
ABSTRACT: Legume green manure is a popular practice for sustainable agriculture in tropical 

environments. The use of grain, forage and purely green manure legumes in a subhumid 

tropical area in Northeast Brazil was investigated to determine the total C and N contents 

and estimate C-microbial biomass, soil basal respiration, microbial and metabolic quotients, 

before and after green manures and after the following corn. It was hypothesized that, although 

all legumes would increase microbial biomass and activity, there would be different effects 

in function of the main economic usage of the legume. The experimental design evaluated 

the soil before and after harvest of seven legumes: (i) purely green manures – sunn hemp 

(Crotalaria juncea L.) and velvet bean (Stizolobium aterrimum Piper & Tracy); (ii) forage – Campo 

Grande stylo (a physical mixture of 80% of Stylosanthes captata Vog. and 20% of Stylosanthes 

macrocephala) and calopo (Calopogonium mucunoides Dev.) and (iii) grain – common bean 

(Phaseolus vulgaris L.), cowpea (Vigna unguiculata L.) and peanut (Arachis hypogaea L.), 

followed by corn crop. After corn harvest, soils had the same total C and N contents before legume 

seeding, but C-microbial biomass was significantly higher in soils with grain and purely green 

manures, which produced higher shoot and root dry mass. Soil basal respiration decreased after 

corn harvest for all legumes comparing to control treatments, but metabolic stress increased 

in soils with forage species. Despite this, microbial quotient indicated an efficiency of the 

microorganisms in degrading the residual organic matter of all green manures used in corn.
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INTRODUCTION

Green manure is a sustainable agronomic practice based on growing a crop, usually a legume, specifically to supply 
residual cover on the soil surface for subsequent crops (Diacono et al. 2019). This management has been successfully used 
in tropical soils due to increased organic matter incorporated and allows higher yields for corn, sugarcane and soybean, for 
example (Genovesi et al. 2019; Oliveira et al. 2018). Moreover, the large-scale production of green manure triggers several 
advantages granted to small-scale farmers for the marketable products exported as grains or fodder, which varies according 
to different species of precultivated legume (Oliveira et al. 2018).

Purely green manures sunn hemp (Crotalaria juncea) and velvet bean (Stizolobium aterrimum) have known use in 
several studies with positive yields in the development of postestablished cultures (Mabuza et al. 2016). The forages calopo 
(Calopogonium mucunoides) and stylo (Stylosanthes spp.) are successfully used as green manures because they have high 
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fodder production in crop rotation systems (Oliveira et al. 2017; Mauad et al. 2019). On the other hand, legumes green 
manure based on peanut (Arachis hypogaea L.), common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L.) 
are employed in the production and trade of its grains (Degefu et al. 2018; Nouralinezhad et al. 2018). In addition, legumes 
green manure is known to benefit soil chemical and microbiological attributes, mainly through biological nitrogen fixation 
and decomposition of plant biomass, respectively (Singh et al. 2020).

The decomposition of grain or forage legume green manure biomass favours the nutrients input into the soil 
(Watthier et al. 2020) and stimulates the development and performance of microorganisms, and thus the balance between 
storage and carbon losses (Liang et al. 2017). Together with the total soil carbon content, the abundance and microbial activity 
can indicate the disturbance of crop system through oxidative metabolic stress and thus its efficiency in decomposing the litter.

This study highlights the influence of legume with different economic uses as producers of grain, fodder or classics 
for green manure in the total C and N contents, microbial biomass carbon, basal soil respiration and in the metabolic and 
microbial quotients after corn-cropped, when managed according to their typical economic use. It was hypothesized that, 
although all legumes would increase microbial biomass and activity, there would be different effects in function of the main 
economic usage of the legume.

MATERIAL AND METHODS

Site description and sampling strategy

The experiment was carried out in Carpina, Pernambuco, Brazil (7°51’04’’S and 35°14’27’’W) and the sampling sites have 
an average altitude of 180 m, with predominant As’ climate (Köppen classification system) and average annual temperature 
around 27 °C, and the soil is classified as abrupt dystrophic yellow argisol (Santos et al. 2018).

