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Abstract
Chagas disease (CD) is caused by Trypanosoma Cruzi. 

This parasite can infect several organs of the human body, 
mainly the heart, causing inflammation, fibrosis, arrhythmias, 
and cardiac remodeling, promoting long-term Chronic 
Chagas Cardiomyopathy (CCC). However, little scientific 
evidence has elucidated the molecular mechanisms that 
govern the pathophysiological processes in this disease. 
MicroRNAs (miRNAs) are regulators of post-transcriptional gene 
expression that modulate signaling pathways, participating in 
pathophysiological mechanisms in CD, but the understanding 
of miRNAs in this disease is limited. On the other hand, a 
wide range of scientific evidence shows that physical exercise 
training (PET) modulates the expression of miRNAs by modifying 
different signaling pathways in healthy individuals. Some 
studies also show that PET is beneficial for individuals with CD; 
however, these did not evaluate the miRNA expressions. Thus, 
there is no evidence showing the role of PET in the expression of 
miRNAs in CD. Therefore, this review aimed to identify miRNAs 
expressed in CD that could potentially be modified by PET.

Introduction
Chagas Disease (CD) is a complex disease caused by 

Trypanosoma Cruzi (T. cruzi), a flagellated protozoan parasite, 
infection at the intracellular level.1 In the acute phase, the T. 
cruzi infection generates great tissue inflammation, and there is 
an initial response of the innate immune system in an attempt 
to fight parasitemia.2

However, the infection persists and the adaptive immune 
system activates the T lymphocytes, as well as the auxiliary and 
cytotoxic T cells, which produce cytokines, such as gamma 
interferon (IFN-γ), which can in turn lead to intracellular parasitic 
death by inducing an increase in the reactive oxygen species and 
nitrogen, which are microbicides. This infection also increases 
the expression of the tumor necrosis factor (TNF-α) and specific 
antibodies to combat T. cruzi, which control parasitism, with a 
low-grade infection being established.3

Still in the acute phase of the disease, there is an increase 
in the expression of the vasoactive peptide endothelin-1 (ET-1) 
and cardiotrophin-1 (CT-1), both inducing cardiac hypertrophy, 
as well as an increase in the expression of interleukin-1 beta. (IL-
1β), inducing an inflammatory and pro-hypertrophic response of 
the myocardium, which may initiate cardiac hypertrophy even 
at this stage.4,5

Over the years, parasitemia is reduced; however, parasitic 
antigens persist, generating a diffuse inflammatory infiltrate 
and myocarditis, with the presence of CD4 + and CD8 + T 
lymphocytes and macrophages that continue to express TNF-α 
and IFN-γ.3 IFN-γ has an essential function to control and fight 
against parasites, but it also contributes to cardiac pathogenesis, 
as it damages the myocardium through several molecular 
mechanisms generating myocardial dysfunction.6

Thus, the disease evolves and passes to the chronic phase, 
which can be subdivided into two forms: indeterminate and 
symptomatic. In the indeterminate form, individuals can go for 
years without manifesting any type of more serious symptom, 
where there is a balance between parasitemia and the host’s 
immune system. However, about 30% of these patients develop a 
symptomatic or determined form, which can trigger dysfunctions 
in different organs, including the heart, developing Chronic 
Chagas Cardiomyopathy (CCC) associated with myocarditis and 
cardiac myofibrillary fibrosis, thereby reducing cardiac electrical 
conductivity and generating myocardial remodeling.7

CCC generates inflammation of the cardiac tissue, causing 
focal or diffuse myocarditis, hypertrophy, or dilation of the left 
ventricle and progressive death of some cardiomyocytes, necrosis, 
and collagen deposit,8 thereby increasing the fibrotic tissue, 
leading to a reduction in its contractile capacity. This outcome 
is mostly associated with arrhythmias and heart failure,9 but 
microRNAs (miRNAs) may also participate in these mechanisms. 
In general, the molecular mechanisms that govern these processes 
are poorly understood.

MiRNAs are small RNAs, with only 18 to 25 nucleotides 
in length;10 non-coding proteins; and regulators of post-
transcriptional gene expression with the function of inhibiting 
or degrading its target genes.11,12 It has been shown that several 
types of physical exercise training (PET) modulate the expression 
of miRNAs.13 Nevertheless, articles that analyze the effects of 
PET on the expression of miRNAs in CD are still scarce in the 
literature. Thus, our literature review sought to analyze the 
miRNAs expressed in CD and to compare this finding with the 
miRNAs expressed during or after PET.

