Adubação em "torrão paulista" de Eucalyptus Saligna S M.

RUBENS FOOT GUIMARÃES
Serviço Florestal da Cia. Paulista de Estradas de Ferro

FREDERICO PIMENTEL GOMES

e

EURIPEDES MALAVOLTA

E. S. A. "Luiz de Queiroz"

1 — INTRODUÇÃO

Atualmente está sendo muito usada para produção de mudas de eucaliptos a embalagem individual denominada "torrão paulista". Esta embalagem é constituida por uma mistura em partes iguais, em volume, de terra roxa (ou terra argilosa), terra arenosa e estêrco palhoso. A mistura é umidecida convenientemente e prensada em máquinas adequadas, que produzem torrões sextavados, com as dimensões de 6,5 cm de diâmetro e 13,0 cm de altura, quando sêcos.

Como há dificuldades em se obter estêrco palhoso em quantidades suficientes para produção de mudas nos viveiros, experimentamos a possibilidade de substituí-lo pela adubação mineral. O estêrco palhoso, além de beneficiar a fertilidade do torrão, contribui para sua textura indicada. A fim de não prejudicar essa textura, o estêrco foi substituido por sapé picado.

2 — MATERIAL E MÉTODO

2.1 — Material

O ensaio de adubação em mudas de E. saligna foi realizado no viveiro do Horto de Rio Claro.

Para a produção das mudas foram usadas sementes provenientes de uma única árvore matriz.

Os torrões utilizados no ensaio foram feitos com a mistura de 1/3 de terra roxa, 1/3 de terra arenosa, 1/3 de estêrco palhoso ou sapé. Foram incorporados à mistura os adubos minerais de modo que cada torrão contivesse as seguintes quantidades:

		Pêso em gran	Pêso em gramas por torrão				
Adubos minerais	Do	ose simples	Dose dupla				
	Adubo	Elemento	Adubo	Elemento			
Salitre-do-Chile	0,76 g	0,118 g de N	1,56 g	0,236 g de N			
Superfosfato simples	3,1 g	0,625 g de P ² O ⁵	6,2 g	1,250 g de P ² O ⁵			
Cloreto de potássio	1,0 g	0,625 g de K ² O	2,0 g	1,250 g de K ² O			

O superfosfato simples e o cloreto de potássio foram incorporados ao torrão por ocasião da mistura de terras destinadas à sua confecção. O salitre-do-Chile foi aplicado por irrigação, parceladamente, em 4 vêzes.

2.2 — Método

O experimento foi executado obedecendo ao delinemento fatorial $3 \times 3 \times 3 \times 2$, sendo 2 níveis (0 e 1) para o estêrco, e 3 para os nutrientes minerais.

Cada parcela ficou constituida por 50 torrões e mais a bordadura, com 32 torrões. As parcelas ficaram separadas

entre si por um espaço livre de 25cm.

Cada bloco compunha-se de 54 parcelas, havendo entre êles um caminho livre com 60 cm de largura.

Foram feitas 3 repetições.

Preliminarmente determinou-se o volume de mistura de terras e estêrco, ou sapé picado, necessário para confeccionar 900 torrões. A seguir, foram feitos 18 montes da mistura, 9 dos quais com estêrco palhoso, e os 9 restantes sem estêrco e

com sapé picado.

Em cada monte da mistura foi adicionado o adubo mineral conveniente, de modo a conter, ou o adubo simples, ou as combinações determinadas pelo delineamento. Em virtude do salitre-do-Chile ser aplicado posteriormente, em solução, nas irrigações, foi possível tirar de cada monte de mistura 3 combinações diferentes. Por exemplo, nas combinações em que entram os adubos minerais $P_1 \, K_1$, em mistura contendo estêrco, fez-se um monte da mistura para produzir 900 torrões e foram adicionadas 2.790 gramas de superfosfato simples e mais 900 gramas de cloreto de potássio. Com isso foi obtido o seguinte:

Combinações	Superfosfato	Cloreto de potássio	Número de torrões
$egin{array}{lll} (N_0) & P_1 \ K_1 \ E_1 \ (N_1) & P_1 \ K_1 \ E_1 \ (N_2) & P_1 \ K_1 \ E_1 \ \end{array}$	930 g 930 g 930 g	300 g 300 g 300 g	$3 \times 100 = 300$ $3 \times 100 = 300$ $3 \times 100 = 300$
	2.790 g	900 g	900

Este método foi seguido nos demais montes, variando as

doses e as misturas dos adubos minerais.