The experimental site was under fallow for one year, after more than a decade under sugarcane. The experiment was 
conducted in a randomized complete blocks design. Each plot was 4 m in length and 6 m wide, with 1 m between plots. 
The soil chemical characterization in each plot was performed according to Silva (2009) (Table 1) and soil was limed 
three months before the legume seeding to correct soil pH and raise the Ca and base saturation, with 2 t·ha-1 of dolomitic 
limestone (PRNT 77%).

Before legume seeding, glyphosate (4.7 L·ha-1) was applied, followed by plot delimitation and furrowing. The soil was 
fertilized according to the recommendation of Cavalcanti (2008), i.e., 173 kg·ha-1 of triple superphosphate and 133 kg·ha-1 
of potassium chloride. One month after fertilization, the soil sampling for the first analyses was carried out.

The treatments were classified as: (i) grains: peanuts – Arachis hypogaea (AH), common beans – Phaseolus vulgaris (PV) 
and cowpea – Vigna unguiculata (VU); (ii) forage: Campo Grande stylo – a physical mix of 80% Stylosanthes capitate, 20% 
Stylosanthes macrocephala (Sty) and calopo – Calopogonium mucunoides (CM); and (iii) traditionally green manure: sunn 
hemp – Crotalaria juncea (GMCJ) and velvet bean – Styzolobium aterrimum (GMSA) (Table 2). In addition, two control 
treatments with spontaneously occurring natural vegetation with predominance of Poaceae, Gramineae and Cyperaceae 
families (V), and soil without vegetation (C) were also evaluated.

Legume seeds were inoculated with peat inoculants before planting and three seeds were sown per pit concurrently 
with fertilization, without further thinning. For AH, PV and VU, a 0.25 × 0.5 m spacing was adopted. For CM and Sty, the 
spacing was 0.5 × 1 m, while for GMSA and GMCJ, it was 0.5 × 0.2 m.

The legumes were grown for 90 days before being harvested, where the soil sampling for the second analyses was done. 
Corn seeds were inoculated was mixed with a liquid inoculant (100 mL·ha-1) with Azospirillum brasilense (AzzoFix) before 
sowing. Corn was harvested 4 months later and soil sampling was conducted for the third time.

Thus, soil sampling periods were defined as: (i) clean: soil condition before legume seeding; (ii) after legume: soil 
condition after legume harvest; and (iii) after corn: soil condition after corn harvest that received biomass residues of each 
green manure legume.
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Legume dry mass

Sampling was performed using the quadrant method (1 × 1 m) at two different points within the useful area of each 
plot. Ten plants were also harvested in each plot to determine the shoot, nodules and root dry mass, which were dried in 
drying oven at 65 °C. The shoot N content and accumulation were determined by the Kjeldahl method (Silva 2009).

Soil total C and N contents

The samples were collected at five random points within each plot in 0 to 10 cm layer, forming one composite sample 
per plot. The samples were stored in sterile plastic bags in a freezer with a temperature of -20 °C.

Samplings followed exactly where the legumes were established (clean analyses) and where the legume and corn were 
harvested (after legume and after corn analyses). The samples were air-dried, homogenized, and sieved at 250 μm (60 mesh) 
then the C and N contents were quantified by dry combustion, using elemental analyser LECO CN 2000.

Microbiological attributes

Samples were sieved at 2 mm to remove plant/crop and roots residues. C-microbial was obtained by the extraction-irradiation 
method, according to Islam and Weil (1998). Soil basal respiration was quantified according to Alef and Nannipieri (1995) and 
metabolic quotient was calculated according to Anderson and Domsch (1985), by the relation between basal respiration and the carbon 
of the microbial biomass. Microbial quotient was measured by the relationship between the C-microbial biomass and the total C.

Statistical analysis

Statistical analyses were performed using a mixed model for repeated measurements, considering the sample periods as 
random, and the treatment as fixed effects, at the 10% significance level, and applying Tukey’s mean comparison test as appropriate.

Averages per treatment were used for linear correlation analysis, comparing each period with the subsequent ones and 
with legume dry masses and shoot-accumulated N. Legume dry mass and shoot-accumulated N were also correlated with 
the after legume and after corn periods.