Chagas Disease and miRNAs
Few studies in the literature have analyzed the expression 

profile of miRNAs in CD, either in the acute or in the chronic 
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phase, as well as the signaling pathways that are regulated 
by miRNAs in this neglected disease. Therefore, this study 
included all of the studies that evaluated the expression pattern 
of miRNAs in CD (Table 1).

Chagas Disease (acute phase) and miRNAs
During the acute phase of CD, the researchers evaluated 

the expression of miRNAs at 15, 30, and 45 days post-
infection, and identified that miRNAs were differentially 
expressed during parasitemia and that changes in the QT 
interval were upregulated: miR-20, miR-20b, miR-21, miR-
142, miR-146a, miR-146b, miR-155, miR-182, miR-203, and 
miR-222, and downregulated: miR-139, miR-145, miR-149, 
miR-322, and miR-503.14

Another study performed an in silico analysis to identify 
the differential expression of miRNAs and their target genes in 
several biological processes during the acute phase of T. Cruzi 
infection, demonstrating that some miRNAs may be associated 
with the pathological process, such as miR-238-3p, miR-
149-5p, miR-143-3p, miR-145-5p, and miR-486-5p. Other 
miRNAs may be associated with cardiovascular immunity 
and function, for example: miR-10a-5p, miR-16-5p, miR-
30c-5p, miR-34a-5p, miR-138-5p, miR-146a-5p, miR-149, 
miR-191-5p, miR-204-5p, miR-320b and miR-653-3p, as well 
as miRNAs related to the tissue fibrosis process: miR-34a-5p, 
miR-142-3p, miR-200b-3p, and 203a-3p.15

Chagas Disease (chronic phase) and miRNAs
The expression of miRNAs from the cardiac tissue of 

patients with CCC after heart transplantation was analyzed and 
compared with the expression of miRNAs from the cardiac 
tissue of healthy donor individuals. Of all miRNAs analyzed, 
five miRNAs had their expression reduced (miR-1, miR-133a, 
miR-133b, miR-208a, and miR-208b) in patients with CCC 
when compared to the control group.16 By contrast, the 
circulating miR-208a in a plasma sample was overexpressed 
in patients with CD; however, these were in the undetermined 
chronic phase.17

The overexpression of MiR-19a, miR-21, and miR-29b 
has been described in patients with CCC when compared 
to healthy individuals. In fact, in the histological analysis of 

the cardiac tissue of patients in the final stage of CCC, it was 
identified that, in addition to the miRNAs mentioned above, 
the miR-30a and miR-199b are also overexpressed in the CD.18

These studies demonstrate that many miRNAs participate 
in several processes in the CD both in the acute and chronic 
phase; however, further studies are needed to elucidate the 
role of these miRNAs and the signaling pathways they are 
regulating in the CD, including the importance of therapies 
or treatments that can modulate the pattern of expression 
shown in the disease.

Chagas Disease and Physical Exercise Training: miRNAs as 
potential modulators

Several types of PET have been described as modulators of 
the expression of many miRNAs,13 in experimental and clinical 
studies, such as swimming PET,20 marathon,21 running on a 
treadmill,22 and resistance training (RT)23 (Table 2).

Some studies have also reported the importance of 
PET modulating the expression of miRNAs in pathological 
situations, as well as in diabetics,24,25 in obesity,26 after 
myocardial infarction,27 and with heart failure;22 however, 
the role of PET-modulating miRNAs in CD has not yet been 
illustrated. The literature presents only studies that have shown 
beneficial effects of PET on CD, but they did not analyze the 
miRNA profile.

Performing only aerobic PET with moderate intensity 
(50% to 70% of maximum heart rate), three days a week, 
for 30 minutes, in 12 weeks, obtained a significant increase 
in maximum cardiorespiratory and metabolic capacity 
(VO2), increased time in exercise, distance covered, and 
improvement in emotional aspects,28 as well as association 
with an RT program, obtained similar beneficial results.29

In another study, with a similar PET protocol, an 
improvement in functional capacity was also evidenced, 
with an improvement in ejection fraction and respiratory 
strength, improvement in diastolic pressure in the left 
ventricle and in the quality of life of Chagas patients after 
8 months of training.30

