
749

Revista da Sociedade Brasileira de Medicina Tropical 44(6):749-754, nov-dez, 2011

INTRODUCTION

Article/Artigo

1. Departamento de Medicina Social, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 
Ribeirão Preto, SP. 2. Departamento de Matemática, Estatística e Computação, Faculdade de Ciências e 
Tecnologia, Universidade Estadual Paulista, Presidente Prudente, SP.
Address to: Prof. Edson Zangiacomi Martinez. Deptº de Medicina Social/FMRP/USP. Av. Bandeirantes 3900, 
14049-900 Ribeirão Preto, SP, Brazil.
Phone: 55 16 3602-2569 
e-mail: edson@fmrp.usp.br
Received in 11/02/2011
Accepted in 28/07/2011

Use of Poisson spatiotemporal regression models for the Brazilian 
Amazon forest: malaria count data

Uso de modelos Poisson espaço-temporal de regressão para a floresta amazônica brasileira: 
contagem de dados de malária

Jorge Alberto Achcar1,2, Edson Zangiacomi Martinez1, Aparecida Doniseti Pires de Souza2, Vilma Mayumi Tachibana2 
and Edilson Ferreira Flores2

ABSTRACT
Introduction: Malaria is a serious problem in the Brazilian Amazon region, and the detection 
of possible risk factors could be of great interest for public health authorities. The objective of 
this article was to investigate the association between environmental variables and the yearly 
registers of malaria in the Amazon region using Bayesian spatiotemporal methods. Methods: 
We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest 
malaria count for the period from 1999 to 2008. In this study, we included some covariates that 
could be important in the yearly prediction of malaria, such as deforestation rate. We obtained 
the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to 
simulate samples for the joint posterior distribution of interest. The discrimination of different 
models was also discussed. Results: The model proposed here suggests that deforestation rate, 
the number of inhabitants per km2, and the human development index (HDI) are important 
in the prediction of malaria cases. Conclusions: It is possible to conclude that human 
development, population growth, deforestation, and their associated ecological alterations are 
conducive to increasing malaria risk. We conclude that the use of Poisson regression models 
that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy 
for modeling malaria counts.
Keywords: Malaria. Statistics. Deforestation. Environment. Amazon. Bayesian methods.

RESUMO
Introdução: A malaria é uma doença endêmica na região da Amazônia Brasileira, e a detecção 
de possíveis fatores de risco pode ser de grande interesse às autoridades em saúde pública. O 
objetivo deste artigo é investigar a associação entre variáveis ambientais e os registros anuais 
de malária na região amazônica usando métodos bayesianos espaço-temporais. Métodos: 
Utilizaram-se modelos de regressão espaço-temporais de Poisson para analisar os dados anuais 
de contagem de casos de malária entre os anos de 1999 a 2008, considerando a presença de 
alguns fatores como a taxa de desflorestamento. Em uma abordagem bayesiana, as inferências 
foram obtidas por métodos Monte Carlo em cadeias de Markov (MCMC) que simularam 
amostras para a distribuição conjunta a posteriori de interesse. A discriminação de diferentes 
modelos também foi discutida. Resultados: O modelo aqui proposto sugeriu que a taxa de 
desflorestamento, o número de habitants por km2 e o índice de desenvolvimento humano 
(IDH) são importantes para a predição de casos de malária. Conclusões: É possível concluir 
que o desenvolvimento humano, o crescimento populacional, o desflorestamento e as alterações 
ecológicas associadas a estes fatores estão associados ao aumento do risco de malária. Pode-se 
ainda concluir que o uso de modelos de regressão de Poisson que capturam o efeito temporal 
e espacial em um enfoque bayesiano é uma boa estratégia para modelar dados de contagem 
de malária.
Palavras-chaves: Malária. Estatísticas. Desflorestamento. Meio Ambiente. Amazônia. Métodos 
bayesianos.

Malaria is an endemic disease common in 
tropical and subtropical regions, including parts 
of the Americas, Asia, and Africa, and it is one of 
the most common infectious diseases. Malaria 
causes about 400-900 million cases of fever 
and approximately one to three million deaths 
annually1-2. It is a disease commonly associated with 
poverty. There are over 400 species of the malarial 
parasite (Plasmodium spp.), many of which infect 
different cold- and warm-blooded animals; however, 
only four routinely infect humans (P. falciparum, 
P. vivax, P. malariae, and P. ovale)3, and the two most 
common are P. falciparum and P. vivax4. P. falciparum 
causes the most severe disease and almost all 
fatalities4. Each one of these four malarial parasites 
is transmitted from one person to another by the 
bite of an infected female Anopheles spp. mosquito. 
Ecological alterations can affect the spread of these 
insects and, consequently, the spread of malaria.