Após 3 meses e meio da repicagem das mudas para os torrões, foram medidas, em centímetros, as alturas de 25 mudas do miolo de cada parcela.

3 — ANÁLISE DOS RESULTADOS

As mensurações médias de 25 mudas resultaram nos dados que constam da tabela 1.

TABELA 1

	Torrões sem estêrco						-	Torrões com estêrco		
Doses dos adubos Blocos		Médias	Méd	Médias das alturas		Médias				
			Blocos		dos trata-		Blocos		dos trata- mentos	
			1.0	2.0	3.º mentos		1.0 2.0 3.0			
			cm	cm	cm	cm	cm	cm	cm	cm
	P_0	\mathbf{K}_{0}	30,0	65,8	28,2	41,3	34,5	15,6	51,9	44,0
	i	K ₁	34,6	47,9	21,5	34,6	49,2	57,0	24,7	43,6
		K_2	39,3	33,1	59,8	44,0	15,4	35,4	55,0	35,2
		K ₀	18,5	36,1	61,4	38,6	27,7	53,2	44,9	41,9
N_0	P_1	K ₁	32,5	30,2	41,9	34,8	21,5	39,2	52,0	37,5
		\mathbf{K}_2	43,0	47,0	48,0	46,0	22,3	25,4	54,3	40,6
		\mathbf{K}_0	32,3	34,3	45,6	37,3	52,7	49,2	54,2	52,0
	P_2	K ₁	24,7	35,4	51,9	37,3	69,2	49,9	66,3	61,7
		K ₂	48,3	58,6	29,9	45,6	35,7	36,6	69,1	47,1
		K ₀	53,0	62,1	64,5	59,8	63,6	66,2	71,6	67,1
	Po	K ₁	57,1	64,3	65,4	62,2	78,5	66,0	72,5	72,3
		\mathbf{K}_2	45,2	55,7	68,5	56,4	51,7	66,1	55,9	57,9
		K_0	39,1	45,6	56,5	47,0	66,7	67,5	76,2	70,1
N_1	P ₁	K ₁	36,3	50,1	58,8	48,4	71,1	59,7	82,5	71,1
		K ₂	46,3	53,1	80,0	59,7	47,9	59,6	76,5	61,3
	ĺ	K ₀	. 39,2	58,5	68,8	55,5	58,7	70,8	84,8	71,4
	P_2	K ₁	37,8	53,7	78,1	56,5	61,9	90,6	82,0	78,1
		K ₂	58,7	53,5	64,3	58,8	89,9	64,1	77,4	77,1
	_	$\mathbf{K_0}$	56,6	55,3	66,9	59,6	65,5	66,4	73,9	68,6
	P_0	K ₁	74,9	52,4	67,8	65,0	75,3	64,4	68,3	69,3
		K_2	66,2	63,6	75,2	68,3	60,7	61,7	76,1	66,1
		K ₀	71,9	76,0	75,9	74,5	88,9	75,2	91,9	85,3
N ₂	P ₁	K ₁	43,3	73,1	81,7	66,0	72,3	84,1	79,5	78,6
		K ₂	69,9	61,1	76,7	69,2	92,2	84,4	64,5	80,3
	_ '	K ₀	47,3	66,8	78,0	64,0	81,6	85,7	81,9	83,0
	P ₂	K ₁	75,8	86,3	76,2	79,4	73,3	95,3	67,5	78,7
		K ₂	66,1	71,4	84,0	73,8	80,8	100,2	81,4	87,4

Com os dados da tabela 1, a análise da variância apresenta os seguintes resultados:

