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A Role for Lymphocytes and Cytokines on the Eosinophil
Migration Induced by LPS
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In the present work we review the existing evidence for a LPS-induced cytokine-mediated eosinophil
accumulation in a model of acute inflammation. Intrathoracic administration of LPS into rodents (mice,
rats or guinea pigs) induces a significant increase in the number of eosinophils recovered from the
pleural fluid 24 hr later. This phenomenon is preceded by a neutrophil influx and accompanied by
lymphocyte and monocyte accumulation. The eosinophil accumulation induced by LPS is not affected by
inhibitors of cyclo or lipoxygenase nor by PAF antagonists but can be blocked by dexamethasone or the
protein synthesis inhibitor cycloheximide. Transfer of  cell-free pleural wash from LPS injected rats
(LPS-PW) to naive recipient animals induces a selective eosinophil accumulation within 24 hr. The
eosinophilotactic activity present on the LPS-PW has a molecular weight ranging between 10 and 50
kDa and  its effect is abolished by  trypsin digestion of the pleural wash indicating the proteic nature of
this activity. The production of the eosinophilotactic activity depends on the interaction between mac-
rophages and T-lymphocytes and its effect can not be blocked by anti-IL-5 monoclonal antibodies.
Accumulated evidence suggest that the eosinophil accumulation induced by LPS is a consequence of a
eosinophilotactic cytokine produced through  macrophage and T-cell interactions in the site of a LPS-
induced inflammatory reaction.
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PLEURAL INFLAMMATION INDUCED BY LPS

LPS is classically known as capable of induc-
ing an inflammatory reaction when injected locally
in the tissues. This phenomenon is characterized
by an early neutrophil influx followed by a late
mononuclear cell accumulation (Issekutz et al.
1987). We have previously demonstrated that the
injection of LPS in the pleural cavity of rats, mice
or guinea pigs induces an acute (4 hr) neutrophil
accumulation that can be inhibited by pretreatment
with PAF antagonists. Simultaneously, a decrease
in the number of neutrophils in the bone marrow
and an increase  in blood neutrophils was observed,
indicating that neutrophils were being mobilized
from the bone marrow pool of cells by  LPS stimu-
lation (Bozza et al. 1993b).  In addition, eosino-
phils and mononuclear cells also accumulated in
the pleural cavity of LPS injected animals after 24
hr. The number of those cells remained above con-
trol values for at least 96 hr (Bozza et al. 1991).
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Despite many attempts using different doses of LPS
we could not detect increased vascular permeabil-
ity, i.e. plasma leakage, in any of the time points
analyzed.

It is interesting to point out that until that work,
the ability of LPS in inducing eosinophil accumu-
lation had not been studied thoroughly. Actually,
only  Folkerts et al. (1988) had detected an increase
in eosinophil numbers in the brochoalveolar lav-
age of  LPS stimulated guinea pigs. This fact led
us to further investigate the mechanism by which
LPS induces eosinophil accumulation.

PHARMACOLOGICAL MODULATION OF LPS-IN-
DUCED EOSINOPHIL ACCUMULATION

The eosinophil accumulation induced by LPS
is not a consequence of a direct chemotactic effect
of LPS upon eosinophils since LPS is not able to
induce eosinophil migration in vitro (Bozza et al.
1991). This led us to investigate the involvement
of endogenous mediators that could account for
the eosinophil accumulation observed after LPS
challenge. Several mediators can trigger eosino-
phil accumulation in the course of an acute inflam-
matory response. Among those, PAF, LTB4 (Silva
et al. 1991) and bradykinin (Pasquale et al. 1991)
were shown to induce delayed and long-lasting
eosinophil infiltration in the rat pleural cavity.
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 Nevertheless, none of these mediators seem to
be involved on LPS-induced eosinophil accumu-
lation (Bozza et al. 1993a). Pretreatment with a
cyclooxygenase inhibitor (indomethacin), a dual
cyclo/lipoxygenase (BW755C), a more specific
lipoxygenase inhibitor (BWA4C), PAF receptor
antagonists (PCA 4248 and WEB 2086), a combi-
nation of BWA4C and WEB 2086,  or a bradyki-
nin B2 receptor antagonist (HOE 140)  failed to
diminish the eosinophil influx induced by LPS
(Bozza et al. 1993a; unpublished results). By con-
trast, dexamethasone and the protein synthesis in-
hibitor, cycloheximide, were able to abolish LPS-
induced eosinophil accumulation (Bozza et al.
1993a).

