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� Abstract · Resumo

A key issue in evaluating agricultural factor productivity in Brazil is
the existing wide variation in farm sizes. In this study, we follow a
quantile regression approach and use bootstrapping techniques
to estimate a flexible production function to show that factor
productivity does vary across and within land size groups. This
happens not only because farms of different sizes use different
input proportions but rather due to the existence of inter and
intragroup farm-specific effects. Our results suggest that usual
average measures of factor productivity of previous studies may
then be poorly describing the Brazilian agriculture, likely leading
to confounding conclusions.

� Abstract · Resumo

Um importante aspecto para a análise quantitativa da produtivi-
dadedos fatores empregadosna agricultura brasileira é a extrema
variação no tamanho das propriedades. Neste contexto, este
estudo demonstra, com a estimação de ummodelo de função
de produção flexível por estimadores quantílicos e técnicas
de bootstrapping, que a produtividade dos fatores varia entre,
mas sobretudo dentro de, grupos de produtores por estrato de
tamanho da propriedade. Os resultados sugerem, portanto, que
há significativa heterogeneidade tecnológica dentro dos grupos
e que estudos que assumem homogeneidade intragrupo podem
estar sub- ou superestimando a real contribuição de cada fator
para a agricultura brasileira.

1. Introduction

Agricultural productivity plays a key role in developing economies, as it is connected
to food security, income and poverty eradication. In Brazil, it is no different, but the
importance of the agriculture sector goes beyond. Brazil is one of the largest exporters
of agricultural products in the world and the sector as a whole accounts for more
than 30% of all Brazilian exports (Comex Stat). The sector’s performance therefore
has effectively contributed to the relaxing of balance of payments constraints every
year and has helped the country to more quickly overcome economic downturns
(Brazilian Central Bank).
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It should not be surprising that researchers have spent a great deal of time
studying the Brazilian agriculture performance. In fact, the productivity of Brazilian
farms has been the focus of several studies lately. Some examples of parametric
approaches are Moreira, Helfand, and Figueiredo (2007), Rada, Helfand, and
Magalhães (2018) and Helfand and Taylor (2017) that focus on the relationship
between farm size and the total factor productivity (TFP) growth; Bragagnolo,
Spolador, and Barros (2010) and Rada and Valdes (2012) that investigate technical
efficiency patterns across farmers at state level using stochastic frontier methods;
and Helfand, Moreira, and Figueiredo (2011) that examines the causality between
agricultural performance and poverty. An example of non-parametric approach is
Gasques, Bastos, Bacchi, and Valdes (2010), and Gasques, Bastos, Valdes, and Bacchi
(2014), which calculates TFP growth at state level using a Torniqvist index, or Avila,
Rodrigues, Vedovoto, Penteado, and Fonseca (2015) which measures the impacts of
the Brazilian Company of Agricultural Research (EMBRAPA) along its fifteen years
of existence using a multidimensional approach. A more comprehensive review on
agricultural studies focused on Brazil can be found inMachado, Bacha, and Johnston
(2020).

While this existing literature hasmade important contributions in disentangling
the key production factors for the Brazilian agricultural performance, gaps remain,
especially those related to the modeling of the wide variation in farm sizes with
respect to planted area that exists in Brazil. In particular, the econometric studies
have dealt with them by using flexible production function models from which the
resulting factor productivity measures can be fitted at different data values ranging
from small to large farms. In some studies farms of different sizes are pooled together
and parameter estimates that enter into the productivity measures are completely
invariant to size. It is then implicitly assumed that there are no farm-specific effects
related to size and factor productivity measures differ across farms of different sizes
only because small, medium and large farms may use different input proportions.
Other studies include dummies by size or perform separate regressions by land size
group (LASG), allowing for parameter estimates as well as input proportions to
differ accordingly to farm size. It is then implicitly assumed that there may be across-
but not within-group farm-specific effects.

By building upon Rada et al. (2018) modeling approach and using data from
the 2006 agricultural census provided by the Brazilian Institute of Geography and
Statistics (IBGE), we develop an empirical productionmodel based on a fully flexible
functional form and apply quantile regression techniques to look for statistically
significance in the parameter estimates across nine percentiles of the data within
LASG (0–5; 5–20; 20–100, 100–500; and >500 ha). Using a bootstrap tool we
calculate the output-input elasticities and investigate the differences across and
within any LASG.
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Results show the presence of significant heterogeneity in factor productivity
across and within all LASGs. They indicate that modeling approaches that pool
farms of different sizes together will yield biased estimators for factor productivity
elasticities. Also, as factor productivity vary widely within LASGs, these biases
do not disappear in studies that accommodate for size heterogeneity by including
dummies of by performing separate regressions according to size.

