Pathogenicity of *Evlachovaea* sp (Hyphomycetes), a new species isolated from *Triatoma sordida*, in Chagas' disease vectors

Patogenicidade de *Evlachovaea* sp (Hyphomycetes), uma nova espécie isolada de *Triatoma sordida*, para vetores da doença de Chagas

Christian Luz¹, Luiz Fernando Nunes Rocha¹ and Ionizete Garcia Silva¹

ABSTRACT

Evlachovaea sp was tested on nymphs of 5 Triatoma spp 5 Rhodnius spp, Panstrongylus herreri and Dipetalogaster maximus at 25°C, 75% humidity and humidity >98%. Most species showed susceptibility to fungal infection at high humidity. Mortality was reduced at 75% humidity. Fungal development was observed on 69.5% of cadavers.

Key-words: Evlachovaea. Triatominae. Pathogenicity. Vector control.

RESUMO

Evlachovaea sp foi testada em ninfas de 5 Triatoma spp, 5 Rhodnius spp, Panstrongylus herreri e Dipetalogaster maximus a 25°C, 75% umidade e umidade >98%. A maioria das espécies foi suscetível à infecção em umidade alta. Mortalidade foi reduzida a 75% de umidade. O fungo desenvolveu em 69.5% dos cadáveres.

Palavras-chaves: Evlachovaea. *Triatominae. Patogenicidade. Controle de vetores.*

Entomopathogenic fungi such as *Beauveria bassiana* and *Metarhizium anisopliae* were shown to be active against triatomine bugs under laboratory conditions² ⁴. However, only a few field tests have been reported, and there is almost no published information about pathogenic fungi isolated from field-collected triatomine cadavers. Parameswaran and Sankaran (1979) reported *B. bassiana* on the triatomine bug *Linshcosteus* sp in India. Recently another fungus identified as a new species of *Evlachovaea*, a genus described in Russia¹, was found on a dead *Triatoma sordida* nymph in central Brazil, and its pathogenicity was documented against *Triatoma infestans*³. Herein we report results on the pathogenicity of the *Evlachovaea* sp in other triatomine species.

All triatomines tested, 5 *Triatoma* spp, 5 *Rhodnius* spp, *Panstrongylus herreri*, and *Dipetalogaster maximus*, originated from the Institute of Tropical Pathology and Public Health, Goiânia, Brazil. Insects were reared at $25 \pm 0.5^{\circ}$ C, $75 \pm 5\%$ relative humidity (RH), and a photoperiod of 12:12 (L:D) h. They were blood-fed on chickens at 2-week intervals. The fungus was cultivated on complete medium and incubated for

15 days at 25 ± 0.5 °C, $75 \pm 5\%$ RH, and a photoperiod of 12:12 (L:D) h³. For the tests, conidia were suspended in 10ml of sterile 0.1% Tween 80 and adjusted to 3.3x10⁶, 10⁷, 3.3x10⁷, 108, 3.3x108 and 109 conidia/ml, corresponding to between 2.4x10³ and 8.0x10⁵ CFU (colony-forming unit)/cm² treated surface⁴. Ten recently molted and unfed third instar nymphs (N3) of the various species were directly sprayed with 5ml of each concentration using a Potter spray tower (Burkard Ltd., Hertfordshire, UK). Control insects were treated with 0.1% Tween 80 only. N3 were placed on filter paper in plastic Petri dishes (90 x15mm) and then incubated in a test chamber (33 x 37 x 22cm) at RH 75%, humidity close to saturation (RH>98%), 25 ± 0.5 °C and a photoperiod of 12:12 (L:D) h. Humidity of 75% inside the test chamber was regulated with a saturated solution of NaCl. Insects were not fed during the assays. Mortality of nymphs was monitored daily. Lethal concentrations to kill 50% and 90% (LC50 and LC90) were calculated by probit analysis. Cadavers were placed in Petri dishes and incubated at RH>98% and 25°C during 20 days.

^{1.} Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
This work was supported by CNPq Centro-Oeste (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Address to: Dr. Christian Luz. Universidade Federal de Goiás, Caixa Postal 131, 74001-970 Goiânia, GO.
Tel: 55 62 209-6113, Fax: 55 62 521-1839.

e-mail: wolf@iptsp.ufg.br

Recebido para publicação em 30/6/2003

Fungal emergence of *Evlachovaea* sp on cadavers and external conidiogenesis were examined daily.