A cardiac rehabilitation program consisting of the same 
PET protocol mentioned above, with RT and  stretches, 
adding nutritional guidance and pharmacological counseling 

Table 1 – MicroRNAs in Chagas Disease 

MicroRNAs Source Findings Reference

↓ miR-1, miR-133a, miR-133b, miR-208a, miR-208b Heart samples
Association with connective tissue disorders 

and fibrosis
16

↑ miR-208b Plasma samples
Association with cardiovascular dysfunction 

and myocardial hypertrophy 
17

↑ miR-20, miR-20b, miR-21, miR-142, miR-146a, 
miR-146b, miR-155, miR-182, miR-203, miR-222
↓ miR-139, miR-145, miR-149, miR-322, miR-503, 

Heart samples
Association with heart rate-corrected QT 

(QTc) interval. Ventricular depolarization and 
repolarization.

14

↑ miR-19a, miR-21, miR-29b, miR-30a, miR-199b
Heart samples
and cell model

Association with fibrosis and cardiac 
remodeling

18

↑ miR-16, miR-26b, miR-190b, miR-3586, let-7f-2
↓ miR-190b

H9c2 cells, infected with T. 
Cruzi

Association with cell growth, hypertrophy, 
and cell survival

19
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Table 2 – MicroRNAs in Physical Exercise Training (pre-clinical and clinical studies)

MicroRNAs Target Source Types of Exercises Reference

In vivo experimental models

↑ miR-27a, miR-155
↓ miR-143 ACE, AT1R Heart samples

Wistar-Kyoto rats
Exercise training on treadmill

39

↑ miR-17-3p TIMP-3
PTEN

Heart samples
C57Bl/6 mice

Ramp swimming training model 
Voluntary wheel training

40

↑ miR-222 HIPK1 Heart samples
Ramp swimming model
Voluntary wheel training

41

↑ miR-19b, miR-30e, miR-133b, miR-
208a
↓ miR-99b, miR-100, miR-191a, miR-
22, miR-181a

IGF-1
PI3K/AKT/mTOR

MAPK

Heart samples
Plasma

Wistar albino rats
Swimming training

42

↑ miR-29a, miR-101a
TG-β
fos

COL1A1
Heart samples Intermittent run exercise 43

↑ miR-27a, miR-27b
↓ miR-143

ACE
ACE2

Heart samples
Wistar rats

Swimming training
44

↑ miR-126 PI3KR2
Heart samples

Plasma
Zucker rats

Swimming training
26

↓ miR-214 SERCA2A Heart samples
Wistar rats

Resistance training
23

↑ miR-1
↓ miR-214

NCX
SERCA2A

Heart samples
Wistar rats

Swimming training
27

↑ miR-29c
↓ miR-1, miR-133a, miR133b

COL1A1
COL3A1

Heart samples
Wistar rats

Swimming training
45

↑ miR-126
SPRED1
PI3KR2

Heart samples
Wistar rats

Swimming training
46

↑ miR-21, miR-144, miR-145
↓ miR-124

PTEN
PIK3A
TSC2

Heart samples
Wistar rats

Swimming training
20

↑ miR-336-5p, miR-130b-5p, let7d-3p, 
miR-466c-5p, miR-324-3p, miR-
146b-5p, miR-132-3p, miR-21-5p, 
miR-187-3p, miR-29b-5p, miR-324-5p, 
miR-214-5p, miR-140-5p, miR-152-5p, 
miR-99b-5p, miR-130a-5p, miR-455-
5p, miR-27b-3p, miR-23b-3p, miR-
652-5p, miR-199a-3p, miR-223-5p, 
miR-421-3p, miR-27a-5p, miR-24-5p, 
miR-34a-3p, miR-140-3p, miR-125b-
5p, miR-145a-5p, miR-192-5p, miR-
139-5p, miR-199a-5p, miR-674-3p, 
miR-191-5p, miR-28-3p, miR-195-5p, 
miR-598, miR-429, miR-224, miR-425, 
miR-221
↓ miR-701-5p, miR-220, miR-144-3p, 
miR-694, miR-485-3p, miR-136-5p, 
miR-384-3p, miR-376c-3p, miR-208b-
3p, miR-411-3p, miR-141-5p, miR-
1894-3p, miR-9a, miR-687, miR-451-5p

TNF-α
COL1A1
MMP9
PTEN
AKT1
AMPK
BCL2

Heart samples
Wistar rats

Aerobic run training
22

↑ miR-503, miR-465b-5p, miR-542-3p
↓ miR-652

Heart samples
C57Bl6 mice

Swimming training
47

↓ miR-26b, miR-143

IGF1R
GATA-4
NFAT1C
GSK3B

Heart samples
Balb/c mice

Aerobic metal wheels training
48

↑ miR-21, miR-30b
↓ miR-1

BCL-2
p53

PDCD4
Heart samples Swimming training 49
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MicroRNAs Targets Source Types of Exercises Reference

Clinical studies

↑ miR-126, miR-133 CPK Plasma
Single symptom-limited spiroergometry test

Marathon run
Eccentric resistance exercise

52

↓ miR-486 PTEN Serum Systematic-cycling at 70% VO2max 53

↑ miR-1, miR-126, miR-133a, miR-134, 
miR-146a, miR-208a, miR-499-5p

CPK
NT-proBNP

hsCRP
Plasma

Marathon run
Immediately after run

21

↑ miR-1, miR-133a, miR-206, miR-
208b, miR-499

Plasma
Marathon run

Immediately after run
54

↑ miR-1, miR-133a, miR-206 Plasma
Marathon run

Immediately after run
55

↑ let-7d-3p, let-7f-3p
miR-29a-3p, miR-34a-5p, miR-125b-
5pmiR-132-3p, miR-143-3p,
miR-148a-3p, miR-223-3p, miR-223-5p
miR-424-3p, miR-424-5p

Serum
Marathon run

Immediately after run
56

↑ miR-1, miR-30a, miR-133a
↓ miR-26a, -29b

Plasma
Marathon run

Immediately after run
57

↑ miR-1, miR-133a, miR-206 Plasma
Marathon run

Immediately after run
58

↑ miR-1, miR-133a, miR-133b, miR-
139-5p, miR-143, miR-145, miR-223, 
miR-330-3p, miR-338-3p, miR-424
↓ miR-30b, miR-106a, miR-146, 
miR-151-3p, miR-151-5p, miR-221, 
miR-652, let-7i
↑ miR-103, miR-107
↓ miR-21, miR-25, miR-29b, miR-92a, 
miR-133a,
miR-148a, miR-148b, miR-185,  
miR-342-3p, miR-766, let-7d 

Plasma

Cycle ergometry test
1-3 hs after exercise

Systematic endurance cycle
ergometry training

59

↑ miR-1, miR-133a, miR-133b, miR-
206
miR-485-5p, miR-509-5p, miR-517a
miR-518f, miR-520f, miR-522, miR-
553, miR-888 

Plasma
High intensity interval exercise

Immediately after
60

↑ miR-181b, miR-214
↑ miR-1, miR-133a, miR-133b, miR-
208b

Plasma

Uphill treadmill test (concentric)
Immediately after

Downhill treadmill test (eccentric)
2-6 hs after exercise

61

↑ miR-149
↓ miR-146a, miR-221

Serum
Resistance exercise 
3 days after exercise

62

↑ miR-1, miR-133a, miR-133b, miR-
206, miR-208b, miR-499

Plasma
Systematic resistance training

36-72 hs after training
63

↑ miR-1, miR-133a, miR-133b, miR-
181a
↓ miR-9, miR-23a, miR-23b, miR-31
↑ miR-1, miR-29b

HDAC4
NRF1

Skeletal muscle 
samples

Cycle ergometer, Cycling 64

Continuação

↑ miR-23a, miR-27a
PTEN
Casp7
FoxO1

Skeletal muscle 
samples

Resistance exercise 50

↑ miR-29c
↓ miR-1

COL1A1
COL3A1

Heart samples Swimming training 51

↑ miR-382 Serum, tissues, and 
cell samples

IR mice Aerobic exercise 25
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Continuação

↑ miR-136, miR-200c, miR-376a, miR-
377, miR-499b, miR-558
↓ miR-28, miR-30d, miR-204, miR-330, 
miR-345, miR-375, miR-449c, miR-
483, miR-509, miR-520a, miR-548a, 
miR-628, miR-653, miR-670, miR-889, 
miR-1245a, miR-1270, miR-1280, miR-
1322, miR-3180