The remainder of this article is organized as follows. Section 2 provides
explanations on the empirical models. Section 3 discusses the data and variable
construction, also displays descriptive statistics and testing procedures. Section 4
presents results, and section 5 concludes.

2. Empirical model

A comprehensive historical review of the empirical methods used in the investigation
of agricultural productivity and efficiency up to the first decade of the 2000’s is
provided by Darku, Malla, and Tran (2013). It shows that the main studies date
back to the 1950’s but only after the 1980’s that the modern era of applied studies on
agricultural productivity measurement picked up (Bagi, 1982; Kawagoe & Hayami,
1985; Bravo-Ureta, 1986; Aly, Belbase, Grabowski, & Kraft, 1987; Tauer & Belbase,
1987; and Kumbhakar, Biswas, & Bailey, 1989). During the 1990’s SFA and DEA
became standard approaches to the study of technical and allocative efficiency across
regions and farms of different sizes (e.g., Bravo-Ureta & Rieger, 1990; Dawson &
Woodford, 1991; Kumbhakar, Ghosh, & McGuckin, 1991; Kumbhakar & Heshmati,
1995; Hallam &Machado, 1996; Thiele & Brodersen, 1999). The results showed that
farmers were becoming more efficient, but not necessarily because their cropping
areas were getting larger.

In this last decade, methodological advances have allowed researchers to
measure the effects of agricultural productivity growth on poverty alleviation and on
economic growth (e.g., Schneider & Gugerty, 2011; Gollin, 2010; Cao & Birchenall,
2013) and to quantify the gaps on productivity performance between countries with
a focus on the factors that may narrow them such as knowledge and education (e.g.,
Gollin, Lagakos, & Waugh, 2011; Block, 2014; Bustos, Caprettini, & Ponticelli, 2016;
Davis et al., 2012). Last but not least, database construction efforts turned longer
historical series of data on climate variables readily available which allowed for the
measurement of the impacts of climate change on agricultural productivity as in
Gornall et al. (2010).

As already briefly mentioned in section 1, our methodology fits in this most
recent set of the international literature body. More specifically, as in Rada et al.
(2018), we also assume that the agricultural output-input relationships follow a
translog functional form, but differently we do not impose a priori constant returns
to scale. AssumingHicks neutral technology the basic empirical production function
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may be then represented by the following stochastic model:
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where 𝑋𝑘𝑖 is a vector for the independent variables (capital stock, land, labor and
purchased inputs) for any 𝑖municipality; and𝑊𝑤𝑖 is a vector for the climate control
variables (average precipitation and average temperature in municipality 𝑖 in the
base year). The Greek letters 𝛼, 𝛽, 𝛾, 𝜔, 𝜁 and 𝜇 are parameters to be estimated and
𝑢𝑖 is an i.i.d. error. At first we estimate the equation (1) by ordinary least squares
(OLS) for all municipalities and independently of farm sizes. We then group all
farms in each LASG (0–5 ha, 5–20 ha, 20–100 ha, 100–500 ha, and >500 ha) and run
OLS regressions for each LASG. In this case the model becomes
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(2)

In equation (2), the vector 𝑋𝑐𝑘𝑖 contains the same number of independent
variables as in eq 1, but now it is also indexed to each LASG 𝑐; 𝑌𝑐𝑖 refers to the sum
of the value of agricultural production across all farmers in municipality 𝑖 that fall
into LASG 𝑐. For example, for the 0–5 ha LASG, we perform an OLS regression
of 𝑌0−5𝑖 on the amount of labor (𝑥labor,0−5𝑖), capital stock (𝑥capital stock,0−5𝑖), land
(𝑥land,0−5𝑖) and purchased inputs (𝑥PurImp,0−5𝑖), controlled by the climate conditions
as in equation (1). Observe that the Greek letters 𝛽, 𝛾, and 𝜇 are also indexed by
LASG 𝑐.