Table 1. Soil chemical characterization before legume planting.

P pH Ca Mg Na K Al H S CEC V

mg·dm-3 H2O cmolc·dm-3 %

7 5.2 0.9 0.6 0.06 0.07 0.7 7.6 1.6 10 16

CEC: cation-exchange capacity; V: base saturation.

Table 2. Nomenclature and definitions of the green manure treatments and inoculants.

Code Cultivar Inoculant strain Inoculant species Economical 
product Green manure

GMCJ Comercial BR 2003 Bradyrhizobium sp.
None All shoot

GMSA Creole BR2811 B. elkanii

CM Comercial BR 1602 B. japonicum Shoot above 
10 cm

Shoot below 
10 cmSty Campo Grande BR 446 B. japonicum

AH BRS-HAVANA BR 1436 Bradyrhizobium sp.

Grain All shoot except for 
grainsPV IPA-10 BR 322 Rhizobium tropici

VU IPA-207 BR 3267 Bradyrhizobium sp.

Inoculant strains are those currently recommended for commercial inoculant production 
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RESULTS

Legume dry mass

As expected, due to their full harvest for green manure, sunn hemp and velvet bean had higher N shoot accumulation 
(~2.6 kg·ha-1), root (54 kg·ha-1 in sunn hemp and 49 kg·ha-1 in velvet bean) and shoot dry mass (559 kg·ha-1 in sunn hemp 
and 353 kg·ha-1 in velvet bean). However, velvet bean and calopo showed a greater nodules dry mass, reaching 161 and 
378 g·ha-1, respectively, as shown in Table 3.

Table 3. Green manure shoot, root and nodule dry mass and accumulated N-shoot.

Measured variables PV VU AH CM STY GMSA GMCJ C V

SDM (kg·ha-1) 201ab 175b 165b 17c 8c 353a 559a 0d 174b

RDM (kg·ha-1) 1c 29a 32a 10ab 0c 49a 54a 0d 38a

NDM (g·ha-1) 2c 61ab 42b 378a 65ab 161a 89ab 0d 1c

N-shoot (kg·ha-1) 2.3ab 2.2ab 2.2ab 1.2b 0.9b 2.5a 2.7a 0c 2.2ab

PV: Phaseolus vulgaris; VU: Vigna unguiculata; AH: Arachis hypogaea; CM: Calopogonium mucunoides; Sty: Stylosanthes sp.; GMSA: green manure Stizolobium 
aterrimum; GMCJ: green manure Crotalaria juncea; C: control treatment; V: vegetation nature; SDM: shoot dry mass; RDM: root dry mass; NDM: nodules dry mass; 
N-shoot: shoot N accumulation. Different letters show significant differences among legume treatments by Tukey’s test (10%).

Table 4. Soil total C and N contents before (clean) and after legume and corn harvest.

Treatments
After legume

Clean C contents (g·kg-1) After corn

PV 29± 1.2 28± 1.2 25± 0.9

VU 30± 1.1 27± 1.1 25± 0.8

AH 30± 1.3 27± 1.1 25± 0.9

CM 28± 1.2 27± 1.2 25± 1.2

Sty 29± 1.1 27± 1.2 25± 1.2

GMSA 29± 1.0 28± 0.9 25± 1.0

GMCJ 30± 1.0 29± 0.9 25± 1.0

C 30± 1.4 26± 0.8 25± 1.2

V 29± 1.3 25± 0.7 25± 1.2

N contents (g·kg-1)

PV 1.6± 0.2 1.7± 0.2 1.4± 0.1

VU 1.7± 0.2 1.6± 0.1 1.5± 0.2

AH 1.7± 0.3 1.6± 0.1 1.4± 0.3

CM 1.6± 0.3 1.6± 0.1 1.4± 0.2

Sty 1.6± 0.2 1.6± 0.3 1.4± 0.2

GMSA 1.7± 0.1 1.6± 0.3 1.4± 0.1

GMCJ 1.6± 0.2 1.7± 0.2 1.5± 0.3

C 1.7± 0.4 1.6± 0.1 1.4± 0.2

V 1.7± 0.2 1.4± 0.2 1.5± 0.2

PV: Phaseolus vulgaris; VU: Vigna unguiculata; AH: Arachis hypogaea; CM: Calopogonium mucunoides; Sty: Stylosanthes sp.; GMSA: green manure Stizolobium 
aterrimum; GMCJ: green manure Crotalaria juncea; C: control treatment; V: vegetation nature.

Soil total C and N contents and microbiological attributes

Soil C contents varied between 25 and 30 g·kg-1 and N contents between 1.4 and 1.7 g·kg-1 (Table 4) for all samplings 
without significant variation among treatments after corn harvest. The C:N ratio in these soils was close to 17.
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The C-microbial was higher in the clean period, then halved or more after legume harvest. After corn harvest, this value 
increased again, recovering 100% of the initial value only for green manure sunn hemp and velvet bean treatments (~350 mg·kg-1). 
Similar to observed for microbial carbon biomass estimate, basal soil respiration decreased after legume harvest and then 
increased 100% or more after corn harvest (~ 60 mg·kg-1·day-1), but in this case, similarly for all treatments (Table 5).

Table 5. Microbiological attributes after legume and corn harvest.

Treatments
After legume

Clean C-microbial (mg·kg-1) After corn

PV 463a 203cA 348bA

VU 410a 161cB 291bA

AH 509a 269bA 286bA

CM 534a 259bA 232bB

Sty 464a 190bB 222bB

GMSA 361a 200bA 387aA

GMCJ 386a 167bB 327aA

C 529a 183cB 329bA

V 633a 200cA 367bA

Basal soil respiration (mg·kg-1·day-1)

PV 69a 34bA 63aB

VU 74a 37bA 68aB

AH 105a 33cA 58bB

CM 100a 34cA 65bB

Sty 99a 29cA 65bB

GMSA 85a 29cA 58bB

GMCJ 106a 34cA 66bB

C 100a 31bA 82aA

V 90a 33ba 80aA

Metabolic quotient (mg.C-CO2·g-1C-mic·day-1)

PV 0.14a 0.16aA 0.18aB

VU 0.18a 0.23aA 0.23aB

AH 0.20a 0.12bB 0.20aB

CM 0.18b 0.13cB 0.28aA

Sty 0.21b 0.15cA 0.29aA

GMSA 0.23a 0.13bB 0.20aB

GMCJ 0.27a 0.20bA 0.20bB

C 0.18a 0.17aA 0.24aB

V 0.14b 0.16aA 0.21aB

Microbial quotient (%)

PV 1.5a 0.7bA 1.4aA

VU 1.3a 0.6bA 1.2aA

AH 1.6a 0.9bA 1.1bA

CM 1.8a 0.9bA 1.0bA

Sty 1.6a 0.6bA 1.0bA

GMSA 1.2a 0.8bA 1.2aA

GMCJ 1.3a 0.6bA 1.3aA

C 1.7a 0.6bA 1.4aA

V 2.2a 0.8cA 1.5bA

PV: Phaseolus vulgaris; VU: Vigna unguiculata; AH: Arachis hypogaea; CM: Calopogonium mucunoides; Sty: Stylosanthes sp.; GMSA: green manure Stizolobium 
aterrimum; GMCJ: green manure Crotalaria juncea; C: control treatment; V: nature vegetation. Different lowercase and uppercase letters show significant differences 
among harvests for the same treatment and among treatments in the same harvest, respectively, by Tukey’s test (10%).
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The increase in the soil basal respiration led to higher metabolic quotients of all treatments after corn harvest, but 
only significant for treatments that received forage legumes CM and Sty. In spite of, the C-CO2 emission after corn was 
significatively lower in the soils that received all legumes compared to the control treatments C and V. The microbial quotient 
varied from 1.0 to 1.5% in all treatments, but without significant differences after the corn harvest.

Data correlation

In the clean treatment, there was a significant correlation (p < 0.1) between nodules dry mass from legume green manure 
and soil total C and N contents. C-microbial and metabolic and microbial coefficients correlated negatively with shoot dry 
mass of legume. After corn harvest, the increase in the metabolic quotient corresponded to a decrease in the nodules, roots 
and shoots dry mass of each legume.