Dexamethasone has different effects that could
explain its inhibition of LPS-induced eosinophil
accumulation. For instance, dexamethasone is able
to induce the synthesis of lipocortins with conse-
quent inhibition of phospholipase A2 and thus in-
hibition of  eicosanoids and PAF synthesis. Nev-
ertheless, in view of the above mentioned results
using selective blockers of eicosanoid synthesis and
PAF receptor, it is unlikely that this action of dex-
amethasone is accounting for the inhibition of eosi-
nophil accumulation. Dexamethasone can also di-
rectly inhibit the transcription of some genes cod-
ing for cytokines such as  GM-CSF and IL-3, both
able to induce eosinophil activation (Owen et al.
1987, Rothenberg et al. 1989). Together with the
results obtained with  the protein synthesis inhibi-
tor cycloheximide, which also inhibited LPS-in-
duced eosinophil accumulation, we can further
suggest that the increase in the number of pleural
eosinophils following LPS stimulation requires the
synthesis of a proteic factor, probably a cytokine.

DETECTION OF EOSINOPHILOTACTIC ACTIVITY IN
THE PLEURAL WASH OF LPS-INJECTED ANIMALS

Based on the results obtained with the pharma-
cological experiments, we aimed to clarify whether
a protein with eosinophilotactic activity has been
produced and released in the inflammatory fluid
of LPS-injected animals. Firstly, we demonstrated
that the cell-free pleural wash of LPS-injected ani-
mals (LPS-PW) is able to induce eosinophil accu-
mulation when injected intrathoracically in recipi-
ent naive animals or in animals pretreated with
dexamethasone or cycloheximide (Bozza et al.
1993a). These results indicate that a factor with
eosinophil chemoattractant activity is  released in
the pleural cavity after LPS stimulation.

 Furthermore, these results also indicate that the
eosinophilotactic activity in the pleural wash is not
the result of LPS contamination since dexametha-
sone and cycloheximide inhibit eosinophil accu-
mulation induced by LPS itself but do not affect

the one induced by the injection of LPS-PW.
In contrast to other known eosinophil acting

cytokines such as IL-3 (Ulich et al. 1989), TNF
(Ulich et al. 1991), IL-8 (Collins et al. 1993) and
IL-5 (Warren & Moore 1988), the eosinophilotactic
activity in the LPS-PW could not be destroyed by
30 min boiling indicating that this activity is heat-
stable. Nevertheless, completely loss of activity was
obtained when LPS-PW was incubated with trypsin
for 30 min at 37°C, adding support to the interpre-
tation that the activity resides on a newly synthe-
sized protein. Ultrafiltration of LPS-PW showed
that this protein has a molecular weight in the range
of 10 to 50 kDa (Bozza et al. 1993a).

It is important to note that, although IL-5 is able
to induce eosinophil accumulation in the pleural
cavity and seems to account for the eosinophilia
observed in allergic inflammatory reactions
(Kaneko et al. 1991, Bozza et al. 1994), incuba-
tion of LPS-PW with anti-IL-5 monoclonal anti-
bodies did not inhibited the eosinophil attractant
activity present in the pleural wash showing that
an eosinophilotactic factor different from IL-5 is
responsible for the activity in the LPS-PW. Fur-
thermore,  semi-purified LPS-PW was unable to
displace the binding of 125I - RANTES to isolated
guinea pigs eosinophils (Bozza et al. unpublished
observations) indicating that the activity in LPS-
PW is  different from the eosinophilotactic
chemokine RANTES as well.  Other eosinophil
attractant chemokines such as MCP-2 (Chang et
al. 1989), MCP-3 (Van Damme et al. 1992), and
eotaxin (Jose et al. 1994) have been identified but
their involvement on LPS-induced eosinophil ac-
cumulation remains to be determined.