Given the estimates obtained fromrunning themodels represented by equations
(1) and (2) we calculate elasticities of scale and of the output value with respect to
land, capital, labor and purchased inputs by equation (3). Using those estimates, the
elasticity of output 𝑌 with respect to input 𝑘 is defined as equation (4):
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Output elasticities for each input and LASG 𝑐 is calculate using equation (5)
bellow and the mean obtained by equation (6):
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Estimates of scale elasticities are also computed by using equations (3) and (5).
With the former, that uses the aggregate data set (not separated by LASGs), the scale
elasticity is defined as themean of the sumof ̂𝜓𝑋𝑘𝑖 over all 𝑘 inputs. With the latter the
measure is defined as themean of the sumof ̂𝜓𝑋𝑐𝑘𝑖 over all 𝑘 inputs for a given LASG 𝑐.
Notice that the resulting elasticities are a combination of parameter estimates and
data on input quantities and the climate variables. Therefore the elasticity values
may vary due to differences in the values of the independent variables and in the
estimated input marginal effects on output represented by the coefficient estimates.
Inference, as suggested in Krinsky and Robb (1986), and Krinsky and Robb (1991),
is performed through the use of a non-parametric bootstrap technique with 10,000
replications that allows us to calculate basic confidence intervals of 99%, also called
Non-Studentized pivotal method (Carpenter & Bithell, 2000).

These OLS regressions, elasticity estimates and the inference methods allow us
to investigate whether there is statistical heterogeneity between LASG’s and between
any LASG and the aggregated model (represented by equation (1)). To be able
however to address and verify the heterogeneity within each LASG we propose the
use of the quantile regression (QR) technique (Koenker & Bassett, 1978).

The conditional quantile function (7) denotes a relationship between a quantile
of the density distribution of the dependent variable ln𝑌 and the covariate vector
ln𝑋⊤. In here, 𝑋⊤ contains the inputs defined above as well as the climate variables
and 𝐵(𝜃) contains all their associated parameters in each quantile (𝜃):

𝑄ln𝑌(𝜃|𝑋) = 𝐵(𝜃) ln𝑋⊤. (7)

The estimate �̂�𝑐(𝜃) in a given LASG is obtained for any 𝜃 ∈ [0, 1] by finding
the 𝑏 which solves the following minimization problem:

min
𝑏𝑐∈ℝ[ ∑

(𝑖| ln𝑌𝑐𝑖>ln𝑋
⊤
𝑐𝑖𝑏𝑐)
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Quantile input elasticities are then calculated for each quantile within a chosen
LASG, using equation (9).The mean elasticities are computed as for equation (10)
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andwe employ the bootstrap process to attain convergedmean values and confidence
intervals, in each quantile, for all LASG’s:
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By varying 𝜃 between (0,1) in equation (8) we obtain multiple elasticities
for any quantile of output value conditional to the explanatory variables. Using
this algorithm we calculate nine different values for each elasticity (from 10% to
90%), within each size-class proposed and use these results to analyse if there is
heterogeneity inside each LASG.

3. Data

3.1 Variable selection and construction

In order to represent the output and input variables we use municipal level data
from the 2006 agricultural census provided by the Brazilian Institute of Geography
and Statistics (IBGE, 2006). We consider all farmers in a given municipality of a
specific LASG to be a “producer” that operates a “representative farm”. All output
and input numbers described below refer to the total output produced and input
used along the whole period of reference of the 2006 IBGE agricultural census which
is 01/01/2006 to 12/31/2006.

In equation (1), the dependent variable ln𝑌𝑖 is constructed as the natural
logarithm of the total value of agricultural production, measured in the Brazilian
currency, in municipality 𝑖. The independent variables are constructed for the four
inputs 𝑘 (capital stock, land, labor and purchased inputs) and the climate variables
𝑤. More specifically, ln𝑋𝑘𝑖 is the natural logarithm of input 𝑘 quantity and ln𝑊𝑤𝑖
is the natural logarithm of climate variable 𝑤 in municipality 𝑖. In equations (2)
and (3) the dependent variable ln𝑌𝑐𝑖 also represents the natural logarithm of the
total agricultural production monetary value, but aggregated only over farms with
total land area belonging to the 𝑐 LASG. ln𝑋𝑐𝑘𝑖 is the natural logarithm of the input
𝑘 quantity in the municipality 𝑖, also aggregated over farms with total land area
belonging to LASG 𝑐. ln𝑊𝑤𝑖 is defined as above. The proper construction of all
these variables is discussed below.

For land we use total planted area (hectares) dedicated to perennial and annual
crops in the period of reference. We consider the number of hectares in pasture to
be implicitly represented by the number of cattle animals which is computed as part
of the capital stock variable described in more detail below. The labor variable is the
total number of hired and adult family workers.
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Purchased inputs include fertilizers, pesticides, fuel, electricity among others
and are only available as expenses in the 2006 IBGE Census. We are aware that
the proper modeling of this variable in a production function context requires its
transformation in a quantity index with the help of a price index based on the prices
paid in the period of reference. Due to time constraints the construction of such an
index was not feasible and purchased inputs are therefore computed as a monetary
value rather than a quantity. For this reason we consider purchased inputs as a
control variable in our production model.

