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ABSTRACT

High-throughput phenotyping (HTP) using vegetation indices (VIs) is an important data source for managing plant 
breeding programs and can be a promising tool in indirect selection. This study hypothesized that VIs are correlated with 
agronomic traits in corn, and therefore, HTP can be an auxiliary tool for selecting superior genotypes. The objectives 
were: i) to analyze the association between agronomic traits and VIs, and ii) to identify superior corn hybrids for the 
evaluated traits using multivariate techniques. Ten corn hybrids (AGRI 330, AGRI 340, FS575PWU, KTZ006VP3, 
MG545AW, MG580PW, MG711PW, MZ1780, MZ1952, and TROPI 102) were evaluated for plant height (PH), stem 
diameter (SD), and grain yield (GY). The VIs studied were NDVI, NDRE, EVI, GNDVI, SAVI, and MSAVI. Pearson’s 
correlation network was constructed to analyze the relationship between the variables, and a canonical analysis was performed 
to verify the inter-relationship between the variables and hybrids. The VIs evaluated are strongly positively correlated with 
each other and with PH. The most productive hybrids are MG545AW, FS575PWU and KTZ006VP3. Hybrid MZ1952 
has higher correlations with VIs and PH. The findings reveal that VIs can be excellent auxiliary variables for selecting 
agronomically superior genotypes, being a promising alternative to increase corn breeding efficiency. 
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INTRODUCTION
Corn (Zea mays L.) is among the most important crops 

in the economic and social aspects and stands out for being 
the most grown and consumed grain globally. Given the 
gradual world population growth (ONU, 2019), the de-
mand for food tends to increase even more. In this scenario, 
plant breeding can increase crop yield (Borém et al., 2017; 
Bailey-Serres et al., 2019; Heinz et al., 2020; Taveira et al., 
2020). Since the beginning of agriculture, selecting plants 
for traits desirable to humans has been established. In the 

1960s, the Green Revolution relied on genetic improve-
ment in grains, among them corn, for global food security 
(Bailey-Serres et al., 2019).

In corn breeding programs, one of the ways to obtain 
high-yielding hybrids is through direct selection on the 
grain yield trait. However, selecting a particular trait can 
influence others, which makes crucial the knowledge of 
the degree of association between traits so that selection 
achieves the breeder’s goal (Cruz et al., 2012). Besides 
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searching for the traits of interest, the optimization of the 
plant evaluation process is also essential in breeding pro-
grams to achieve greater efficiency. Thus, when there is a 
high correlation between a trait that is easy to evaluate and 
traits of interest that require time and labor with recurrent 
evaluations in the field, like agronomic traits, the indirect 
selection is an excellent alternative (Samecima Junior, 
2018). Indirect selection aims to optimize costs and labor 
and advance the selection process by seeking to improve 
a trait of interest by selecting based on another trait that is 
more easily analyzed (Ramalho et al., 2012; Borém et al., 
2017).

High-throughput phenotyping (HTP) is an important 
data source for managing breeding programs by providing 
spatial and temporal information (Shanahan et al., 2001; 
Da Silva et al., 2020). The use of sensors in agriculture 
has enabled non-contact and nondestructive evaluation and 
can be a helpful tool in indirect selection to minimize time, 
labor, and costs while providing more accurate informa-
tion. One of the main HTP tools is the use of vegetation 
indices (VIs). VIs are ratios between the reflected radiation 
from two or more bands and are efficient algorithms for 
estimating vegetation canopy, growth, vigor, nutritional 
status, among other applications (Xue & Su, 2017; Silva 
Júnior et al., 2018; Prado Osco et al., 2020; Ramos et al., 
2020; Santana et al., 2021, Santana et al., 2022).

Among the several VIs available, the Normalized 
Difference Vegetation Index (NDVI) and the Normalized 
Difference Red Edge (NDRE) are the most widely used in 
plant growth monitoring studies (Bonfil, 2017; Da Silva et 
al., 2020; Santana et al., 2022). NDVI is correlated with 
plant height and leaf mass, mainly in absorbing green 
radiation around 550 nm (Moriwaki et al., 2019). NDRE 
includes the red band and has higher sensitivity for esti-
mating leaf chlorophyll content and N content than NDVI, 
especially in C4 plants (Gitelson & Merzlyak, 1994; Portz 
et al., 2012). Another widely used VI is the Soil Adjusted 
Vegetation Index (SAVI), which minimizes the soil back-
ground effects on spectral reflectance, which is especially 
important in situations where the soil surface is not entirely 
covered by vegetation (Zhao et al., 2018)

Spectral reflectance is related to plant yield (Chang et 
al., 2016). Plant leaf tissues can reflect, absorb, or transmit 
solar radiation, and the relationship between these factors is 
variable according to organ surface characteristics and their 
physiologies. Furthermore, light emission ranges accord-

ing to wavelength (Silva Júnior et al., 2018). High-yielding 
phenotypes are related to their respective VIs, which, when 
observed precisely, are related to their gene constitutions 
and hence can be subject to selection and improvement 
(Rutkoski et al., 2016).