Most triatomine species tested were found susceptible to the *Evlachovaea* sp isolate at RH>98%. Susceptibility of insects was clearly influenced by humidity. At RH 75% mortality was distinctly reduced for all species. Results showed a general relationship between dosage and fungal activity against insects. This was also observed for *T. infestans*³. First insects of most triatomine species succumbed to the fungus 5-7 days after application of $\geq 3.3 \times 10^7$ conidia/ml independently of humidity tested. Mortality of *T. vitticeps* and *T. delpontei* initiated after 8 and 9 days incubation at RH>98%, respectively, and the first dead N3 of *T. picturata* exposed to RH 75% were found 12 days after treatment. Total mortality was observed at the highest doses (3.3x108 and 109 conidia/ml) and humidity close to saturation, except for T. vitticeps, T. picturata and T. sordida which had mortality rates of 10%, 60% and 80%, respectively, 20 days after exposure at RH>98%. Values of LC_{50} , and LC_{90} are

presented in Table 1. LC_{50} , 15 days after incubation at RH>98%, varied from 3.18x10³ CFU/cm² (R. neglectus) to 4.34x10⁵ CFU/cm² (T. sordida). At RH 75% only T. herreri (1.37x10⁵ CFU/cm²) and T. ecuadoriensis (3.11x10⁵ CFU/cm²) presented sufficient mortality to calculate the LC_{50} . After 20 days incubation at humidity close to saturation mortality of T. delpontei, T. neglectus, T. nasutus and T. nasutus were too high to calculate LC_{50} and varied between 2.93x10³ CFU/cm² (T. prolixus) and 1.44x10⁵ CFU/cm² (T. prolixus) and 1.44x10⁵ CFU/cm² (T. proturata) for the other species. At RH 75% LC_{50} 20 days after incubation was 1.12x10⁵ CFU/cm², 1.68x10⁵ CFU/cm² and 3.71x10⁵ CFU/cm² for T. herreri, T. ecuadoriensis and T. maximus, respectively (Table 1). Control mortality at both humidities was ≤10% during the assay, irrespective of the species.

Among all cadavers regardless of triatomine species, humidity or dose tested, 50.8% of the cadavers showed outgrowth of *Evlachovaea* sp only, 18.7% were found with mixed development of *Evlachovaea* sp and other saprophytic fungi,

Table 1 - Lethal concentrations (IC_{50} and IC_{90}) (CFU/cm²) and respective confidence intervals (95% C.I.) of Evlachovaea sp. calculated for triatomine third instar nymphs, 15 and 20 days after exposure at 75% and >98% relative humidity and 25°C'.

Species	Humidity (%)	Time after inoculation (days)			
		15		20	
		LC ₅₀ (CFU x 10 ⁵ /c	LC ₉₀ cm²) (95% C.I.)	LC ₅₀ (CFU x 10 ⁵ /cr	LC ₉₀ n ²) (95% C.I.)
Triatoma delpontei	75	*	*	*	*
	>98	$0.20^{a,b} (0.05 - 0.55)$	5.02 ^{b,c} (1.36-402.0)	**	**
Triatoma lecticularia	75	*	*	*	*
	>98	$0.89^{\mathrm{b,c}} (0.32\text{-}2.28)$	$1.54^{b,c} (1.07-2.61x10^4)$	0.20 c,d (0.12-1.06)	0.52 ^{a,b} (0.27-279.0)
Triatoma picturata	75	*	*	*	*
	>98	1.66° (0.84-8.30)	$9.90^{b,c} (3.27-796.0)$	1.44 d(0.74-5.73)	8.44 ^{a,b} (2.93-290.0)
Triatoma sordida	75	*	*	*	*
	>98	4.34° (1.74-30)	67.40° (13.80-6.91x10³)	1.08 d(0.60-2.69)	6.97 ^{a,b} (2.79-51.20)
Triatoma vitticeps	75	*	*	*	*
	>98	*	*	*	*
Panstrongylus herreri	75	1.37° (0.69-5.26)	8.77 ^{b,c} (2.95-235.0)	$1.12^{d} (0.51-5.36)$	12.3 ^{a,b} (3.21-682.0)
	>98	$0.06^a(0.02\text{-}0.13)$	$0.63^{a,b} (0.28-3.89)$	$0.05^{a,b} (0.02 \text{-} 0.09)$	$0.27^{a} (0.13-1.64)$
Rhodnius ecuadoriensis	75	3.11° (1.29-27.6)	59,30° (11,0-3.4x10 ⁴)	$1.68^{d} (0.70 - 6.66)$	33.50 ^{a,b} (7.85-429.0)
	>98	$0.33^{a,b} (0.18-0.55)$	$0.93^{\rm b}(0.56\text{-}4.62)$	$0.13^{ m b.c} (0.07 \text{-} 0.21)$	$0.37^{a} (0.22-1.38)$
Rhodnius nasutus	75	*	*	*	*
	>98	$0.04^{a} (0.02 - 0.12)$	$0.64^{a,b}(0.22-4.45)$	**	**
Rhodnius neglectus	75	*	*	*	*
	>98	$0.03^a (0.01 \text{-} 0.06)$	0.11 ^a (0.06-0.55)	**	**
RRhodnius prolixus	75	*	*	*	*
	>98	$0.06^a(0.01\text{-}0.19)$	$0.57^{a,b}(0.19-6.34)$	$0.03^a (0.01 \text{-} 0.05)$	$0.08^a (0.05\text{-}11.1)$
RRhodnius robustus	75	*	*	*	*
	>98	0.35 ^b (0.22-0.58)	0.78 a,b (0.5-2.76)	$0.22^{\mathrm{b,c}} (0.13 \text{-} 0.44)$	$0.38^a (0.26\text{-}15.1)$
Dipetalogaster maximus	75	*	*	$3.71^d (1.02 - 6.59 \times 10^2)$	1.68x10 ^{2b} (17.0-10 ¹⁶)
	>98	0.09a (0.03-0.19)	0.94 a,b (0.43-4.10)	**	**

 $^{^1}$ five ml suspended conidia at six doses between $3.3x10^6$ and 10^9 conidia/ml, corresponding to between $2.4x10^3$ and $8.0x10^5$ CFU (colony forming unit)/cm 2 treated surface, were applied on 10 recently molted and unfed individuals each using a Potter spray tower. (*) cumulative mortality insufficient, (**) too high to calculate $LC_{50/90}$. Values followed by different letters (a, b, c, d) are significantly different (P < 0.05).

25% with unidentified saprophytic fungi, and 5.5% showed no external fungi. Results underline the need to study entomopathogenic fungi for control of triatomine bugs.

ACKNOWLEDGEMENTS

Authors thank Carmeci N Elias for technical support, and Richard A Humber for the critical review of the manuscript.

REFERENCES

 Borisov BA, Tarasov KL. Notes on biodiversity of causal agents of invertebrate mycoses in Adjaria (southwestern Georgia). I. Evlachovaea kintrischica

- gen et sp. nov., 1999. (Hyphomycetes) from Kintrishi reservation. Micologiya i Fitopatologiya 33: 248-256.
- Lecuona RE, Edelstein JD, Berretta MF, Rossa FR, Argas JA. Evaluation of Beauveria bassiana (Hyphomycetes) strains as potential agents for control of Triatoma infestans (Hemiptera: Reduviidae). Journal of Medical Entomology 38: 172-179, 2001.
- Luz C, Rocha LFN, Humber RA. Record of Evlachovaea sp on Triatoma sordida in the State of Goiás, Brazil, and its activity against Triatoma infestans. Journal of Medical Entomology 40:451-454, 2003.
- Luz C, Tigano MS, Silva IG, Cordeiro CMT, Aljanabi SM. Selection of *Beauveria bassiana* and *Metarhizium anisopliae* to control *Triatoma infestans*. Memórias do Instituto Oswaldo Cruz 93: 839-846, 1998.
- Parameswaran G, Sankaran T. Record of *Beauveria bassiana* (Bals.) Vuill. on *Linshcosteus* sp. (Hemiptera: Reduviidae: Triatominae) in India. Journal of Entomological Research 1: 113-114, 1979.