To create a index for capital stock we used data for the quantity of animals,
machinery and trees. As proposed by Hayami and Ruttan (1971) animals are
considered as a form of internal capital accumulation implying the existence of an
infrastructure put in place to raising, feeding, breeding, slaughtering, sheltering
and harvesting which then justifies considering the number of animals as part of
capital stock. We start by assuming that a producer will slaughter an animal when
the market price of its flash 𝑆𝑏 is at least equal to the benefits of keeping it alive LV𝑏,
i.e. the future gains of fattening or with any production by-products (milk, eggs etc)
AY𝑏, minus the maintenance costs with species 𝑏, 𝐷𝑏. In equilibrium therefore we
expect the following equivalence to hold:

SV𝑏 ≡ AY𝑏 − 𝐷𝑏 → SV𝑏 ≡ LV𝑏 . (11)

Assuming that the stock of animals in all farms was indeed at equilibrium level
in 31/12/2006, we can then estimate the total value of living animals using the value
of slaughtered animals, slaughtered numbers and number of animals in stock as the
following:

LV𝑐𝑏𝑖 = 𝐿𝑐𝑏𝑖 ∗
SV𝑐𝑏𝑖
𝑆𝑐𝑏𝑖

or LV𝑐𝑏𝑖 = 𝐿𝑐𝑏𝑖 ∗
∑𝑖 SV𝑐𝑏𝑖

∑𝑖 𝑆𝑐𝑏𝑖
, (12)

where LV𝑐𝑏𝑖 is the total value of live animals of 𝑏 species, inside 𝑖municipality, within
each LASG 𝑐; SV𝑐𝑏𝑖 is the value of slaughtered animals; 𝐿𝑐𝑏𝑖 is the stock of living
animals at the end of 2006; 𝑆𝑐𝑏𝑖 is the number of slaughtered animal during 2006.
The second equation is used when no animal of a particular specie was slaughtered
in that year and municipality. We calculate this sub-index for three main species of
farm animals: hog, chicken and cattle.

The index for machinery is constructed as in Moreira et al. (2007). The data
in the census are in number of tractors of 100 hp or more, tractors with less than
100 hp, trucks, pick-up trucks, planters, harvesters and other agricultural machinery.
To aggregate for all these types of machinery we use price data available at a monthly
basis from the Institute of Agricultural Economics of São Paulo (IEA). These price
data were only available for the year 2018 in a monthly basis and by using them to
construct an index for 2006 we are in fact assuming that the price proportions were
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kept constant in time across municipalities and LASG’s. All quantities of machinery
were multiplied by its 2018 mean price and then divided by the price of a “tractor of
100 hp or more” for being subsequently added together. As so, this variable yields
the total value of machinery in units of “tractors with 100 hp or more”.

The existence of perennial crops implies a past investment incurred by the
producer looking for capitalizing future gains. Using the method developed by
Butzer, Mundlak, and Larson (2012), investments in a given orchard in the long
term equilibrium equals the present value of the expected future income it generates.
That is,

𝐼 = PV[E(𝑌𝑝 − 𝐶𝑝)] , (13)

where𝑌𝑝 is the total lifetime expected yield of the permanent crop 𝑝, and 𝐶𝑝 the total
lifetime costs. As we only have data on production we assume, in accordance to Rada
et al. (2018) that production costs account for 65% of gross revenues for Brazilian
farms.1 We further assume that all trees are in the middle of their productive lifetime
ℓ, that interest rates are constant at 6%, and that the production is equal in all years.
This approach enables us to construct sub-indices to 17 different perennial crops for
the year 2006.2 Using the production data and equation (13) we then arrive at the
following equation:

PV𝑐𝑝𝑖 =
ℓ/2

∑
𝑡=1

0.35 ∗ 𝑌𝑐𝑝𝑖
(1 + 0.06)𝑡 . (14)

At this point, we have three different sub-indices for each type of capital stock:
number of tractors with 100 hp ormore, expected value of animal stock if slaughtered
and the present value of perennial crops expected profits. To aggregate them we
use standardized regression coefficients as weights (beta coefficients method) at the
regional level. These weights are normalized to sum to unit before being applied to
the data.

The regional estimated normalized weights for machinery, animals and trees,
are respectively: Center-West (1.0367; 0.0051; −0.0418); Northeast (0.4893; 0.0747;
0.436); North (0.247; 0.237; 0.516); Southeast (0.518; 0.198; 0.284); South (0.518;
0.198; 0.284); and for Brazil as whole (0.552; 0.252; 0.196). Notice that the weights
for the Center-West region are not well behaved as it is above 1 for machinery and
negative for trees. They should all be positive and below 1. To overcome this problem
we have used the weights for Brazil for the Center-West region.

Lastly the climate variables (average annual temperature measured in Celsius
and total annual precipitation in millimeters) for each municipality in the year of
2007 were compiled from Rocha and Soares (2015).

1Butzer et al. (2012) uses the figure of 80%, we choose to comply with the Brazilian specific study
value of 65%.
2The productive life expectancy ℓ of each of the plant species follows approximations available in
Butzer et al. (2012) Appendix.
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3.2 Descriptive statistics

An initial analysis of the census data provided in Table 1 shows the distribution of
the input use across the multiple LASGs in the Brazilian agriculture.3 The largest
farms represent only 2% of all farms in Brazil but concentrate 39% of agricultural
area and produce 31% of all output, while these percentages for the smallest ones
(0–5 ha) are 37%, 3% and 7%, respectively. As regards of labor force, 56% of all the
employed workers belong to farms up to 20 ha Farms. The largest farms over 100
ha employ more than half of all purchased inputs and capital used in the Brazilian
agriculture.

Table 2 shows the input figures of Table 1 at a per hectare basis. As expected we
can see that the small farm agriculture (0–5 ha) rely much more on labor relatively
to all other LASG’s with an average employment of 2.4 persons per hectare, while in
the other LASG’s this rate varies from 0.042 to 0.749. Surprisingly, however, Table 2
also shows that small farm agriculture (up to 20 ha) also employ more capital and
produce more output value at a per hectare basis. Expenditures on purchased inputs

Table 1. Production and input use distribution by LASG

LASG
(ha)

Number
of Farms

Land
Area
(ha)

Labor
Force

(persons)

Purchased
Inputs

(R$ 1000)

Stock
Capital

(indexed units)

Total
Production
(R$ 1000)

0–5 1,735,615 1,917,812 4,659,860 2,788,405 2,672,774 10,501,654
(37%) (3%) (31%) (3%) (7%) (7%)

5–20 1,298,667 5,103,019 3,823,178 7,376,760 6,472,814 21,576,151
(27%) (10%) (25%) (10%) (17%) (15%)

20–100 1,196,948 10,804,917 3,985,668 12,480,511 10,030,734 34,180,602
(25%) (21%) (26%) (17%) (27%) (24%)

100–500 358,908 12,797,311 1,621,092 16,084,866 8,832,156 30,583,036
(7%) (25%) (10%) (22%) (23%) (21%)

>500 90,295 20,330,326 859,363 31,761,024 8,852,299 44,247,807
(2%) (39%) (5%) (45%) (24%) (31%)

Brazil 4,680,433 50,953,385 14,949,161 70,491,565 36,860,777 141,089,251

Note: Variable specifications are in accordance to section’s 3.1. Land is total planted area in hectares. Numbers in parenthesis are
shares of aggregated Brazilian values.

Source: IBGE’s 2006 Agricultural Census (IBGE, 2006).

3It is important to be aware that due to limitations in the census data the values shown in tables/figures
and used for statistical analysis do not represent all 5,570 municipalities in Brazil in every LASG.
For municipalities with three or less land owners in a given LASG, the data are omitted for
the sake of privacy, resulting in a non-complete sample. More specifically the 0–5 ha, 5–20 ha,
20–100 ha, 100–500 ha and >500 ha LASGs contain respectively 4,349, 4,834, 4,720, 4,507 and 2,356
municipalities.
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Table 2. Input Use Relatively to Land Area by LASG

LASG
(ha)

Labor
Force

(persons)

Purchased
Inputs

(R$ 1000)

Stock
Capital

(indexed units)

Total
Production
(R$ 1000)

0–5 2.429 1.453 1.393 5.475

5–20 0.749 1.445 1.265 4.228

20–100 0.368 1.155 0.928 3.163

100–500 0.126 1.256 0.690 2.389

>500 0.042 1.562 0.435 2.176

Note: Variable specifications are in accordance to section’s 3.1. Land is total planted area in
hectares.

Source: IBGE’s 2006 Agricultural Census (IBGE, 2006).

per hectare of land are relatively homogeneous across all LASG’s varying from 1.2 to
1.6 units of purchased input per hectare.

At the municipality level, Table 3 reveals that on average municipalities al-
located, in the reference year, 441 ha, 1,081 ha, 2,235 ha, 2,839 ha and 8,629 ha
to be respectively operated by small (0–5 ha), medium-small (5–20 ha), medium
(20–100 ha),medium-large (100–500 ha) and large farms (>500 ha). Also, as the farm
size increases, the average number of employed labor in a representativemunicipality
decreases while the average expenditure on purchased inputs, employed capital and
output value increases. By comparing the number of standard deviations over the
mean as an indicator of dispersion (SD/Mean), we see a relatively low dispersion
within groups in the land use pattern, apart from the largest farm group with a
indicator of 3.2 (27587/8629). The labor use pattern is more homogeneous within
groups with the indicator ranging form 1.17 to 1.62. Amuch higher dispersion rate is
observed in the purchased inputs category, ranging from 1.59 in the 20–100 ha group
to 4.56, 4.54 and 5.32 in the 5–20 ha, >500 ha and 100–500 ha groups respectively.
For capital stock, the indicator decreases sharply from 6.23 (3830/615) in the small
farm group (0–5 ha) and 5.27 in the 5–20 ha group to 2.34 in the largest farm group
(>500 ha). As for output value, dispersion rates range from 1.75 to 2.72, which shows
a relatively high dispersion rate intra-group in general.

3.3 Testing nested functional forms, slope andmonotonicity properties

In order to verify the benefit of the translog functional form we employed an F-
statistic to compare nested models. The results suggest rejection at a 99% of the
more restrict Cobb-Douglas functional form in favor of the more flexible functional
translog form. We also have assessed for differences in slope of coefficients between
neighboring quantiles (e.g. 𝜃 = 0.10 against 𝜃 = 0.20) with the joint test for equality
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Table 3. Descriptive Data by LASG

LASG
(ha)

Land
Area
(ha)

Labor
Force

(persons)

Purchased
Inputs

(R$ 1000)

Stock
Capital

(indexed units)

Total
Production
(R$ 1000)

0–5
Max 825 24878 28087 147484 235169
Min 0.03 10 0.12 0.012 0.27
Mean 440.97 1071.47 641.16 614.57 2414.72
SD 710.52 1777.32 1215.32 3830.64 6451.38

5–20
Max 27240 13833 353071 351304 291113
Min 1 11 0.07 0.05 6
Mean 1081.14 809.99 1562.87 1371.35 4571.21
SD 1476.03 948.56 7132.23 7230.08 9922.2

20–100
Max 68362 11891 67211 174688 319601
Min 3.5 6 0.37 0.10 9.25
Mean 2235.19 824.5 2581.81 2075.03 7070.87
SD 3003.98 954.64 4124.08 6184.18 12417.85

100–500
Max 157312 7870 1081276 91961.55 876303.2
Min 1.2 5 0.23 0.007 6.10
Mean 2839.43 359.68 3568.86 1959.65 6785.67
SD 5248.15 475.91 18984.7 5084.45 18458.83

>500
Max 478887 11141 1194391 134477 794353
Min 3.5 8 0.00 0.01 0.41
Mean 8629.17 364.75 13480.91 3757.34 18780.9
SD 27587.15 591.45 62589.98 8797.89 49524.76

Note: Variable specifications are in accordance to section’s 3.1. Land is total planted area in hectares. Data is at municipality level.

Source: IBGE’s 2006 Agricultural Census (IBGE, 2006).

of slopes proposed by Koenker and Bassett (1982). The null hypothesis was rejected
for all 𝜃s within every LASG.4

Themonotocity property of the translog production function was checked by
following Henningsen andHenning’s (2009) approach. Table 4 shows the percentage
points that do not fulfill the monotonicity condition for each production factor,
which corresponds to the proportion of negative elasticities when employing a
translog function form.

4Test results can be provided upon request.
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Table 4. Percentage of Monotonicity - Aggregated and by LASG

Inputs Aggregated 0–5 ha 5–20 ha 20–100 ha 100–500 ha >500 ha

Land 1.7% 10.6% 5.3% 0.5% 1% 4.5%
Labor 16% 19.2% 33.8% 17.8% 20.2% 7.2%
Purchased 0% 0.3% 0% 0.2% 0% 0%
Capital 16.2% 6.2% 11.4% 10% 8.6% 5.6%

Source: Authors’ estimations.

4. Results

We initially estimated our aggregated model, where no LASG differentiation is
made, represented by equation (1) and the models for each LASG 𝑐 represented
by equation (2) by using standard OLS techniques and then by applying quantile
regression techniques we estimate equation (8). With the OLS and the quantile
regression coefficient estimates for nine quantiles we then measure the elasticities
of output with respect to land, capital labor and purchased inputs. This enable us
to investigate for the heterogeneity in agricultural productivity within LASGs, and
between any LASG and the aggregated estimate.

Based on the OLS coefficient estimates the output-input elasticities measured
with equations (3) and (5), are presented in Table 5. In general the aggregated
measures show that, at the margin, purchased inputs have the largest contribution
to output with an elasticity of 0.53, meaning that a 1% increase in purchased inputs
implies an estimated increase of 0.53% in output. The second largest is capital
followed by land and then labor. This order is also followed by the farms within
the 5–20, 20–100 and 100–500 ha intervals. For the smallest farms (0–5 ha) labor
comes in third and land in forth place, while for the largest (>500 ha) land comes in
second and capital in third place.

Table 5. Scale and Output-Input Elasticities - OLS Model

Inputs Aggregated 0–5 ha 5–20 ha 20–100 ha 100–500 ha >500 ha

̂𝜓𝐴 0.1789 0.0677 0.1821 0.1711 0.1883 0.2312
̂𝜓𝐿 0.0640 0.1718 0.0563 0.0480 0.0792 0.1723
̂𝜓𝐼 0.5294 0.5585 0.5324 0.5648 0.5082 0.4282
̂𝜓𝐾 0.1963 0.1860 0.2089 0.1972 0.1987 0.2231

∑𝜓 0.9687 0.9840 0.9797 0.9811 0.9744 1.0549

N 4,913 4,349 4,720 4,834 4,507 2,356

Source: Authors’ estimations. Parameter estimates for each regression are available upon request.
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For the more aggregated analysis based on OLS estimates by LASG, we can see
that land productivity ranges from 0.07 to 0.23 when we move from the smallest to
the largest farms with the intermediate ones (5–20, 20–100 and 100–500 ha) locked
in a plateau around 0.18. For labor, the elasticitymeasures seem to follow an inverted-
U pattern with the smallest and largest farms with the highest around 0.17 and the
farms in the intermediate intervals with the lowest, around 0.06. Purchased inputs
and capital importance to production are more homogeneous across farm sizes,
with the latter increasing and the former decreasing in the largest farms (>500 ha).
By comparing the aggregated measures with the ones by LASG we can see that for
land and labor, aggregated estimates would tend to bias toward intermediate size
farm productivity. Aggregated elasticity measures would also tend to respectively
overestimate and underestimate the purchased inputs and capital contributions to
productivity for the very large farms (>500 ha). As for returns to scale, measured
with equations (4) and (6), results either reached with the aggregated model or with
the estimations for each LASG show that farms are operating pretty much under
constant returns to scale with increasing returns only for the very largest (>500 ha).

Next, we turn to the analysis of the heterogeneity within each LASGby using the
QR method. As already highlighted above a benefit of using it is the ability to assess
how the elasticity measures differ according to the different levels of production that
each quantile represents, ranging from 0.10 to 0.90 within each LASG.

Figures from 1 through 5 show the elasticity of scale and of the output with
respect to capital, land, labor and purchased inputs. The shaded grey band along
each curve represents a 99% confidence interval for the elasticity estimated values.
The straight red line is the OLS estimates for each respective elasticity, where the
two dashed lines represent 99% confidence intervals. All points and intervals were
obtained by bootstrapping with 10,000 sample replications. As a rule of thumb, if the
gray area is not inside the dashed lines, the OLS model is not properly representing
that section of the data, given the extreme heterogeneity in it.

In Figure 1 we can see that the economies of scale estimates are in general
decreasing—in all LASGs—as the quantile increases meaning that farms with higher
values of production tend to be more successful in exploiting gains of scale. More
interesting however is the fact that all delineated curves cross the threshold value of 1.
This means that in all LASGs there are farms operating under increasing, decreasing
and constant returns to scale. For the LASGs 0–5, 20–100 and 100–500 ha, the
unitary elasticity is associated with the quantile 0.40, meaning that in these LASGs
the botton 40% of farms in terms of value of production are experiencing increasing
returns and the top 60% decreasing returns. For the LASG 5–20 and >500 ha,
the unitary elasticity is in the 0.55 and 0.85 quantiles, meaning that respectively
the bottom 55% (top 45%) and 85% (top 15%) of the farms are operating under
increasing (decreasing) returns to scale in these LASGs.
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Figure 1. Scale Elasticities (𝑦-axis) by Quantile (𝑥-axis) for each LASG