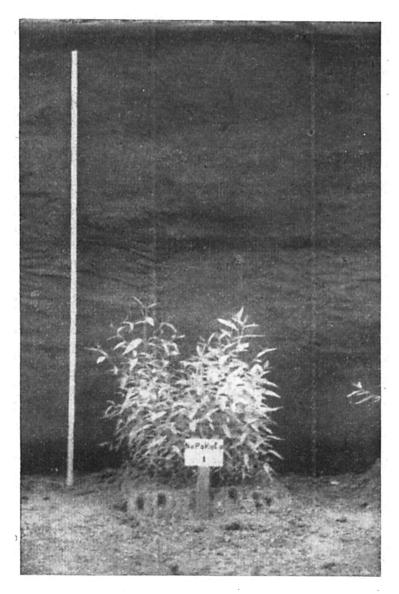
Causas de variação	G.L.	Soma de Quatrados	Quadrado Médio	Erro	Teta
Blocos Tratamentos. Resíduo	2 53 106	3.517,24 36.340,10 12.344,80	1.758,63 685,66 116,46	41,49 26,18 10,79	3,87 *** 2,42 ***
Total	161	52.202,17			

ANÁLISE DA VARIÂNCIA

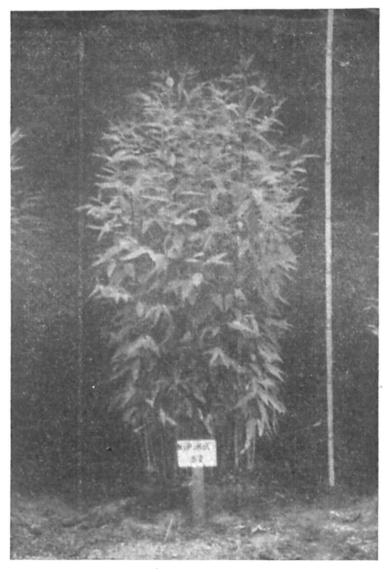
Sendo o efeito dos tratamentos altamente significativo e devido ao delineamento fatorial do experimento, convém modificar a análise da variância, destacando os efeitos principais do estêrco, dos adubos minerais e das interações.

Efetuando os cálculos adequados, esta análise nos mostra os seguintes resultados.

ANÁLISE DA VARI	ÂNCIA MO	DIFICADA
-----------------	----------	----------


Causas de variação	G. L.	Soma de Quadrados	Quadrado Médio	Êrro	Teta
Blocos N linear N quadrático P linear P quadrático K Estêrco (E) N X P N X K N X E P X K P X E K X E Outras interações Tratamentos Resíduo	1 2 1 2 4 1 4 4 2 2 28 (53) 106 2 1	3.517,27 25.560.95 910,36 1.396,08 93,34 21,73 3.295,82 815,72 129,56 508,18 568,08 763,57 623,16 1.653,55 (36.340,10) 12.344,80	1.758,63 25.560,95 910,36 1.396,08 93,34 10,86 3.295,82 203,93 32,39 254,09 142,02 381,79 311,58 59,05	41,93 159,87 30,17 37,36 9,66 3,26 57,40 14,28 5,69 15,94 11,91 19,53 17,65 7,68	3,88*** 14,81*** 2,79* 3,46** 0,89 0,30 5,31*** 1,32 0,52 1,47 1,10 1,81 1,63 0,71
Total	161	52.202,17	116,46	10,79	·

Esta análise nos permite mencionar as seguintes conclusões:


- 1.º) O efeito linear do nitrogênio foi significativo ao nível de 0,1%.
- 2.0) O efeito quadrático do nitrogênio foi significativo ao nível de 5%.
- 3.º) O efeito linear do fósforo foi significativo ao nível de 1%.
- 4.0) O efeito quadrático do fósforo não foi significativo.
- 5.0) O efeito do estêrco foi significativo ao nível de 0.1%.
- 6.0) O potássio não apresentou resposta significativa.
- 7.º) As interações duplas não deram resultados significativos.

No quadro seguinte estão relacionadas as médias dos tratamentos, considerando-se os efeitos dos elementos isoladamente.