Soil total C contents after corn harvest correlated negatively with the microbial quotient and C-microbial in the clean 
period. The metabolic quotient after corn harvest also showed negative correlations with shoot N accumulation. C-CO2 
emissions after corn harvest increased simultaneously with C-microbial in the clean treatment (Table 6).

Table 6. Pearson correlation coefficients and respective p values between clean between legume green manure yields, and soil characterization 
after legume and after corn.

Attributes C-Microbial 
(Clean)

qMic 
(Clean)

qCO2 
(Clean) SDM NDM RDM N-shoot

Total C (Clean) NA NA NA NS -0.64 NS NS

Total N (Clean) NA NA NA NS -0.79 NS NS

C-microbial (Clean) NA NA NA -0.58 -0.1 -0.33 -0.44

qCO2 (Clean) NA NA NA -0.60 NS NS NS

qMic (Clean) NA NA NA -0.58 -0.02 -0.33 -0.43

Total C (After legume) -0.88 -0.89 0.65 NS NS NS NS

Total N (After legume) -0.67 -0.68 NS NS NS NS NS

Total C (After corn) -0.88 -0.89 NS NS -0.67 NS NS

qCO2 (After corn) -0.37 -0.39 NS -0.71 -0.34 -0.6 -0.74

C-CO2 (After corn) 0.6 0.6 NS NS NS NS NS

Correlations based on per treatment averages (n = 9). Values in bold indicate significant (p < 0.1) correlations. C-microbial is microbial Carbon biomass estimate; 
C-CO2 is the soil basal respiration; qCO2 and qMic are metabolic and microbial quotients, respectively; SDM: shoot dry mass; RDM: root dry mass; NDM: nodules 
dry mass; N-shoot, shoot N-accumulation. NA: not applicable; NS: not significative.

DISCUSSION

Accumulated N-shoot in sunn hemp and velvet bean, both purely green manure crops, was similar to those found by 
Sarmento et al. (2019), who also found lettuce yields close to those obtained with mineral fertilization. This represents a 
considerable entry of N into the system, probably by biological N fixation (BNF). As in the studies by Kaizzi et al. (2006), 
velvet bean also showed greater dry mass and its allowed corn yield equivalent to that of corn receiving 40 kg·ha-1 of N as 
urea. In addition, the dry mass of cowpea and sunn hemp is also equivalent to that found by Ambrosano et al. (2018) in soils 
with organic cherry tomato production, once more showing the economic potential of these legumes used as green manure.

The shoot-N accumulation in all type of green manure used here was provided by the performance of diazotrophic 
in symbiosis with the roots of these legumes. It was evident that this symbiosis favored the nodules dry mass in 
calopo and common bean, since these legumes have good efficiency in generating symbiosis with native diazotrophic 
species (Santos et al. 2017). In addition, legume-derived N led to a decrease in microbial oxidative stress, as indicated 
by lowered metabolic quotient, after corn harvest, likely due C and N positive input and loss balance, as also seen by 
Hu et al. (2011).
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While superficial soil total C and N contents found after legume or corn harvest exceeded those found by Seben 
Junior et al. (2016) in no-tillage corn intercropped with legumes and Muchane et al. (2020) in subhumid soils under an 
agroforestry system, they are similar to those described by Lira Junior et al. (2020) after two years of a subhumid tropical 
legume-shrub-tree based silvopastoral system. This reinforces these legumes potential to contribute to the storage of C 
and N in these soils over time, without the need for nitrogen inputs, as also reported by Ambrosano et al. (2009) for corn 
growing systems with velvet bean and sunn hemp, both traditional tropical green manures.

The experiment was relatively short (i.e., less than one year) and insufficient for give a response if the green manure 
could increase the soil C and N total contents after the corn harvest in relation to the period before legumes seeding (clean). 
Even so, data from this work shows that in the absence of legumes there would be a tendency to decline in the C and N 
contents over time, particularly for N (Table 4), although not significantly so. In this sense, it was demonstrated that here 
there is a conservation in the soil total C and N contents.

It is known that different plant residues decompose at different rates due to contain of aromatics compounds and this 
can influence in C inputs in the long term (White et al. 2018). Although compounds in legume litter contain lignins and 
suberins, with slow decomposition (Kohmann et al. 2019), these green manures directly influenced the abundance and activity 
of bacteria and fungi, which are mainly responsible for the mineralization of organic matter and the supply of nutrients 
in the soil (Zhao et al. 2019), since the residual dry mass content of the legumes correlated negatively with the microbial 
oxidative stress after corn harvest.

The soil C-microbial biomass estimate declined after legume harvesting. However, the green manure made the soil 
capable of restoring microbial abundance (based only on C-microbial) and, hence, the values were close to those of the 
clean treatment, which was still under the effect of fertilization and liming. In addition, the soils that received grain legumes 
also have C-microbial estimates close to both control and nature vegetation treatments after the corn harvest, indicating 
that the residual biomass of these legumes stimulated soil microorganisms in a compensatory way, thus increasing their 
estimate values.

In fertilized tropical soils, the carbon microbial biomass estimate normally exceeds 500 mg·kg-1 (Singh et al. 2020) 
but the estimate presented here for soils with common bean, sunn hemp and velvet bean (~350 mg·kg-1) after corn 
harvest is higher than found in tropical soils with no-tillage (Huang et al. 2020), close to that of agroforestry system soils 
(Beuschel et al. 2020) and superior to green manure soils with forage legumes (Bolat 2019), reinforcing the performance 
of these kind of legume green manure.

The microbial activity was more intense after the corn harvest than after legume harvest, but lowest than in both control 
and clean treatments, indicating a possible reduction on microbial activity in the soils that received all the green manures 
over time. Microbial litter decomposition activity during corn growth was responsible for all C-CO2 emission, but here this 
attribute is in decline, as this soil basal respiration estimate has not exceeded the found in pure vegetation, which normally 
presents less oxidative stress (Kwon et al. 2019).

Here, the soil basal respiration after corn harvest is relatively similar when compared to other treatments with inputs 
(Chen et al. 2020) and elevated in soils of tropical native forest (Weber et al. 2020). This high activity also led to increased 
metabolic quotients for all treatments after the corn harvest, which was only significant for the forage legumes calopo and 
stylo. This increase indicates the possibility of microbial metabolic stress in soils with these two legumes, where the losses 
of C during the decomposing microbial activity exceed the inputs of this element by organic matter, even in soils with a C:N 
ratio below 20 (Kohmann et al. 2019), probably due to the reduced biomass input into the system due to the short duration 
of the experiment, coupled with the 10-cm height economic management adopted.

The higher biomass input of sunn hemp and velvet bean might have led to greater development of fungi and actinomycetes, 
although this work has not examined this, since its decomposition is frequently more efficient by these microorganisms 
with lignin-peroxidase and manganese-peroxidase enzymes (Janusz et al. 2013). Thus, there is an increase in C-microbial 
estimates due to the greater proportion of their body cells and hyphae and this guarantees for fungi and actinomycetes 
greater representation in the soil carbon microbial biomass (Baldrian et al. 2010). Consequently, there is a decrease in the 
metabolic quotient in the soils that received these two typical forages legumes, particularly. On the other hand, in soils with 
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forages stylo and calopo, the lower dry mass production may also have affected the C-microbial estimate and consequently 
increased the soil metabolic quotient.

The microbial quotient indicated that regardless of the metabolic stress observed with stylo and calopo, the microorganisms 
in all soils which received legume green manure degraded organic matter effectively. Thus, because there are no anthropogenic 
disturbances or mineral fertilization in these soils after the legume implementation, the oxidative stress in the soils of these 
two forages is likely due to a lower abundance of microorganisms, as was estimated by the low C-microbial, consequently.

CONCLUSION

This study evaluated seven legumes green manure and all were able to maintain the total C and N contents in the soil 
after corn harvest. Due to the higher shoot dry mass produced, the purely and grain legumes drive the higher microbial 
abundance in soil after corn harvest.

While forage legumes had higher metabolic stress than either grain or green manure ones, all of the green manures 
presented lower stresses than either control treatment, indicating increased efficiency in organic matter decomposition.
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