CELLULAR SOURCE OF THE EOSINOPHILOTACTIC
ACTIVITY PRESENT IN THE LPS-PW

Cells accumulating in the site of an inflamma-
tory reaction can contribute to its development  by
secreting inflammatory mediators such as bioactive
lipids, peptides, amines and proteins. Therefore,
we hypothesized that one of the resident cells or
cells infiltrating the pleural cavity during the ini-
tial stages of LPS-induced inflammation could be
involved in the production of  the factor respon-
sible for the  late eosinophil accumulation observed.
In this respect, we have shown (Bozza et al. 1994)
that the depletion of neutrophils or platelets by the
use of specific antibodies did not affect the eosi-
nophil influx induced by LPS. Also, the induction
of  mast cell degranulation  by  pre-exposure to
low doses of polymixin B could not interfere with
the phenomenon. It is important to note, that all
those three cell populations are potential sources
of eosinophil chemotactic factors since they are
able to produce and/or secrete IL-8, RANTES and
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ECF-A, respectively (Schwartz 1987, Striter et al.
1990, Kameyoshi et al. 1992).

T-lymphocytes are also another major source
of eosinophil chemoattractant cytokines. Those
cells are generally believed to mediate the eosino-
phil accumulation observed during allergic reac-
tions and parasitic infections through a mechanism
dependent on IL-5 (Spry 1988, Frew et al. 1989,
Iwamoto et al. 1992). To investigate the putative
involvement of lymphocytes on the eosinophil ac-
cumulation triggered by LPS the animals were pre-
treated with cyclosporin A, an inhibitor of T-lym-
phocyte activation (Borel 1989). Under this con-
dition, LPS-induced eosinophil accumulation was
drastically reduced suggesting that lymphocytes
might play at least a partial role in the phenom-
enon. This result was confirmed by the depletion
of T-lymphocytes using an anti-Thy 1.0 mono-
clonal antibody which also decreased LPS-induced
eosinophil accumulation (Bozza et al. 1994). We
have observed that T-lymphocytes of the γδ+-sub-
type infiltrate in the pleural cavity after LPS stimu-
lation whereas CD4+ T-cell and CD8+ T-cell sub-
sets did not. Depletion of γδ+ T-cell subset with a
monoclonal antibody, but not the depletion of CD4+

T-cell or CD8+ T-cell subsets, markedly reduced
the eosinophil accumulation suggesting that γδ+

T-cell is the subset of T-lymphocytes involved on
the eosinophilotactic response to LPS (Penido et
al. 1997).

Macrophages and monocytes express high
amounts of the LPS receptor, CD14, and are  able
to produce and release a variety of cytokines and
chemokines upon LPS stimulation (Rietchel &
Blade 1992, Ziegler-Heitbrock & Ulevitch 1993,
Meheus et al. 1993). These features make resident
macrophages good candidates as source of the
eosinophilotactic activity detected in the LPS-PW.
To investigate this possibility  resident pleural
macrophages were depleted by means of an intra-
pleural injection of liposomes containing
dichloromethylene diphosphonate. We have pre-
viously demonstrated that this procedure was able
to induce a selective depletion of pleural macroph-
ages within five days (Bozza et al. 1994) and has
no effect on other cells at the same time.  In fact,
when the animals were pretreated with liposome-
entrapped dichloromethylene diphosphonate an
inhibition of LPS-induced eosinophil accumula-
tion was observed. This inhibition was not observed
when  LPS-PW, instead of LPS,  was injected into
macrophage-depleted animals, indicating that resi-
dent macrophages are involved in the production
of the eosinophilotactic activity found on LPS-PW
rather then contributing to its effect. Moreover, the
injection of the supernatant recovered from mono-
layers of cultured pleural macrophages stimulated

by LPS was able to induce eosinophil accumula-
tion in naive animals (Bozza et al. 1994) which
reinforce the hypothesis mentioned above.

In summary, the eosinophil accumulation in-
duced by LPS appears to involve the synthesis of
a protein with molecular weight between 10 and
50 kDa. The presence of T-lymphocytes and mac-
rophages seems to be required to the full develop-
ment of the eosinophil response to LPS (Fig.).
Whether this protein is one of the known
eosinophilotactic factors already described or a new
cytokine with eosinophil chemoattractant activity
will await the isolation and sequence determina-
tion of this eosinophilotactic protein.
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 Schematic summary of  the present knowledge about the mecha-
nism of LPS-induced eosinophil accumulation.
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