Tratamentos:	Alturas médias (cm)
Torrões sem estêrco	$\dots 54,9 \pm 1,2$
Torrões com estêrco (1/3 do volume)	64,0 ± 1,2
Torrões sem nitrogênio	42,4 ± 1,5
Torrões com dose simples de nitrogênio 0,76 g salitre-do-Chile	
Torrões com dose dupla de nitrogênio 1,52 g salitre-do-Chile	
Torrões sem fósforo	56,4 ± 1,5
Torrões com dose simples de fósforo 3,10 g sulfato simples	de 58,4 ± 1,5
Torrões com dose dupla de fósforo 6,20 g de s fato simples	
Torrões sem potássio	58,9 ± 1,5
Torrões com dose simples de potássio 1,0 g cloreto de potássio	
Torrões com dose dupla de potássio 2,0 g cloreto de potássio	

Mudas, com 3 meses e meio de idade, plantadas em torrões sem estêrco, que receberam dose dupla de nitrogênio, fósforo e potássio. Altura média 83,9 cm.

Mudas, com 3 meses e meio de idade, plantadas em torrões com estêrco, que receberem apenas uma dose simples de potássio. Altura média 24,6 cm.

4 — CONCLUSÕES

- 1) Nos viveiros da Cia. Paulista, em Rio Claro, é possível substituir o estêrco palhoso no "torrão paulista" por sapé picado, desde que se juntem adubos minerais nas doses de 0,236 g de N e 0,625 g de P²O⁵. Quanto ao potássio, embora não tenha dado resposta no desenvolvimento das mudas, seria conveniente sua incorporação no torrão, a fim de dar firmeza ao caule das plantas.
- 2) Mesmo nos viveiros onde o estêrco palhoso de curral não constitua problema, convém efetuar a adubação mineral supra, porque se obtêm, em prazo mais curto, mudas vigorosas e com altura adequada para serem plantadas em terreno definitivo. Esta abreviação do tempo na obtenção das mudas representa a compensação econômica que se tem com as despesas da adubação mineral, pois os cuidados de viveiro, principalmente a irrigação, ficam diminuidos.

5 — RESUMO

Num ensaio de adubação com N, P, K e estêrco (E) de mudas de eucalipto ($Eucalyptus\ saligna\ Sm.$) em "torrão paulista" nos viveiros da Cia. Paulista de Estrada de Ferro, em Rio Claro, SP, foi usado um delineamento fatorial de $3\times3\times3\times2$, com resultados estatisticamente significativos para N, P e estêrco.

As alturas médias das mudas, em centímetros, $3\frac{1}{2}$ meses após a repicagem para os torrões, foram as seguintes.

N_0 42,4 \pm 1,5	$P_0 56,4 \pm 1,5$	E_0 54,9 \pm 1,2
$N_1 62,8 \pm 1,5$	$P_1 58,4 \pm 1,5$	$E_1 64,0 \pm 1,2$
$N_2 73.2 \pm 1.5$	P_{2} 63.6 \pm 1.5	

As médias de algumas combinações interessantes de tratamentos são dadas a seguir, em centímetros.

$\mathbf{N}_0 \ \mathbf{P}_0 \ \mathbf{K}_0 \ \mathbf{E}_0$	$41,3 \pm 6,2$
$\mathbf{N}_2 \ \mathbf{P}_0 \ \mathbf{K}_0 \ \mathbf{E}_0$	$59,6 \pm 6,2$
$\mathbf{N}_2 \; \mathbf{P}_2 \; \mathbf{K}_0 \; \mathbf{E}_0$	$64,0 \pm 6,2$
$\mathbf{N}_2\mathbf{P}_2\mathbf{K}_0\mathbf{E}_1$	$83,0 \pm 6,2$
$\mathbf{N_2} \mathbf{P_2} \mathbf{K_2} \mathbf{E_1}$	$87,4 \pm 6,2$

6 — AGRADECIMENTOS

Ao Chefe do Serviço Florestal da Companhia Paulista de Estrada de Ferro, Dr. Armando Navarro Sampaio, nossos agradecimentos pelo apôio dado à realização dêste trabalho.

Aos auxiliares da Secção de Genética dêsse Serviço, Srs. Thiérs Carvalho Araújo e José Zanão, agradecemos a cola-

boração prestada.

7 — SUMMARY

This paper deals with a $3\times3\times3\times2$ factorial experiment with N, P, K, manure, applied to seedlings of *Eucalyptus saligna* Sm., planted in pots of the type known as "torrão paulista". Results were statistically significant for N, P and manure. The average heights of plants, $3\frac{1}{2}$ months after planting in the pots were, in centimeters, the following:

The averages corresponding to some more interesting treatment combinations are given below: