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A genuine understanding of the economic growth process should take
into account the extent to which fertility and mortality affect the
population growth rate as an endogenous variable. To this end we
construct a growth model using an infinite horizon setup in which
economic development and health status influence the population
growth rate. Mortality depends on health expenditure, and fertil-
ity is endogenously determined. Adults within each household take
into account the welfare and resources of their current and future
descendants. Their decisions determine not only the evolution of the
population growth rate but also the evolution of the per capita in-

come.

Este artigo analisa a mortalidade e a fertilidade como varidveis endé-
genas ao modelo e determinantes do crescimento da populacao as-
sociado ao processo de crescimento econémico. Com este propdsito,
é desenvolvido um modelo de horizonte infinito onde tanto o nivel
de desenvolvimento econémico quanto o gasto em satide influenciam
a taxa de crescimento da populagdo. Cada familia toma suas de-
cisOes tendo em conta o bem-estar social e os recursos disponiveis de
seus descendentes atuais e futuros. Suas decisdes determinam nao
sé a evolugao da taxa de crescimento da populagao, mas também a

evolucao da renda per capita.

1. Introduction

The effects of economic factors on fertility and mortality were a central

element in development for Malthus (1986) in 1798. Other economists such as
Adam Smith (1937), Schumpeter (1954) and David Hume (Rostow, 1990) also
discussed the connection between population and subsistence resources. Ac-

cording to their predictions, rising prosperity would yield a greater increase in
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population growth until a food supply limit was reached. Although the find-
ings of empirical studies do not support the “Malthusian paradigm” (Shultz,
1985; Coale, 1986; Rostow, 1990; Kremer, 1993), its impact meant that pop-
ulation began to be treated as an endogenous element derived from economic
and social conditions.

The neoclassical models of Solow (1956), Cass (1965) and Koopmans
(1965) consider the population growth exogenous and thus neglect interac-
tions between the economic growth process and demographic trends. These
models are unable to capture the observable diversity of population growth
through the variance in the behavior of fertility and mortality rates among
different countries. We might make a similar observation for a single economy

over time and about the development process.

In order to better understand the economic growth process we should take
into account the extent to which fertility or longevity affects the population
growth rate as an endogenous variable. To this end we construct a growth
model using an infinite horizon setup in which economic development and
health status influence the population growth rate through their implications

on fertility and mortality rates.

This paper is organized into five sections. In the following section we
briefly discuss previous results obtained by different authors. In section 3 we
present an infinite horizon model in which economic development and health
status influence the population growth rate through their impact on fertility
and mortality rates. Section 4 analyzes the transitional dynamics and the
steady state properties of the model. Our concluding remarks are given in the

last section.

2. Some Previous Results

Several authors have studied the feedback between population growth and
development. These studies follow the work of Becker (1960), which analyzes
the behavior of demographic and economic changes in developed countries

and the role of fertility.

Endogenous population growth literature has progressed along two basic
research lines. On the one hand, we find those studies that follow the neo-

classical growth model, where the economic growth rate is exogenously deter-
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mined. The analysis of population growth as an endogenous variable, along
with the analysis of several economic factors in different static and dynamic
environments, yields distinct results in which the quantity and quality of chil-
dren have an important role in the economy (Becker & Lewis, 1973; Barro &
Sala, 1995). Other factors which act as incentives to have children, such as
intergenerational transfers (Cadwell, 1976 and 1982; Willis, 1989), the effects
of the social security system (Nugent, 1985; Entwistle & Winegarden, 1984)
and different approaches to child rearing costs (Eckstein & Wolpin, 1985), are
also analyzed in different models. On the other hand, we find several stud-
ies based on models where economic growth and population growth rates are
endogenous and simultaneously determined as a result of distinct initial con-
ditions or changes in the parameters of the model that yield economic growth
(Becker, Murphy & Tamura, 1990; Ehrlich, 1991).

The relationships between human capital and health economics theories,
and their consequences for longevity and fertility, are directly linked to “mod-
ern” endogenous population growth literature (Grossman, 1972; Ehrlich &
Chuma, 1990). Becker, Murphy and Tamura (1990), Becker (1991), and Barro
and Sala (1995) stress the connection between human capital and the costs
of child rearing. Becker and Barro (1988) develop a model where fertility is
endogenously determined and depends on per capita quantities of human and
physical capital.

According to the World Bank (1993), falls in mortality and morbidity
rates, which are linked to per capita health expenditure, and their conse-
quences for a healthier population and work force are important in promoting
economic productivity and fomenting economic development. Barro and Sala
(1995:432) analyze the effects of health on economic growth. In their study
of the determinants of growth they find that life expectancy, as a proxy for
health, is an important factor for growth: a 13 year increase in life expectancy
is estimated to provoke an increase in the annual growth rate by 1.4 percent-
age points. Jablonski, Rosemblum and Kunze (1988) carry out a study of
the relationship between life expectancy, productivity and health and obtain
similar empirical conclusions in terms of life expectancy. These results are sup-
ported by the theoretical and empirical findings of Currais and Rivera (1999a,
1999b). In their model, health expenditure, used as a proxy for health status,

increases productivity through its effect on human capital accumulation.
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3. Setup of the Model

This model is an extension to the fertility choice model of Becker and Barro
(1988) and the continuous time approach proposed by Barro and Sala (1995).
We consider an infinite horizon model where mortality depends on health
expenditure and fertility is endogenously determined. Thus, each generation
of the family is linked altruistically and adults within each household take into
account the welfare and resources of their current and future descendants. The
current generation maximizes utility and incorporates a budget constraint over
an infinite horizon. We consider that altruistic parents provide transfers to
their children, who also consider in turn their transfers to their children, and

SO Oon.

Time is continuos and there is a large number of firms in the market that
act competitively. Each firm hires labor L and rent capital K in competitive
factor markets and sells its products in a competitive goods market. Firms
take the technological progress A as given, and it grows at the rate z. They
maximize their profits, which are owned by households; thus, households ac-
crue profits.

At each point in time firms employ the stocks of labor L and capital K,
paying for their marginal products and selling the produced output. Each firm
produces a flow of output Y according to Y = F(K, AL). The production
function represents a labor-augmenting technological progress that occurs at
the constant rate x > 0. In the Cobb-Douglas case we obtain that y = 7{:\0‘,
where 0 < a < 1, and § = ye~®* and k = ke%! represent respectively
per capita income and per capita capital in terms of effective labor. Capital
depreciates at the constant rate ¢ and firms pay the marginal product of
factors r = a Ak ! — § and w = (1 — ) Akt

The economy has a large number of identical households that seek to

maximize utility. Their preferences are described by the intertemporal utility

function:

U= /Ooo e—Pt{¢1nN + Inc + $ln(n — d(g))}dt (1)

where p is the rate of time preference and represents parental altruism, which
corresponds to p > 0, N is the size of a typical dynasty, n and d are the
family’s fertility and mortality rates respectively, and c is the consumption of
each member of the household. As the exogenous growth rate of technological

xt

progress occurs at a constant rate z, so that § = ge~*" is the per capita health
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expenditure in terms of effective labor, here d(g) is the family’s mortality rate
that depends on per capita health expenditure in terms of effective labor.

The use of the mortality rate as a function of health expenditure per effi-
ciency unit of labor seeks to capture the effects highlighted by some empirical
studies. Newhouse (1977) argues that the marginal unit of health care may
contribute more to “caring” (or subjective components of health) than to “cur-
ing” (or physiological health). This result supports the conclusions of several
studies using data on mortality and morbidity. According to Parkin et alii
(1987), it is equally plausible to assume that the marginal unit of medical care
does produce an improvement in physiological health, but that the cost of this
marginal unit is greater for higher income/higher expenditure countries. In
this sense as cheaper diseases are eradicated by increased expenditure, more
expensive diseases take their place.

By assumption, we take the function d(g) as a C? function verifying that
d(g) > 0, d'(g) < 0 and d’(g) > 0, Vg > 0. In other words, the mortality
rate decreases as ¢ increases, but the greater the expenditure the smaller its
decrease. Some other desirable features might be that d(0) > 0. This means
that with no health expenditure the mortality rate would be the “natural”
mortality rate. Another desirable feature is that lim d(g) = d, with 0 < d <

g—o0
d(0). This fact could be justified since health gains are effectively bounded.
It signifies that under no circumstances the mortality rate falls below d. The
size of the family changes continuously according to

N = (n—d(G)N (2)

The way that this model is developed means that one should interpret d
as representing infant mortality, thus n — d is understood to be the number of
surviving children. It is possible to interpret the analysis more generally by
thinking in terms of a broad concept of death, since mortality rates at all ages
are likely to depend on some basic common factors."! Households are com-
petitive, thus each of them takes as given the interest rate r and receives the
same wage rate w per unit of labor services. Each adult supplies inelastically

' We do not establish any distinction between child and adult mortality in equation (1). It
would be possible to consider nN as the number of new born children, dN as the number of child
deaths, and aN as the number of adults deaths, thus N:(n—d—a) N. Nevertheless, for sim-
plicity, we focus our analysis on the determination of d, instead of d and a, since this frame-
work does not necessarily imply that individuals that survive birth live forever. The relevant
idea is that of infinitely-lived dynasties, rather than infinitely-lived agents.
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one unit of labor per unit of time. The family’s assets k, considering the case
of a close economy, earn the rate of return r.

We can also introduce the same relationship, proposed by different au-
thors, between the individual per capita quantity of capital £ and the cost
of child rearing ®. The cost of child rearing ® would tend to increase with
parents income or with other measures of the opportunity costs of parental
time. We use instead a simplified linear function of child rearing costs, as
follows:

d = bk

where bk represents the opportunity costs that increase with parental capital
intensity.>

The total per capita income received by each household is the sum of wages
and interest income. Thus, the family’s budget constraint can be expressed

as:
k=w+[r—n+d@))k—bnk—c—g (3)

where w is the wage rate and r is the interest rate.

The household optimization problem lies in maximizing (1), subject to
(2) and (3). Solving the model by using optimal control (see appendix), we

obtain the following expressions:

C = aAk 5 — p— bd(G) — M—+Al’)CA— (4a)
¢ p(1+ bk — 2
kARt _g_apg - —2edrbC 29, (4b)
2 p(1+DEk—ye k &
. 4@k

=7 > 4c
I=71G) % 1)

2We also developed this model taking into account the existence of both the goods costs of
child rearing f and the opportunity cost bk, valued separately. In this case the total cost of
child rearing would be defined as: ®=f+bk, and f would rise at the rate x per year along with
exogenous technological progress, so that f=fe*'. Results obtained were quite similar to those
presented in this paper, although the equations became more cumbersome. In order to simplify
the presentation of the model, we consider only the opportunity costs.
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4. Transitional Dynamics and the Steady-State Analysis

The stability of the equilibrium can be studied making a linear approxi-
mation to (4) around the steady state. To simplify the work, we can eliminate
k by using (19.A), and expressing (4) in terms of ¢ and g as

° L R ¢bd' (g)c
= = aA(=bd'(§))' " = 6 — p— bd(g) + T(dziif - (5a)

1+ p(1+b)

. d'(G "(g)e
=20 |4 par(g))e—b-a@)+—LLD i g)erg)-a] ob)

d"(g) 1+ pbd’ (g)c

p(1+b)

Working with g instead of % is not an inconvenient, since the relationship
between g and k is one-to-one according to (19.A).

Now let us make some assumptions about the function d(g) and the pa-
rameters of the model. First, we assume that the mortality rate is related to
health expenditure through a negative exponential function:

d(g) = L+ M exp{Tq"},  L,M,5>0 (6)

In order for d to be a decreasing function, 7' < 0. This function verifies all
the desirable features for the mortality rate pointed out in the assumptions of
the model. The natural mortality rate (in the absence of health expenditure)
is L + M, and the threshold value below which the mortality rate may not
go is L. The parameter S is related to the decrease rate of the mortality
rate. We consider the following benchmark taking into account the common
parameters used in Barro and Sala (1995):

L M T S « Ab p ¢ 9 T

0.006 0.195 -1 05 045 1 1 0.02 0.2 0.2 0.056 0.02

The stability of equilibrium can be ascertained determining the Jacobian
matrix of (5) in the steady state. We can express the Jacobian matrix of ¢
and ¢ in the steady state as

J= —0.0176249 —0.116627
~ \ —0.00421637 0.0376249
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whose eigenvalues are A\; = 0.0454243 and Xs = —0.0254243, with
associated  eigenvectors respectively of = (0.879683, —0.47556)  and
(—0.997771,—0.0667253). Hence, the model exhibits saddle-path stability.

Examining the Jacobian matrix, we see that the =0 locus is negatively
sloped and stable, since ¢ declines for ¢ for a given g. The § = 0 locus is
positively sloped around the steady state, but is unstable since fq\ rises for g
for a given ¢. As the model exhibits saddle-path stability, there is only one
stable trajectory. We calculate the policy function ¢(g) for the stable arm by
using the time elimination method of Mulligan and Sala (1993). The transi-
tional path and the phase diagram are presented in figure 1. The relationship
between ¢ and g along the locus ﬁ = 0 is the solution to a quadratic equation
which has two real positive roots for a range of reasonable parameters (see
appendix). The larger root always turns out to lie above the c=0. Thus, in
figure 1 we only represent the smaller root of fj = 0. The figure shows that
the transitional path is positively sloped. Hence, if the economy starts from a
state of low initial per capita capital, one which is below its steady-state value
and where per capita health expenditure is low, capital and per capita health
expenditure grow along the transition path towards the steady state.

Figure 1 Figure 2
Phase diagram in (¢, g) space Transitional behavior of the fertility rate
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Figure 2 shows that the fertility rate exhibits a monotonic behavior. It
decreases towards its stationary value as the economy develops. The fertility
and mortality rates are correlated in a significant and negative way with the
per capita income. As the economy develops, the fertility and the mortality
rates fall and are accompanied by an increase in per capita income. This be-
havior characterizes the so-called “modern growth regime” that the economy
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undergoes after the demographic transition (Rostow, 1990; Maddison, 1985).
Reduced mortality levels and a healthier population are major contributors to
a rise in living standards, which is often regarded as a major factor in fertility
decline. Figure 3 shows the evolution of the mortality rate.

Figure 3
Transitional behavior of the mortality rate
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Table 1 presents the effect on the steady-state values of the variables ¢, g,
k, d, n, and r on changing the designated parameter, remaining all others in
their baseline settings.

Table 1
Effects of parameter variations
Parameter c* g* kb d* n* R*

Baseline  99.4829 15.2848 2000.01 0.0089095 0.0155303 0.0621511
y = 0.3 89.6172 14.5752 1781.68 0.0092855 0.0173624 0.0654393

y=01 106.942 15.7882 2166.74 0.0086676 0.014298 0.0599284
f=03 76.6883 13.5553 1499.73 0.0099098 0.0202148 0.0705197
f=01 128379 17.1058 2653.21 0.0081176 0.0113091 0.0545005

b=2 82.36  18.8953 1721.72 0.0075247 0.0113187 0.0664315
b=0.5 105472 11.4461 2044.84 0.011618 0.0220995 0.0615312
T =-0.5 655381 28.4455 1574.61 0.0185486 0.0238046 0.0690606
T =-1.5 108.618 9.37413 2067.29 0.0069747 0.0141009 0.0612271
L =0.008 88.647 14.5025 1760.36 0.0123266 0.019057 0.0657874
L =0.003 107.6 15.8314 2181.52 0.0066478 0.0131947 0.0597417
M =0.25 98.2051 16.9025 2007.08 0.0090967 0.0155744 0.0620521
M =0.15 100.777 13.6849 1993.64 0.0087111 0.0154758 0.0622404
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Changes in 1 and ¢ lead to changes of n and d in the same direction. That
is an expected result, since the higher the value for 1 or ¢, the greater the
benefits in terms of utility with respect to the children. For instance, when
rises from its baseline value to 0.3, the mortality rate increases from 0.0089
to 0.009285, and the fertility rate thus changes from 0.0155 to 0.0173. The
variation in the fertility rate is greater than the variation in the mortality
rate, reflecting the effect of the rising in ¢/k from 0.0497 to 0.0502. Hence,
the net rate of population growth also rises from 0.00662 to 0.00807.

We note a similar pattern when ¢ increases to 0.3, although this effect is
stronger than that provoked by ¥ on n and d. For example, n rises to 0.0202
and d rises to 0.0099, which gives a net rate of population growth of 0.0103.
A variation in b yields a change in the fertility rate in the opposite direction,
reflecting the importance of the child rearing cost. For example, as b rises
from 0.5 to 2, the fertility rate declines from 0.022 to 0.0113. Furthermore,
the mortality rate declines from 0.01161 to 0.00752 due to an increase in
health expenditure. Since health expenditure is aimed at both children and
adults, the higher the opportunity costs of child rearing are, the higher the
value of their health. The rate for population growth decreases and changes
from 0.0104 to 0.0037 as a result that b has a stronger effect on the fertility
rate than its effect on the mortality rate.

With respect to variations in the parameters that enter the functional
form of d, we can argue that changes in the natural mortality rate (L + M)
— when the threshold value of L is held constant — from its baseline value
of 0.2 to 0.155 and 0.255 yield slight, almost unnoticeable variations in the
mortality and the fertility rates. As we might expect, changes in L lead to
similar changes in d and n.

The steady-state values of the mortality and fertility rates are quite sen-
sitive to variations in the parameter T, which mainly affect the concavity
of the mortality rate function. Changing the parameter T from -0.5 to -1.5
yields a decrease in the mortality rate from 0.0185 to 0.0069 and a fall in
the fertility rate from 0.0141 to 0.0238. The greater the absolute value of T’
the more effective is health expenditure on mortality rate. When 7' is -1.5,
health expenditure is 9.37 and the mortality rate is 0.0069, and when 7" is -0.5,
health expenditure is 28.44 and the mortality rate is 0.0185. For variations in
the parameter T', the value of per capita capital remains roughly in the same

extent.
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Variations in the parameters that affect the utility function — when holding
the remainder parameters constant —, which lead to greater per capita health
expenditure, also lead to greater per capita capital. From table 1, lower mor-
tality rate and greater per capita capital imply a lower fertility rate. These
results support those obtained by Kirk (1996). Parents switch from quantity
to quality of children in response to a rise in the rate of human return. Re-
duced mortality and a healthier population are major contributors to a rise in

living standards, which is often regarded as a major factor in fertility decline.

Increasing values of 9, ¢, b, L or T yield increasing values for the steady-
state interest rate. In any case, the interest rate does not vary so much when

parameters change and the fluctuation ranges from 0.054 to 0.070.

5. Conclusions

In this paper we present a model in which the fertility and the mortality
rates are endogenously determined and in which individual choice with respect
to health expenditure is introduced. The result reveals a direct relationship
between per capita health expenditure and per capita capital. During the
transition path both variables evolve in the same direction. If the economy
starts from a lower capital per capita point than its steady-state value, per
capita health expenditure and capital per capita rise jointly towards their
steady-state values, thus the mortality rate declines monotonically until it
reaches its stationary value. This movement is consistent with observable
evidence of increases in health expenditure and decreases in the mortality

rate and in the fertility rate over time.

Per capita health expenditure and per capita income in the steady state
are directly related: the greater the health expenditure the greater the in-
come in the steady state. We also observe that a lower mortality rate and a
higher per capita capital imply a lower fertility rate. The fertility and mortal-
ity rates are correlated in a significant and negative way with the per capita
income. As the economy develops, the fertility and the mortality rates fall
and are accompanied by an increase in per capita income. These results are
in accordance with the assertion that reduced mortality and healthier popu-
lation are important contributors to higher living standards and increases on

productivity, which are often regarded as a major factor in fertility decline.
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Appendix

The Hamiltonian expression for the general problem is:

e Pt

VY — @)1 - 1+

+o(w+ (r—n+d@)k —bnk —c—g)+ un—d@)N (1.A)

H=

The multiplier vector v is the shadow price of capital at any point in
time and p is the shadow price of the state variable N. Let IT = [N¥¢(n —
d(9))?]'~?. The conditions for a maximum are:

OH II

e = e_”tz —v=0 (2.4)
oH  _, ¢l B B

o = ¢ = dG) v(l+bk+pN=0 (3.4)
OH _ —pt ¢(_dl(§)) I\ _ ,xt e~ _

T e H—n —d@) +ou(d (9)k — ")+ u(—d'(g))N=0 (4.4)
X 0H .

V= = —v(r — (1 +b)n+d(g)) (5.4)
() (6.4)

The transversality conditions are:

lim vk = (7.A)
t—o00
tllglo uN =0 (8.4)
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Differentiating (2.A) with respect to time, we get:

n—d'(§)g

éwﬂﬁ—p+¢ﬂ—9ﬂy—9§+¢ﬂ—0)n_ﬂ@

- N ]—@:0 (9.4)

Substituting v from (2.A) in (5.A), and using this result in (9.A), after
simplification and given that N/N = n — d(§) we obtain:

L e s oL@
C— e @ va- oy o -0 2000 o)

If we consider the logarithmic case, when § = 1, then the above expression
may be simplified to:

S p— (i d@) ~ b (11.4)

The transversality condition (7.A) can be expressed using (5.A) as

lim vk = lim {ke‘ Js (T‘(””)"*d(g))d”}} =0 (12.4)

t—o00 t—00

From (12.A) we derive that the quantity of assets per capita does not grow
asymptotically at a rate as high as 7 — (1 4+ b)n + d(g), and that the level of
assets does not grow at a rate as high as r — bn.

Substituting v from (2.A) into (3.A), then we obtain that

1 _ ¢ (1+0b)k 1 _
= —— I - = —— e "I 13.4
P="N° [n ) c N € (13.4)
where ) = n%;(/g\) - %. Following the reasoning of Barro and Sala (1995)

we arrived at the determination of n. Differentiating (13.A) with respect to
time we obtain:

. e P NQ NQ 0 A
jr=—— {—T—pQ—i—’l/J(l—9)T+(1—9)7+¢(1_9)QW+Q}

Substituting (13.A) into (6.A), then

e P
N

fr = {¢ —Q(n—d(9))}
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which substituted into the latter equation and after simplification, gives:

NSQ

w—d @),
N [QARY)

+(1—9)?+¢(1—9)n_7d@

Y= Qn—d(§)) =~ 4p(1-0)

From (2) we know that N/N = n — d(g), thus

n— d'(@)?}

Q:¢+Q{p_¢(1—9)(n—d(§))—(1—9)g_¢(1_0) n — d(g)

after some manipulation and taking into account (10.A), we get:

Q:¢+%{p—(1—9)[r—(1—¢)(n-d(§))—nb+¢ %(;((?ﬂ} (14.4)

If we consider the logarithmic case, when 6§ = 1, the last equation is
simplified, becoming;:
Q=1+ pQ (15.4)

The general solution of (15.A), is given by
0=-24 [9(0) + f} et (16.4)

which is dynamically unstable, because if ©(0) departs from its steady-state
value —1)/p, then © moves over time toward too. Given that § = 1in (13.A),
so that II = 1, we obtain that vN = —e~?!Q. Replacing the solution for Q
from (16.A) in the transversality condition (8.A), we get:

lim uN = — lim e ”'Q = — lim {—e_pt% + Q(0) + %} =0 (17.4)

t—00 t—o00 t—o00

This equation is verified if and only if 2(0) = —%. Hence, (26) implies
that Q = —%. Using the definition of €2, we obtain that

pp(c/k)
1+0b) —¥(c/k)

n = d(g) + i (18.4)
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Substituting into (4.A) the expressions for v in (2.A) and for p in (13.A),
then

e (SA@) | A@h—et [ b
‘ H{n—d@>+ —

1+nEla@) o

which, after simplifying, implies that

d(5) = AN (19.4)

where k = ke—%t.

As we have assumed that the derivative of d is a function which is strictly
increasing, equation (19.A) shows that there is a one-to-one relationship be-
tween g and k. An increase (decrease) in g yields an increase (decrease) in
k. Taking logarithms in (19.A) and differentiating with respect to time, we
obtain

g
= 20.A
5 (20.4)

T &)

:Lﬁw@]
d'(g)
This expression gives us the relationship between the growth rate of capi-
tal per capita and the growth rate of health expenditure per capita. Equation
(20.A) shows that the growth rate of capital per capita is equal to the mag-

nitude of the elasticity of marginal mortality rate by the growth rate of per
capita health expenditure.

Substituting the values for w and r into (11.A) and (3), we obtain a system
which can be expressed in terms of variables that are constant in the steady
state. Naming ¢ = ce™®!, taking into account that ¢/¢ = ¢/c — z and that

% = ke~ — 2k we obtain system (4), in the logarithmic case.

In order to compute the ¢ = 0 locus and the § = 0 locus and plot the
phase diagram presented in figure 1, we set (5.a) to zero and, solving for ¢,
we obtain the ¢ = 0 locus

(1+b)p(6 +p+z+bd(g) — Aa(—bd'(g)) >+

c(g) = bd' () (dp(L +b) — (6 + p + z + bd(g) — Aa(—bd'(g))~+!

Setting (5.b) to zero and solving for ¢, in order to get the § = 0 locus,
leads to a quadratic equation in ¢, as follows:

HE+Ic+J=0
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which has two roots:

o —I+I2—4HJ
2H
where
H = bd'(g)
I=(1+¢)p(1+0b)+vbd (9)T
J=p(1+bT
N 1 a  §4+bd(g)+2x
T=5-4(- bd’@)) - bd'((gg))

For all the parameters tested in table 1, the larger root turns out to go
above the ¢ = 0 locus.
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