Skeletal muscle 
samples

Resistance training 65

↑ miR-451
↓ miR-26a, miR-29a, miR-378

Skeletal muscle 
samples

Resistance exercise 66

↑ miR-125a, miR-145, miR-181b, miR-
193a, miR-197, miR-212, miR-223, 
miR-340, miR-365, miR-485, miR-505, 
miR-520d, miR-629, miR-638, miR-
939, miR-940, miR-1225, miR-1238
↓ let-7i, miR-16, miR-17, miR-18a, 
miR-18b, miR-20a, miR-20b, miR-22, 
miR-93, miR- 96, miR-106a, miR-107, 
miR-126, miR-130a, miR-130b, miR-
151, miR-185, miR-194, miR-363, 
miR-660

Serum Cycle ergometer exercise 67

↑ miR-7, miR-15a, miR-21, miR-26b, 
miR-132, miR-140, miR-181a, miR-
181b, miR-181c, miR-338, miR-363, 
miR-939, miR-940, miR-1225
↓ let-7e, miR-23b, miR-31, miR-99a, 
miR-125a, miR-125b, miR-126, miR-
130a, miR-145, miR-151, miR-199a, 
miR-199b, miR-221, miR-320, miR-
451, miR-486, miR-584, miR-652  

PBMC Cycle ergometer exercise 68

↑ let-7f, miR-21, miR-29c, miR-223
↓ let-7f, miR-21, miR-29c, miR-223

PBMC Running exercise 69

↑ miR-7, miR-29a, miR-29b, miR-29c, 
miR-30e, miR-142, miR-192, miR-338, 
miR-363, miR-590
↓ let-7e, miR-126, miR-130a, miR-151, 
miR-199a, miR-221, miR-223, miR-
326, miR-328, miR-652

PBMC Cycle ergometer exercise 70

↑ miR-15a, miR-29b, miR-29c, miR-
30e, miR-140, miR-324, miR-338, 
miR-362, miR-532, miR-660
↓ miR-23b, miR-130a, miR-151, miR-
199a, miR-221

Serum Cycle ergometer exercise 71

↑ miR-1, miR-486, miR-494 Serum
(Endurance athletes, runners, cyclists, and 

triathletes)
Cardiopulmonary exercise test

72

↑ miR-21, miR-146a, miR-221, miR-
222
↑ miR-20a, miR-21, miR-146a, miR-
221, miR-222

Serum
Rowing training, 5Km, 1-3 h per session, 20-24 

strokes/min)
73

↑ miR-376a
↓ miR-16, miR-27a, miR-28 

Plasma
Aerobic run exercise training

(4 days/week)
74

↑ miR-19a, miR-19b, miR-20a, miR-
26b, miR-143, miR-195

p-AKT
p-S6K1

Serum Resistance exercise 75

↑ miR-222 HIPK1 Plasma Bicycle Ergometry Test 41

↑ miR-221
↓ miR-208b, miR-221, 
miR-21, miR-146a, 
miR-210

Serum Basketball Exercise 76
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for patients with CD, demonstrated an increase in the 
physical and functional capacity, improving the quality of 
life of Chagas patients.31

In another important study, researchers performed PET 
three times a week for six months on Chagas patients. They 
demonstrated that the exercise group increased peak exercise 
oxygen consumption and maximum minute ventilation, 
improving the functional capacity of these patients.32

However, even demonstrating that PET has beneficial 
effects for patients with CD, it is difficult to analyze the 
effects of this type of training at the tissue, cell, and molecular 
levels, given that these studies were performed in humans, 
where biopsies would be necessary. Therefore, to investigate 
the possible mechanisms associated with these beneficial 
effects of PET on CD, some studies have been carried out 
on experimental models of CD in vivo.

Balb/c mice performed PET on a treadmill before being 
infected by T. Cruzi. It was observed that PET reduced the 
peak of parasitemia, concluding that PET can promote 
beneficial changes in the immune system and obtain better 
responses to infections.33

In other studies, the same finding as in the previous study 
was reported; however, they also observed that trained mice 
obtained greater protection from the metabolic activity 
of NADH in myenteric neurons and greater synthesis of 
TNF-α and TGF-β.34 This contributed to the survival and/
or protection of 10.3% of myenteric neurons and their 
immunoreactive production of nitric oxide neuronal 
synthase, in fact, the trained group obtained a greater 
expression of TNF-α during the acute phase of T. Cruzi 
infection, providing benefits to the host and improving the 
immune system to preserve nitrergic neurons.35

In this context, in another study, researchers observed that 
the PET group obtained a greater expression of TNF-α, IFNγ, IL-
6, and chemokines MCP-1 and CX3CL1 during acute infection, 
and also obtained better physical capacity, increased anaerobic 
threshold, increased activity of catalase and superoxide 
dismutase and reduced lipid and protein oxidation in cardiac 
tissue, demonstrating that PET can be an interesting strategy to 
increase the efficiency of endogenous antioxidant mechanisms, 
reducing oxidative damage in these animals.36

Another study showed that PET before infection in Wistar 
rats, increased the time to reach fatigue and anaerobic 
threshold, reduced the expression of TNF-α, CCL-2, MCP-1, and 
CX3CL1, as well as lipid and protein oxidation, and increased 
the expression of IL-10, catalase, and superoxide dismutase, 
indicating that PET induces a protective phenotype, increasing 
the host’s defenses against the parasitic agent, including the 
attenuation of the pathological remodeling process associated 
with musculoskeletal myositis.37

Finally, in another study, Swiss mice were infected by T. Cruzi 
after PET with moderate intensity on a treadmill, being carried 
out for 9 weeks. Researchers identified that PET was able to 
reduce the latent parasitemia of the infected animals they trained, 
corroborating with previous studies, and even obtained less 
production of pro-inflammatory cytokines (TNF-α, INFγ, IL-12) 
and type-1 monocyte chemotactic protein (MCP-1) during the 
first days of infection.38

Thus, it is suggested that PET has a therapeutic potential 
for the prevention and complementary treatment of CD and 
CCC through the modulation of the immune system. However, 
clinical studies lack morphometric, cellular, and molecular 
analyzes, mainly through the analysis of miRNAs for a better 
understanding of the beneficial effects of PET on signaling 
pathways in humans with CD, while preclinical studies, in 
vivo, need studies that evaluate the effects of PET with CD and 
CCC already installed and not only in the pre-infection stage.

Overlaps between miRNAs in CD and PET
Additionally, this study also performed an analysis using 

the Venn diagram to identify miRNAs that were modulated by 
PET in both clinical and pre-clinical studies that can possibly 
modulate miRNAs in CD.

There were only 7 miRNAs expressed in CD, 95 miRNAs 
expressed in PET clinical studies, and 36 miRNAs expressed 
in PET pre-clinical studies. Interestingly, the present study 
identified 7 miRNAs that had modulations in both CD and 
PET clinical studies, 3 common miRNAs modulated in CD 
and PET pre-clinical studies and, mainly, 12 common miRNAs 
modulated in CD, PET clinical studies, and PET pre-clinical 
studies (Figure 1). These 12 miRNAs are: miR-1, miR-21, 
miR-26b, miR-29b, miR-133a, miR-133b, miR-139, miR-145, 
miR-146a, miR-208a, miR-208b, and miR-222.

Nevertheless, of these 12 common miRNAs, only miR-
133b, miR-139, and miR-208a were identified with a 
different expression pattern in CD and PET; all 3 miRNAs 
are downregulated in CD and upregulated in PET (Figure 2).

MiR-133b controls the connective tissue growth factor 
(CTGF)77 and can suppress cardiac remodeling;78 therefore, 
PET can be an excellent alternative to control cardiac 
remodeling, possibly through the modulation of miR-133b 
and the modification of some signaling pathways.

MiR-139 is associated with hypertrophic cardiomyopathy, 
regulating the expression of c-Jun, a transcriptional factor that 
binds in the promoter region of some genes to induce cardiac 
hypertrophy; thus, the overexpression of this miRNA reduces 
the expression of c-Jun, and consequently attenuates the 
pathological cardiac hypertrophy,79 which may be a signaling 
pathway by which PET suppresses the pathological hypertrophy 
in CD, since PET also increases the expression of this miRNA.22,59

In this context, miR-208a regulates the expression of some 
transcriptional factors, such as GATA-4, which is associated 
with the activation of pro-hypertrophic cardiac genes.80 In 
CD, this miRNA is downregulated,16 while PET can increase 
its expression,21,42 thus demonstrating that it may possibly be 
a molecular mechanism by which PET attenuates cardiac 
hypertrophy in this disease.

Conclusions
miRNAs participate in several processes in the pathogenesis 

of CD. Much evidence shows the beneficial effects of PET on 
CD; however, there still are no articles in the literature that 
demonstrate the changes in the molecular mechanisms of 
miRNAs that PET induces in CD. Therefore, further studies 
are necessary to elucidate these mechanisms. 
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