These results sharply contrast with the ones drawn from the OLS estimates in
Table 5 that leads us to conclude in general for constant returns to scale no matter
the farm size in terms of hectares. In fact, an analysis based on OLS would tend
to underestimate the measures of economies of scale in the LASGs of 0–5 and
5–20 ha for the bottom 60% of the farms and overestimate for the top 40%. In the
20–100 and 100–500 LASGs under- and overestimation happen in the bottom and
top 50% respectively. For the uppermost largest farms (>500 ha), OLS measures
underestimate for the bottom 40% and overestimate for the top 60%.

Figure 2 shows the results for the elasticity of output with respect to capital by
LASGs and quantiles. In general, the curves are negatively sloped suggesting that at
the margin capital contributes more to production in the smaller farms. As for land,

Figure 2. Capital Elasticities (𝑦-axis) by Quantile (𝑥-axis) for each LASG



86 Rev. Bras. de Econ. Vol. 76, No. 1 (Jan–Mar 2022)

the graphs in Figure 3 do not show the same pattern across LASG’s as in the figures
1 and 2. In fact, the contribution of land to production at the margin follows a clear
decreasing pattern for the smallest farms (0 and 5 ha), then follows a U pattern for
the intermediate LASG’s of 5–20 and 20–100 ha, with elasticities estimates reaching
a minimum value at quantile 0.4, and then increasing for the largest farms, with
land area from 100–500 and >500 ha.

The next Figure 4 shows the estimated output elasticities with respect to labor.
For the smallest and largest LASGs, labor contribution to output at the margin
increases with farm size. For intermediate farms, the elasticity measures follow
either a decreasing pattern (20–100 ha) or a U pattern reaching the minimum value
around quantiles 0.6 (5–20 ha) and 0.7 (100–500 ha). Although the curves in Figure 4
also reveal that pooled estimation methods such as OLS would be a poor way to
describe the productive pattern of an input across farms of different sizes, as seen in
other Figures, the confidence intervals around the OLS labor elasticity estimates are
much wider.

Lastly, Figure 5 shows the productive patterns of purchased inputs across farms
of different sizes within each LASG. At the margin, they are increasing for the farms
with land area within 0–5 ha and follow a somewhat inverted-U shape for the farms
in the other LASGs. With the peak being reached around the 0.4 and 0.5 quantiles
for the farms in the 5–20 and 20–100 ha intervals and in the 0.3 and 0.2 quantiles
for the ones between 100–500 ha and >500 ha respectively.

Figure 3. Land Elasticities (𝑦-axis) by Quantile (𝑥-axis) for each LASG
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Figure 4. Labor Elasticities (𝑦-axis) by Quantile (𝑥-axis) for each LASG

Figure 5. Purchased Inputs Elasticities (𝑦-axis) by Quantile (𝑥-axis) for each LASG

5. Conclusion

In this paper we have developed an empirical production model based on a fully
flexible functional form and applied quantile regression and bootstrapping tech-
niques to look at the heterogeneity in agricultural factor productivity in Brazil at
the municipality level. We have estimated scale and output-input elasticities with
respect to land, labor, capital and purchased inputs that are allowed to vary across
and within groups of different farm sizes. Nested functional form specifications and
the equality of production function slopes resulting from the quantile regression
estimates have been performed along with the checking of monotonicity properties.
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The results show the presence of significant heterogeneity in factor productivity
across and within all farm size groups not only because farms of different sizes use
different input proportions but rather because there are inter- and intra-group
farm-specific effects, suggesting that: 1) OLS modeling approaches that pool
farms of different sizes together will yield biased estimators for factor productivity
elasticities; and 2) these biases do not disappear in studies that accommodate for
size heterogeneity by including dummies of by performing separate regressions
according to size.

Further research should continue to focus on the heterogeneity across and
within farms on two fronts. On one, by looking at the heterogeneity patterns in
factor productivity when farms are allowed to be technically inefficient with the use
of quantile frontier techniques as in Chidmi, Solís, and Cabrera (2011), and Kaditi
and Nitsi (2010). And on another, by performing a heterogeneity decomposition
analysis that would allow for the disentangling of fixed from heterogeneous effects
with the application of a quantile regression panel data approach as in Graham, Hahn,
Poirier, and Powell (2015). This will require the updating of our 2006 database with
data from the recently released 2017 IBGE Agricultural Census.
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