase increased from 101 to 717%, while dehydrogenase increased from 15 to 220%, as compared 
to cropland.

The increase of diacetate fluorescein (FDA) hydrolysis ranged from 24.25 (YO; cropped with sugarcane) to 82.06 mg·kg-1 soil·h-1 
(RO; under native vegetation). The FDA hydrolysis showed different pattern than those found for arylsulfatase and dehydrogenase 
activities. Therefore, in the soils RYO and DRO there were not differences between native vegetation and cropland. In the 
RO, the highest FDA hydrolysis was found under cropland (+ 33%), while in the ARO, YO and AYO the highest values 

Table 4. Soil microbial biomass C (MBC) and N (MBN) from different oxisols soil under native vegetation or cropland.

Soil

MBC MBN

mg C·kg-1 soil mg N·kg-1 soil

Cropland Native Cropland Native

RYO 736.83 aBC 312.77 bC 207.22 aA 92.70 bD

RO 577.39 aC 530.01 aC 72.73 aD 47.70 bE

ARO 914.17 bB 1254.00 aAB 90.77 aCD 54.79 bE

YO 796.66 aBC 979.35 aB 84.23 bCD 156.83 aC

AYO 804.38 bBC 1167.24 aB 101.19 bC 212.45 aB

DRO 1335.48 aA 1500.35 aA 135.42 bB 412.02 aA

Red-yellow oxisol (RYO); red oxisol (RO); acriferric red oxisol (ARO); yellow oxisol (YO); acriferric yellow oxisol (AYO); dark red oxisol (DRO). MBC = microbial 
biomass C; MBN = microbial biomass N. Means followed by the same lowercase letter in each line and capital letter in each column do not differ statistically 
from each other at p < 0.05 (Tukey’s test).

Table 5. Arylsulfatase, dehydrogenase and fluorescein diacetate hydrolysis (FDA) from different oxisols soil under native vegetation or cropland.

Soil

Arylsulfatase Dehydrogenase FDA

mg PNP·kg-1 soil·h-1 mg TTF·kg-1 soil·h-1 mg FLU·kg-1 soil·h-1

Cropland Native Cropland Native Cropland Native

RYO 19.19 bBC 54.97 aD 43.04 bE 106.63 aE 24.84 aC 24.61 aE

RO 12.28 bC 25.70 aE 16.43 bF 37.45 aF 40.58 aA 30.88 bD

ARO 16.15 bBC 59.58 aD 289.74 bA 335.50 aC 44.34 bA 82.06 aA

YO 32.56 bA 117.39 aB 237.09 bC 315.05 aD 24.25 bC 42.53 aC

AYO 20.10 bBC 85.70 aC 212.28 bD 419.84 aB 33.55 bB 67.31 aB

DRO 22.88 bAB 229.42 aA 245.29 bB 784.43 aA 27.70 aC 29.33 aDE

Red-yellow oxisol (RYO); red oxisol (RO); acriferric red oxisol (ARO); yellow oxisol (YO); acriferric yellow oxisol (AYO); dark red oxisol (DRO). PNP = p-nitrophenol; 
TTF = triphenilformazan; FDA = fluorescein diacetate. FLU= fluorescein. Means followed by the same lowercase letter in each line and capital letter in each column 
do not differ statistically from each other at p < 0.05 (Tukey’s test).
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were found under native vegetation (+ 86, + 75, and + 103% in ARO, YO and AYO, respectively). Comparing the chemical 
properties of the RO under native vegetation and cropland, the main difference to explain this pattern is the P content, 
higher in RO under sugarcane. The content of SOM in ARO and AYO is higher under forest, which may explain why soil 
under native vegetation presented higher FDA hydrolysis than cropped soil.

In this study, soil microbial biomass was usually higher under native vegetation than cropped soils. Some reasons favor 
soil microbial biomass under native vegetation: a) higher plant diversity and lowest variation in temperature and moisture 
(Carvalho et al. 2018); b) higher organic inputs and better quality and quantity of plant litter (Lopes et al. 2010). These results 
are in agreement with previous studies, which have found higher soil microbial biomass under native vegetation than 
cropland (Viana et al. 2011; Novak et al. 2017; Freitas et al. 2017). D’Andréa et al. (2002) evaluated Brazilian oxisols under 
different land use and found a decrease of 49 and 73% in the MBC under pastures and cropland, respectively, as compared 
with native vegetation.

Interestingly, RYO soil cropped with maize presented higher MBC than native vegetation and it occurred probably due 
to the no-tillage system used in this soil. The no-tillage system may accumulate high amount of organic residue on the 
soil surface, favoring the soil microbial biomass (Choudhary et al. 2018). When the soil is not tilled, the organic matter 
accumulates seems and can support the increase in the soil microbial biomass (Holland 2004). Other important factor 
influencing the growth of soil microbial biomass is the mineral fertilization that supply nutrients to microorganisms, mainly 
P (Richardson and Simpson 2011). The highest values of MBN found in soils RYO, RO and ARO, under cropland, is due 
to the N fertilization previously used that increases the N pool and, consequently, its availability to soil microbial biomass. 
Similar results were found by Coser et al. (2007) which applied N to a Red-Yellow Oxisol cropped with wheat and found 
an increase in the MBN.

Activity of soil enzymes can be used as a sensitive indicator of soil microbial activity under native vegetation or 
cropland (Burns et al. 2013). The higher enzyme activities found under native vegetation may confirm the positive 
impact of the presence of diverse sources of substrates on soil microbial biomass. The increase in arylsulphatase 
and dehydrogenase activities were influenced by the increase in plant litter and soil microbial biomass. Arylsulfatase and 
dehydrogenase are oxidoreductases found in viable cells and their activities are correlated with soil microbial 
biomass and SOM (Madejón et al. 2007). Higher input of organic C, under native vegetation, promotes the increase 
of arylsulfatase and dehydrogenase activities. These results are in agreement with Acosta-Martínez et al. (2007), 
who found higher sulfatase activity in Oxisol soil under native vegetation than pastures and cropland. According to 
Schnürer and Rosswall (1982), FDA hydrolysis reflects the soil microbial activity and it is correlated with soil microbial 
biomass. However, the soil microbial biomass C and N did not differentiate FDA hydrolysis under native vegetation 
and cropped soils in this study.

CONCLUSION

Arylsulphatase and dehydrogenase were the attributes that presented better differentiation between native and cropped 
soils. Soil microbial biomass C was usually higher under native vegetation. The exception was the soil under the no-tillage 
system that presented higher microbial biomass C. The interaction between N in the soil microbial biomass (an indicator 
soil N availability) and soil available P can promote higher biological activity in cropped than in native vegetation with 
higher organic matter content.
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