Many papers have been introduced in the 
literature on the epidemiology of malaria in different 
forest ecological zones around the world. Dash  
et al.5 introduced a paper on malaria epidemics in 
India, a country with high incidence of the disease. 
They observed that heterogeneity and variability 
exist in the risk of malaria transmission between 
and within the provinces of India because many 
ecotypes/paradigms of malaria are recognized, 
with people living in forest pockets in different 
provinces contributing to morbidity and mortality 
due to malaria. Another study6 considered the use 
of spatiotemporal analytical tools to determine 
the social and environmental drivers of malaria 
risk in Vietnam. The authors analysed malaria data 
on reported P. falciparum and P. vivax infections 
by month and by district. They observed a strong 
temporal and spatial heterogeneity in counts of 
malaria cases and also considered some risk factors, 
such as the district’s population living below the 
poverty line, the percent of districts covered by 
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forest, median elevation, median long-term average precipitation, 
and minimum temperature. Owusu-Agyei et al.7 studied the 
epidemiology of malaria in the forest-savanna zone of Ghana. They 
found that the clinical malaria attack rate and the prevalence of 
malaria in children were very high in spite of a decrease in several 
parts of Africa as a result of control interventions. In another paper8, 
the authors concluded that the dynamics and seasonal abundance 
of malaria vectors in the Kintampo area of Ghana were influenced 
by microecology, rainfall, and temperature patterns. Reid et al.9 
considered the use of Bayesian geostatistical models in mapping the 
malaria risk in Bangladesh. In all these studies, it is important to point 
out that the presence of different socioeconomic factors could have 
had great impact on the spread of malaria during that time. Another 
important point is related to the effect of neighboring regions on 
epidemics of malaria, which could justify the use of a space-time 
framework in these studies.

In Brazil, especially in the Amazon forest region, malaria is still 
a great health concern for health authorities. The prediction and 
characterization of malaria occurrence in an important world region, 
such as the Amazon forest, are important in malaria surveillance and 
control programs, and in understanding why and where resources 
should be redirected to present or reduce the projected increased 
disease occurrence. Different socioeconomic or spatiotemporal 
factors could be associated with the increase in malaria cases, such 
as the number of inhabitants per square kilometer, the proportion 
of urban population, the number of doctors per 10,000 inhabitants, 
and the human development index (HDI). Other factors, such as 
spatial or temporal aspects and deforestation, might be of interest, 
the latter being considered a strong determinant of the increasing 
incidence of malaria10.

In Figure 1, panel a, we have the yearly numbers of malaria fever 
cases per 1,000 inhabitants from 1999 to 2008 in nine provinces 
that belong to the Brazilian Amazon forest region (data source: 
DATASUS, Ministério da Saúde, Brazil). From Figure 1, we observe 
that, despite the Brazilian health authorities’ efforts to control malaria 
fever, there are increasing numbers of malaria in two provinces, 

FIGURE 1 - A) Yearly numbers of malaria per 1,000 inhabitants in the Brazilian provinces in the Amazon forest region.  
B) Deforestation rate in the Brazilian provinces in the Amazon forest region (km2/year). 

Acre
Amazonas
Amapá
Maranhão
Mato Grosso
Pará
Rondônia
Roraima
Tocan�s

Acre
Amazonas
Amapá
Maranhão
Mato Grosso
Pará
Rondônia
Roraima
Tocan�s

140 12,000

10,000

8,000

6,000

4,000

2,000

A B

N
um

be
r 

of
 m

al
ar

ia
 c

as
es

 p
er

 1
,0

00
 in

ha
bi

ta
nt

s

D
ef

or
es

ta
�

on
 ra

te
 (k

m
2/

ye
ar

)120

100

80

60

40

20

0 0

Year Year

1999  2000 2001 2002  2003 2004 2005  2006 2007  2008 1999  2000 2001 2002  2003 2004 2005  2006 2007  2008

Data source: SISMAL (Sistema de Informações de Malária). Data sources: IBGE (Ins�tuto Brasileiro de Geografia e Esta�s�ca) 
and PRODES (Programa de Cálculo do Desflorestamento da Amazônia).

Acre and Rondônia, which have been undergoing great economic 
development in the last years (especially in the period from 1999 to 
2006), resulting in population growth and increasing deforestation to 
create new cattle and agriculture farms. For the other seven provinces 
of the Amazon region, we also observe large numbers of malaria cases.

In this paper, we investigate the association between environmental 
variables and the yearly registers of malaria in the Brazilian Amazon 
region using a Poisson11-12 spatiotemporal model under the Bayesian 
paradigm13-14, with a latent term that captures the spatial effects of 
neighboring provinces and another latent term that captures the 
possible temporal correlation in each province through the years.

Study design

This was an ecological study, with the Brazilian provinces of 
the Amazon region as units of analysis. Data were obtained from 
Sistema de Informações de Malária (SISMAL), Instituto Brasileiro 
de Geografia e Estatística (IBGE), Departamento de Informática 
do Sistema Único de Saúde (DATASUS), and Programa de Cálculo 
do Desflorestamento da Amazônia (PRODES). The study period 
covered the years from 1999 to 2008. A preliminary analysis of this 
data set gave some information on the behavior of the malaria rate 
and allowed us to identify isolated associated risk factors, but the 
proposed statistical model provided a general relationship among the 
malaria incidence rate and some risk factors, the spatial dependence, 
and the longitudinal trend over time.

The statistical model

Let Yi,j be the yearly number of malaria cases for province i in the 
year j, i=1, …, n and j=1, …, T, with a Poisson distribution, given by 

Yi,j | μi,j ~ P(μi,j)			  (1)
where P(μ) denotes a Poisson distribution with parameter μ. 

In connection with the malaria data shown in Figure 1, panel A, 
we consider the following covariates: X1i, denoting the number of 
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TABLE 1 - Covariates for the malaria count data in the Amazon forest region and neighboring structure for the Brazilian 
provinces.

	 		  Doctors		

	 Inhabitants	 Urban population 	 n per 10,000	 HDI	                  	

Province (i)	 n per km2 (X1i)	 % (X2i)	  inhabitants (X3i)	 (X4i)	 n (i)	 Provinces

Acre (1) 	 4.50	 68.4	 7.2	 0.751	 2	 2, 7

Amazonas (2)	 2.10	 76.6	 8.4	 0.780	 5	 1, 7, 5, 6, 8

Amapá (3)	 4.31	 92.0	 6.3	 0.780	 1	 6

Maranhão (4)	 18.62	 68.1	 4.4	 0.683	 2	 6, 9

Mato Grosso (5)	 3.16	 76.8	 9.1	 0.796	 4	 7, 2, 6, 9

Pará (6)	 5.69	 72.5	 7.1	 0.755	 6	 5, 4, 3, 8, 2, 9

Rondônia (7)	 6.57	 66.8	 7.1	 0.776	 3	 1, 2, 5

Roraima (8)	 1.79	 80.3	 8.3	 0.750	 2	 2, 6

Tocantins (9)	 4.79	 71.5	 7.2	 0.756	 3	 5, 6, 4

HDI: human development index. Source: www.portalbrasil.net/brasil.htm/maps. The numbers within parentheses after the names 
of the provinces correspond to their individual labels in the statistical model.

Neighboring structure

inhabitants per km2 (in the year 2004) in province i; X2i, denoting the 
percentage of urban population (in the year 2004) in province i; X3i, 
denoting the number of doctors per 10,000 inhabitants (in the year 
2005) in province i; and X4i, denoting the human development index 
(HDI) (in the year 2005) in province i of the Amazon forest region, 
i=1, …, 9. We also consider the deforestation index for province i in 
the year j as another covariate, denoted by X5ij, i=1,…,9, j=1,…,10 
(corresponding to the years 1999 to 2008). The covariate values are 
introduced in Table 1.

Considering the covariates X1, X2, X3, X4, and X5, let us assume 
the following regression model for the Poisson distribution (1):

log(μi,j)=β0j+bi+Wij+β1j(X1i-X1)+β2j(X2i-X2)
+β3j(X3i-X3)+β2j(X2i-X4)+β5j log(X5ij)		
for i=1, …, 9 (provinces) and j=1, …, 10 (years); Xl, l=1,…, 

4 denotes the sample average for the covariate Xl, that is, n Xl =

           
.   In (2), we observe that β0j, β1j, β2j, β3j, β4j, and β5j are fixed 

effect regression parameters associated with the covariates X1, X2, 
X3, X4, and X5; i=1,…, 9 and j=1, ….,10. bi is a random effect that 
captures the possible correlations among the malaria counts, taking 
into account the region effects of neighboring provinces assumed to 
have a normal CAR structure15-21 model, that is,
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where A*(i) denotes the set of neighbors corresponding 
to province i, n(i) denotes the number elements in A*(i),  
ηi denotes the mean of the neighboring random effects for 
province i, and ζb is an unknown parameter. 

In (2) we also assume a random effect Wij for the 
longitudinal trend specified as a Gaussian process with a 
multivariate normal distribution with a mean vector 10 x 1, 
with all components equal to zero and a 10 x 10 variance-
covariance matrix Σ=[Cov (Wij, Wij*)], with elements given by:
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2
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1* exp, θθ (4)

assuming a fixed value for K. Different fixed values for K can be 
considered, which gives a great flexibility of fit for the data, and θk, k=1, 
2, …, K, is an unknown parameter. Observe that model (4) generalizes 

the longitudinal trend specification 
introduced by Branscum et al.22

For the first stage of the hierar-
chical Bayesian analysis, let us assume 
normal prior distributions βlj ~ N(0,

 a2
lj), l=0,1,2,…,5, j=1,…,10, where 

alj are known hyperparameters. 
Taking large values for alj, we have 
highly dispersed prior distributions 
for the regression parameters. For 
the second stage of the hierarchical 
Bayesian analysis, let us assume 
uniform prior distributions ς b 
~ U(0, c) and θk ~ U(0, dk) for 
k=1, 2, …, K; c and dk are known 
hyperparameters. 

For a hierarchical Bayesian analysis of the model, we consider 
the use of Markov Chain Monte Carlo (MCMC) methods13-14. 
For the model choice, assuming different values for K in (4), we 
use some existing Bayesian model discrimination criteria, one of 
which is given by the Deviance Information Criterion (DIC)23. The 
smaller the DIC, the better the fit of the model for the data. We 
also consider some goodness-of-fit techniques in choosing the best 
model. In this way, we compare the observed data with the fitted or 
estimated posterior means for μij using the simulated Gibbs samples 
for each parameter of the model, given by:

(5)
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where l indexes the model (l=1 for model 1 and l=2 for model 2), 
and μij is the MCMC estimate for E(μij | y, x), i=1, …, 9, j=1, …, 10.

To verify if the covariate deforestation rate and the covariate 
number of inhabitants per km2, percentage of urban population, 
number of doctors per 10,000 inhabitants, and HDI index have some 
significative effects in the yearly counts of malaria in the Brazilian 
provinces of the Amazon forest region, we assume the Poisson 
regression considering two special cases. First, a model defined by (1) 
and (2), not considering the temporal random effect Wij and assuming
that the random effect bi has a normal distribution N(0, σb), where 
σb is an unknown variance; let us denote this as model 1. Second, a 
model defined by (1) and (2), with a normal CAR structure (3) for 
the random effects bi (spatial structure) and a multivariate normal 
distribution with covariance structure (4) for the random effect Wij 
(temporal structure) with K=2 (the neighboring structure is given 
in Table 1); let us denote this as model 2.

For a hierarchical Bayesian analysis of model 1 and model 2, let 
us assume a uniform U(0,1) prior distribution for ςh, where ςh =1/
σb, the normal prior distributions for the regression parameters, 
βlj ~ N(0, alj), l=0, 1, …, 5; j=1, 2, …, 10; and the uniform prior
distributions for  ς

b
 and θk, k=1, 2 with alj =10; b=0, c=1, d1=3, and 

d2=1. Using the WinBUGS software24, we simulate the two models: 
10,000 initial Gibbs samples as a burn-in sample to eliminate the effect 
of the initial values on the Gibbs sampling algorithm. After this burn-
in sample period, we simulate another 1,600 samples, taking every 
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50th sample to have approximately uncorrelated samples for the joint 
posterior distribution of all parameters of the model. Convergence 
of the Gibbs sampling algorithm was observed using plots of the 
simulated time-series samples.

RESULTS

Considering the yearly numbers of malaria cases per 1,000 
inhabitants in the Amazon forest region from 1999 to 2008, we 
observe (Figure 1) that for most of the provinces, there was a 
decrease from 1999 to approximately the year 2002, an increase 
starting in the year 2002 to approximately the year 2005, and a 
decrease after the year 2005.

We also observe that the deforestation rate in the Brazilian 
Amazon forest region presents a behavior similar to the yearly counts 
of malaria cases, that is, an increase from 1999 to 2004 and a decrease 
after 2004 in almost all the provinces (Figure 1, panel B).

Assuming model 1, we have in Table 2 the posterior summaries of 
the parameters that do not include zero in the 95% credible intervals, 
that is, the parameters that have significative effects. From the 
obtained results in Table 2, we can have the following interpretations: 
I) the covariate X1 (number of inhabitants per km2) presents a 
significative effect on the malaria count in the year 2006 (zero is not 
included in the 95% credible interval for β18); II) the covariate X4 
(HDI index) presents a significative effect on the malaria count in 
the years 1999 and 2000 (zero is not included in the 95% credible 

Parameter	 Mean	 Standard deviation	 95% credible interval

Model 1	 		

Intercept, year 2004 (β06)	 2.280	 0.935	 (0.538; 4.172)

Intercept, year 2005 (β07)	 2.763	 0.833	 (1.059; 4.408)

Intercept, year 2006 (β08)	 2.940	 1.004	 (0.893; 4.867)

Intercept, year 2007 (β09)	 2.474	 1.005	 (0.389; 4.431)

Number of inhabitants per km2 , year 2006 (β18)	 -0.591	 0.255	 (-1.033; -0.064)

HDI index, year 1999 (β41)	 -6.397	 2.349	 (-10.980; -1.775)

HDI index, year 2000 (β42)	 -6.843	 2.492	 (-11.790; -2.123)

Deforestation rate, year 1999 (β51)	 0.366	 0.117	 (0.149; 0.594)

Deforestation rate, year 2000 (β52)	 0.441	 0.109	 (0.237; 0.661)

Deforestation rate, year 2001 (β53)	 0.574	 0.129	 (0.332; 0.831)

Deforestation rate, year 2002 (β54)	 0.400	 0.110	 (0.191; 0.620)

Deforestation rate, year 2003 (β55)	 0.383	 0.156	 (0.069; 0.685)

Variance component for the CAR structure (σb)	 3.298	 2.382	 (1.161; 9.673)

Model 2	 		

Intercept, year 2004 (β06)	 2.920	 1.140	 (0.674; 5.290)

Intercept, year 2005 (β07)	 3.140	 1.080	 (0.944; 5.240)

Intercept, year 2006 (β08)	 3.240	 1.240	 (0.692; 5.540)

Intercept, year 2007 (β09)	 2.550	 1.100	 (0.307; 4.640)

Deforestation rate, year 2001 (β53)	 0.388	 0.166	 (0.061; 0.716)

Deforestation rate, year 2002 (β54)	 0.302	 0.150	 (0.001; 0.590)

First variance-covariance parameter (θ1)	 0.703	 0.695	 (0.069; 2.650)

Second variance-covariance parameter (θ2)	 0.150	 0.179	 (0.008; 0.666)

 Variance component for the CAR structure (σb)	 8.320	 9.280	 (1.370; 30.100)

TABLE 2 - Posterior summaries for the parameters (models 1 and 2), where σ
b 

is related to the unstructured
spatial random effects model.

intervals for β41 and β42); and III) the covariate X5 (deforestation rate) 
presents a significative effect on the malaria count in the years 1999, 
2000, 2001, 2002, and 2003 (zero is not included in the 95% credible 
intervals for β51, β52, β53, β54, and β55). These regression parameters 
correspond to the years with larger deforestation rates (Figure 1).

Assuming model 2, we have in Table 2 the posterior summaries of the 
parameters that present some significative effects (zero is not included 
in the 95% credible intervals). From the results in Table 2 (model 2), 
we observe that the covariate X5 (deforestation rate) presents a 
significative effect on the malaria count in the years 2001 and 2002 
(zero is not included in the 95% credible intervals for β53 and β54).

Assuming model 1, we obtain from the WinBUGS output a Monte 
Carlo estimate for DIC given by DIC = 758.994. In this case, we found 
C(1)=308.105 (see equation (5)).

Considering model 2, we obtained DIC = 554.580 and 
C(2)=89.125. That is, model 2 is better fitted to the malaria count 
in the Brazilian Amazon forest region since the estimated DIC and 
the sum of absolute values for the differences between yij and μij give 
smaller values in this model.

It is also interesting to observe that model 2 in the presence 
of a spatiotemporal structure gives a better fit for the data when 
comparing the individual Monte Carlo estimates for the means of 
the Poisson model with the observed malaria data.

Assuming model 2, which gives the best fit for the malaria data 
shown in Figure 1, we have in Figure 2 the different estimates 
for the malaria rates in the Brazilian Amazon forest provinces  
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in the years from 1999 to 2008. From Figure 2, we observe that the 
mean rates for the provinces in the Brazilian Amazon forest region 
increased greatly in the years from 2004 to 2007, especially for the 
provinces of Amazonas, Acre, and Rondônia.

FIGURE 2 - Estimates of the mean malaria rates in the Brazilian provinces in the Amazon forest 
region from 1999 to 2008.

DISCUSSION

Deforestation is associated with loss of biodiversity, the alteration 
of many fundamental aspects of ecosystems, and an increase in the 
prevalence and incidence of many human vector-borne diseases25. 
The year-round high rainfall and temperatures in tropical forests 
are ecological characteristics that favor the development of many 
kinds of mosquitoes that transmit pathogens that cause disease in 
humans26. Thus, the process of clearing forests and the subsequent 
human activities, such as agricultural and hydropower developments, 
have a high influence on the prevalence and incidence of diseases 
such as human malaria27. In a study that examined the ecological 
alteration in the Peruvian Amazon28, it was shown that various 
landscapes and ecological features associated with deforestation 
were positively associated with Anopheles darlingi larval breeding 
sites. This is considered the major South American malaria vector. 
Another study29 showed that in western Kenya, deforested sites 
had higher temperatures and relative humidities, and the overall 
infection rate of Anopheles mosquitoes was increased compared 
with that in forested sites. In addition, the vectorial capacity was 

estimated to be 77.7% higher in the deforested site 
than in the forested site. In 1981, the construction 
of the Tucuruí hydroelectric dam in southeast Pará 
province, Brazil, caused enormous environmental 
changes, deforestation, and human migration to 
the region, and a study30 confirmed the elevation of 
malaria to the epidemic level since then. In a review 
of the literature27, sixty examples of changes in 
anopheline ecology throughout the tropical world 
were identified as a consequence of deforestation 
and agricultural development.

The present study also found that deforestation 
rate is important in the prediction of malaria cases. 
In addition, the Bayesian model here proposed 
suggests that the number of inhabitants per km2 
and the HDI index have some association with the 
number of malaria cases. The growing population 
in the Brazilian Amazon region is associated with 
human migration motivated by new agricultural 
settlements and informal mines (garimpos)31 that 
promote environmental changes and contribute 
to the spread of malaria. The association of malaria 
with the HDI index and poverty was also discussed 
in a recent article32, which argued that the North 
and Northeast regions of Brazil have the lowest HDI 
indexes and the highest rates of neglected tropical 
diseases. In this context, it is important to point out 
that areas with low human development tend to have 
poor access to health care and malaria interventions, 
increasing the vulnerability of the poorest.

In view of the results of the present study and 
other research reported in the literature, it is possible 
to conclude that human development, population 

growth, deforestation, and their associated ecological alterations are 
conducive to increasing malaria risk. The possible environmental 
interventions to reduce malaria risk in the Brazilian Amazon forest 
region include policies that promote sustainable agriculture aimed 
at protecting the rainforest and incentives for forest regeneration.

To map the malaria count data in the Amazon region, the 
provinces are used as geographical limits. Thus, we can note that the 
areas of the provinces are too large, and this is one of the limitations 
of the study. However, more refined data are not available for small 
regions, making it too costly to develop a more detailed analysis of 
the data. In addition, the migration of individuals into or out of the 
provinces is not controlled in the data analysis, which can cause 
ecological bias33. Another possible source of bias is the use of data 
from different systems of information and its subsequent limitations. 
As examples of this, the official records of malaria are likely to be 
biased and underreported given the lack of health facilities in remote 
or poor areas34, and the available deforestation data are subject to a 
possible lack of accuracy.

Finally, it is also possible to conclude that the use of Poisson 
regression models in the presence of random effects that capture the 
spatial and temporal effects under the Bayesian paradigm is a good 
strategy for modeling disease counts in the presence of covariates. The 
use of spatiotemporal models, as introduced in this paper, to analyse 
the malaria data of the Brazilian Amazon forest region is becoming 
popular in the analysis of longitudinal disease count data under 
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the Bayesian paradigm and using MCMC methods35-41. Alternative 
models specifying different forms for the matrix representing the 
relationship between neighboring areas or even the proportion of 
non-registered cases can be used, but the obtained results show that 
the assumed model gives us efficient answers for our goals. The use 
of available software, such as WinBUGS, allows great simplification 
in simulating samples for the joint posterior distribution of interest.
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