Despite being a promising technique, using VIs as 
auxiliary tool for selecting genotypes in corn breeding 
programs is still incipient, and studies evaluating the 
relationship between plant traits and VIs are crucial to 
improve the efficiency of genotype selection using this 
approach. Our hypothesis is that the VIs are correlated 
with agronomic traits in corn, and therefore, HTP can be 
an auxiliary tool for selecting superior genotypes. In this 
sense, the objectives of this study were: (i) to analyze the 
association between agronomic traits and VIs and (ii) to 
identify superior corn hybrids for the evaluated traits using 
multivariate techniques.

MATERIAL AND METHODS

Conducting the experiment

The experiment was carried out in the 2019/2020 crop 
season at the experimental field of the Universidade Fed-
eral de Mato Grosso do Sul, located in the municipality 
of Chapadão do Sul (18°41’33’’S, 52°40’45’’W, with an 
altitude of 810 m), Mato Grosso do Sul, Brazil. The re-
gion’s climate according to the Köppen classification is Aw 
type (Savanna Tropical). The soil of the experimental field 
was classified as Red Latosol clayey dystrophic with the 
following chemical properties in the 0-0.20 m layer: pH 
(H2O) = 6.2; exchangeable Al (cmolc dm-3) = 0.0; Ca+Mg 
(cmolc dm-3) = 4.31; P (mg dm-3) = 41.3; K (cmolc dm-3) 
= 0.2; organic matter (g dm-3) = 19.74; V (%) = 45.0; Al 
saturation (%) = 0.0; sum of bases (cmolc dm-3) = 2.3; CEC 
(cmolc dm-3) = 5.1. Weather conditions throughout the 
experiment are shown in Figure 1.

Ten treatments were evaluated in a randomized block 
design with three replicates. The treatments were composed 
of single hybrids acquired from Agricom Seeds: AGRI 330, 
AGRI 340, FS575PWU, KTZ006VP3, MG545AW, MG-
580PW, MG711PW, MZ1780, MZ1952, and TROPI 102. 
The plots consisted of five-meters rows, with a spacing of 
0.45 m between rows and a density of four plants m-1. 

 Sowing occurred in December 2019 using convention-
al soil tillage (plowing and leveling harrow). Fungicide 
(Pyraclotrobin + Methyl Thiophanate) and insecticide 
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(Fipronil) were used in the treatment of seeds with at a dose 
of 200 mL of the commercial product for 100 kg seeds to 
ensure protection against the pests and soil fungi. Cultural 
practices were performed according to the needs of the 
crop.

Assessing agronomic traits and vegetation indices

When the grains were at the R2 stage, usually recom-
mended for the beginning of harvesting (Harrison et al., 
1996), the following agronomic traits were evaluated: plant 
height (PH, m) and stem diameter (SD, cm), sampled from 
five plants randomly in each plot using a tape measure; 
and grain yield (GY, kg ha-1), sampled along two meters of 
the central rows of each plot and, after being weighed and 
converted to 13% humidity, it was extrapolated to kg ha-1. 

At 60 days after emergence (DAE), a Sensefly eBee 
RTK fixed-wing remotely piloted aircraft (RPA) was used 

as a HTP resource. The eBee has autonomous take-off, 
flight plan, and landing control and was equipped with the 
senseFly Parrot Sequoia® multispectral camera, which has 
a sunshine sensor and an additional 16 MP RGB camera for 
scouting. The overflight was performed at 100 m altitude, 
allowing a spatial image resolution of 0.10 m. The overflight 
was carried out near the zenith due to the minimization of 
the shadows on the plants at 11 a.m for six minutes. Ra-
diometric calibration was made for the entire scene using 
a manufacturer-supplied calibrated reflective surface. Mul-
tispectral reflectance images were obtained for green (550 
nm ± 40 nm), red (660 nm ± 40 nm), red (735 nm ± 10 nm), 
and near infrared (NIR, 790 nm ± 40 nm) spectral bands. 
Reflectance values at these wavelengths enabled the calcu-
lation of VIs studied. Further details on flight procedures and 
the acquisition of wavelengths for calculating VIs can be 
found in Prado Osco et al. (2020) and Santana et al. (2022).

Figure 1: Weather conditions during the 2019/2020 crop season.

The acquired images were mosaiced and orthorectified 
by the Pix4Dmapper software. The calculated VIs were: 
NDVI (Normalized Difference Vegetation Index), NDRE 
(Normalized Difference Red Edge Index), EVI (Enhanced 
Vegetation Index), GNDVI (Green Normalized Difference 

Vegetation Index), SAVI (Soil-Adjusted Vegetation Index), 
and MSAVI (Modified Soil-Adjusted Vegetation Index). 
The VIs evaluated here were chosen because of their higher 
correlation with plant biomass according to Raper &Varco 
(2015), and are detailed in Table 1.
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Table 1: Description of the vegetation indices calculated using the Sequoia multispectral sensor

Abbreviation Vegetation Index Equation References

NDVI
Normalized Difference Vegeta-

tion Index
NIR red
NIR red

−
+

(Rouse et al., 1974)

NDRE
Normalized Difference Red 

Edge Index

NIR rededge
NIR rededge

−
+

(Gitelson &  

Merzlyak, 1994)

EVI Enhanced Vegetation Index ( )6 7,5 1
NIR red

NIR red green
−

+ − +
(Justice et al., 1998) 

GNDVI
Green Normalized Difference 

Vegetation Index

NIR green
NIR green

−
+

(Gitelson et al., 

1996)

SAVI Soil-Adjusted Vegetation Index ( )1 0,5
0.5

NIR red
NIR red

−
+

+ +
(Huete, 1988)

MSAVI
Modified Soil-Adjusted Vegeta-

tion Index ( ) ( )2

0,5[2 1

2 1 8  ]
2

NIR

NIR NIR red

+ −

+ − − (Qi et al., 1994)

NIR: near-infrared reflectance; green: green reflectance; red: red reflectance, rededge: red transition reflectance.

Statistical Analysis
To study the existing relationship between the traits and 

VIs, Pearson’s correlations were estimated between the agro-
nomic traits and VIs. A correlation network was constructed 
to graphically express the functional relationship between the 
correlations, where the distance between the nodes (variables) 
is proportional to the absolute value of the correlation between 
them. The thickness of the lines was controlled by enforcing a 
cut-off value of 0.60, meaning that only correlations above 0.60 
were highlighted. Lastly, positive correlations were plotted by 
green lines, while negative correlations were highlighted in 
red. A multivariate canonical analysis was performed to verify 
the inter-relationship between the variables (agronomic traits 
and VIs) and treatments (hybrids). All statistical analyses were 
performed using Rbio software (Bhering, 2017) and followed 
the procedures recommended by Cruz et al. (2012).

RESULTS AND DISCUSSION
Canonical analysis provides a multivariate analysis of 

variance (MANOVA), in which treatment effect was sig-
nificant (p < 0.05) for all variables analyzed. Thus, it was 
possible to proceed to Pearson’s correlation and canonical 
analyses to verify the association between variables and 
the interrelationship between variables and treatments, 
respectively. Correlation network revealed the existence 
of high-magnitude positive correlations for most variables 
evaluated (Figure 2). There was a low-magnitude negative 
correlation only between PH and SD. Although the cor-
relation between the traits PH and SD was negative of low 
magnitude, i.e., the taller plants had smaller stem diame-
ters, such result is consistent with the literature. According 
to Taiz et al. (2017), the microfibrils present in most stem 
cells have an anisotropic behavior, which is growing in 
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a preferential direction, providing a greater expansion in 
length than in width. Consequently, the cell structure tends 
to reorganize itself, narrowing on the sides and expanding 
vertically.

The VIs showed a strong positive correlation between 
them, which is expected because, although there are differ-
ences between them, their formulas are similar, favoring 
smaller differences between their values. This leads to the 
fact that plants with high NDVI values also obtained high 

values for the other indices. Moreover, PH also showed a 
high positive correlation with all the VIs. The correlation 
between VIs and PH supports that plant height can be es-
timated from vegetation indices, as reported in a previous 
study carried out by Prado Osco et al. (2020) with corn 
crop in Brazil. This is mainly due to the fact that VIs are 
able to measure plant attributes such as chlorophyll content 
and biomass, which in turn are highly related with plant 
height.

Figure 2: Correlation network between agronomic traits plant height (PH), stem diameter (SD) and grain yield (GY), and vegetation 
indices NDVI, NDRE, EVI, GNDVI, SAVI and MSAVI, evaluated in ten corn hybrids.

NDVI, created by Rouse et al. (1974), uses the wave-
lengths of the red (660 ± 12 nm) and near-infrared (770 ± 12 
nm) bands. Plants that have higher reflectance in the green 
and near-infrared tend to absorb more red (Shiratsuchi, 
2014). The chlorophyll molecule reflects the visible range, 
while the near-infrared is reflected by the leaf mesophyll 

(Oliveira, 2017), pointing to suitable conditions for photo-
synthesis. Therefore, NDVIs close to 1 (maximum value) 
refer to healthier and more yielding plants.

However, the red and near-infrared bands may be in-
fluenced by the biomass, impairing the accuracy of yields. 
An alternative is to employ VIs that use wavelengths in the 
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green range (Oliveira, 2017). In this sense, we calculated 
NDRE, covering wavelengths in the rededge and near-in-
frared (NIR) bands; EVI, allowing the relation between 
green, red and NIR; GNDVI, relating green to NIR; SAVI 
and MSAVI, which, although they also use only NIR and 
red, are adjusted according to the parameters of the soil and 
the vegetation itself, respectively.

Regarding GY, the interaction with the other evaluated 
traits was moderate, allowing its indirect selection. Quan-
titative traits, such as yield, are difficult to select because 
they are highly influenced by the environment. One strate-
gy in this situation is indirect selection, which also reduces 
time and labor (Samecima Junior, 2018). Thus, traits with 
high heritability and presenting a linear correlation with 
yield identify superior genotypes in this aspect (Ribeiro 
et al., 2010). The plants that presented higher heights and 
VIs were the highest yielding ones, and hence the linear 
correlation was positive.

Figure 3 shows the canonical analysis, which allows 
knowing the interrelationship between the treatments and 
the evaluated variables. The accumulated variance in the 

first two canonical variables was 99.6%, indicating high 
accuracy in interpreting the constructed biplot. Cruz et 
al. (2011) and Mingoti (2007) recommend employing this 
procedure when the first two canonical variables retain 
at least 80% of the total variation. This analysis made it 
possible to verify that hybrids MG545AW, FS575PWU, 
and KTZ006VP3 stood out for their grain yield since these 
hybrids are on the same axis of the GY trait.

A high-magnitude positive relationship between VIs 
and PH provided by Pearson’s correlation analysis was 
also observed in the canonical analysis, as they fall on the 
same axis. The hybrid MZ1952 was the most correlated 
with such variables according to its graphical positioning, 
also occupying the same axis. Although GY is not inserted 
in this quadrant, its proximity is significant. Similar results 
were obtained by Taveira et al. (2020), who evaluated the 
association between spectral data and agronomic traits in 
soybean using a multivariate approach. The authors veri-
fied a strong association between the studied VIs (NDVI 
and NDRE) but found no association between VIs and 
agronomic traits.

Figure 3: Canonical analysis applied to the agronomic traits plant height (PH), stem diameter (SD) and grain yield (GY), and vegeta-

tion indices NDVI, NDRE, EVI, GNDVI, SAVI and MSAVI, evaluated in ten corn hybrids.
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The other hybrids showed no correlation with agro-
nomic traits and VIs. AGRI330, AGRI340, MZ1780, and 
TROPI102, which occupy the upper right axis, are close 
to the VIs and hybrid MZ1952 but not close enough to be 
correlated, due to the separation by axis. The hybrids most 
distant from the evaluated variables and the other hybrids 
were MG711PW and MG580PW, which occupied the 
upper left axis. The trait SD did not fit on the axes and, 
consequently, did not obtain a relationship with the other 
variables and hybrids by the canonical analysis.

The findings reported in this study reveal that VIs 
can be excellent auxiliary variables for selecting superior 
genotypes in breeding programs. In a corn breeding pro-
gram where hundreds of lines are assessed annually, the 
measurement of agronomic traits is costly, as it is a labor 
and time-consuming task. Furthermore, long periods of 
field evaluations cause exhaustion and human fatigue, 
which may result in lower accuracy of the assessments 
(Prado Osco et al., 2020; Ramos et al., 2020; Samecima 
Junior, 2018). In this sense, VIs can be used as auxiliary 
traits in the indirect selection, where genotypes with higher 
values for the VIs studied here could be selected for better 
agronomic performance, reducing the number of in-field 
measurements. Therefore, HTP using VIs arises as a prom-
ising alternative to increase the efficiency of crop breeding 
programs, providing accurate results in a shorter time.  

CONCLUSIONS
The vegetation indices NDVI, NDRE, EVI, GNDVI, 

SAVI and MSAVI are strongly positively correlated with 
each other and with plant height, which, in turn, show 
moderate positive correlation with grain yield. The stem 
diameter has low negative correlation with plant height.

 The hybrids with higher yields were MG545AW, 
FS575PWU and KTZ006VP3. Hybrid MZ1952 has higher 
correlations with vegetation indices and plant height com-
pared to the other varieties. AGRI330, AGRI340, MZ1780 
and TROPI102 are closer to each other but have no signif-
icant correlation with the variables evaluated by canonical 
analysis; the same occurred with the hybrids MG711PW 
and MG580PW.
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