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The protozoan Trypanosoma cruzi, the etiologi-
cal agent of Chagas disease (Chagas 1909), dis-
plays on its surface various glycoconjugates which
appear to be involved in the recognition and inva-
sion of mammalian host cells, as well as in estab-
lishing and sustaining the chronic infection
(Travassos & Almeida 1993). The majority of these
molecules are attached to the parasite via a post-
translational modification of a glycosylphospha-
tidylinositol (GPI) anchor (Ferguson 1997). The
two most abundant glycoconjugates present in all
T. cruzi developmental stages are the glycoinositol-
phospholipids (GIPLs), of which the major con-
stituent was formerly known as lipopeptido-
phosphoglycan (LPPG) (Lederkremer et al. 1976),
and the mucin-like glycoproteins. The latter were
first observed by Alves and Colli (1975) during
the process of purification of epimastigote glyco-
proteins by gel chromatography. The mucin-like
characteristics of these glycoconjugates was rec-
ognized by Schenkman et al. (1993) including their
high content of hydrophilic amino acids (threonine,
serine, lysine and glycine), O-linked oligosaccha-
rides and sialic acids, typical features that define
mammalian mucins. In T. cruzi, the mucins are the
main acceptors of sialic acid via a trans-sialidase
reaction (Previato et al. 1985, Zingales et al. 1987,
Schenkman et al. 1991, 1993, 1994) which can use
different α2,3-sialylated donors.

T. cruzi mucins migrate in SDS-polyacrylamide
gels as double- or triple bands with apparent mo-
lecular mass of 35-43 kDa, in epimastigote, and
35-50 kDa, in metacyclic trypomastigote  (Previato
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et al. 1985, Yoshida et al. 1989). In this insect-de-
rived infective stage the 35-50 kDa mucin-like gly-
coproteins seem to be implicated in the modula-
tion of the processes of host cell adhesion and in-
vasion (Ruiz et al. 1993, 1998, Yoshida et al. 1997).
In tissue culture-derived trypomastigotes, T. cruzi
mucins have a polydisperse migration of 60-200
kDa  (Schenkman et al. 1991), with better resolu-
tion under special electrophoresis conditions yield-
ing  broad bands at 74, 96, and 120-200 kDa
(Almeida et al. 1993). In recent years, the compo-
sition and chemical structure of T. cruzi “mucins”,
particularly their O-linked oligosaccharides and
GPI-anchors have been investigated (Schenkman
et al. 1993, Previato et al. 1994, 1995, Almeida et
al. 1994b, Serrano et al. 1995, Camargo et al. 1997).
Epimastigote, tissue culture-derived trypo-
mastigote and metacyclic trypomastigote mucins
have oligosaccharide chains internally linked to N-
acetylglucosamine (GlcNAc) units O-glycosid-
ically-linked to threonine, representing approxi-
mately 60% of the total mass of the glycoprotein
(Previato et al. 1994, Almeida et al. 1994b, Serrano
et al. 1995). These oligosaccharides are mostly
branched and contain Galp, Galf, and sialic acid
(SA) units besides O-linked GlcNAc in their com-
position. More recently, Previato et al. (1998) have
characterized the activity of the enzyme uridine
diphospho-N-acetylglucosamine: polypeptide-α-
N-acetylglucosaminyltransferase (O-alpha-
GlcNAc-transferase), which is responsible for the
transfer of GlcNAc to threonine residues of the
mucin polypeptide chain during the biosynthesis
of the O-linked oligosaccharides. This novel en-
zyme presents different catalytic properties when
compared to the mammalian cell-derived O-beta-
GlcNAc transferase (Haltiwanger et al. 1992), and
may represent an important target for the develop-
ment of more specific drugs for the treatment of
Chagas disease. A striking feature of these O-linked
oligosaccharides is the presence of α-galacto-
pyranosyl residues exclusively in the oligosaccha-
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rides isolated from mucins of tissue culture-derived
trypomastigotes. This clearly explains the strong
recognition of mammalian cell-derived trypomas-
tigotes by lytic anti-α-galactosyl antibodies from
patients with chronic Chagas disease (Ch anti-Gal)
(Almeida et al. 1991, 1993, 1994a,b). Metacyclic
trypomastigotes are also recognized and destroyed
by lytic Ch anti-Gal, but the target epitope is a 72
kDa glycoprotein, which has not been structurally
characterized (Travassos et al. 1993).

One of the main differences among mucins
from the various stages resides on the
phosphatidylinositol (PI) moiety of the GPI anchor,
isolated by nitrous deamination. While the
epimastigote mucin GPI contains mainly 1-O-
(C16:0)alkyl-2-O-(C16:0)acylglycerol-3-phospho-
1-myo-inositol, the metacyclic mucin anchor is
predominantly formed by different species of phos-
phoceramide-inositol (~70%), containing
dihydrosphingosine (C18:0) and lignoceric (C24:0)
or palmitic acid (C16:0) (Serrano et al. 1995). Con-
versely, the PI isolated from the GPI anchor of
mammalian cell-derived trypomastigote mucins are
constituted by an alkylacyl-glycerol chain, contain-
ing mainly unsaturated fatty acid (C18:1 or C18:2)
(Camargo et al. 1997).

Regarding the native mucin polypeptide chain,
little is known at present. Available data are de-
rived from the cloning and expression of mucin
genes. T. cruzi mucins are transcribed from  fami-
lies of up to five hundred genes (Di Noia et al.
1998). Several of these genes have recently been
cloned from epimastigote and trypomastigote ge-
nomic and cDNA libraries and had their polypep-
tide sequence deduced (Reyes et al. 1994, Di Noia
et al. 1995, 1996, 1998, Salazar et al. 1996, Freitas-
Junior et al. 1998). From these studies, we can
group the deduced polypeptide sequences into two
major families. Family I polypeptides are formed
by central domains rich in Thr, Lys and Pro, orga-
nized in blocks containing the repetitive motif
(Thr)8Lys(Pro)2. These central blocks are flanked
by a highly variable and short (7-12 amino acid)
N-terminal region and a more conserved C-termi-
nal region. Conversely, Family II polypeptides,
despite showing  N- and C-terminal regions simi-
lar to Family I, they have not the repetitive
(Thr)8Lys(Pro)2 motifs. Furthermore, Family II has
a much lower concentration of Thr residues than
Family I (Di Noia et al. 1996). Recent unpublished
observations from our group indicate that Family
I sequences are expressed in epimastigotes and
metacyclic mucins, whereas Family II are found
in trypomastigote mucins and, possibly, amastigote
mucins. This was assumed by comparing the amino
acid composition of DNA-deduced sequences with
that of native mucins purified from the four T. cruzi

stages. We have also observed that epimastigote
and metacyclic mucins, contrary to trypomastigote
mucins, are almost completely resistant to trypsin
digestion. This is compatible with the existence
of central domains containing the motif
(Thr)8Lys(Pro)2 in mucins from insect-derived
parasite stages. It is well documented in the litera-
ture that a Pro residue, located at the carboxy ter-
minus of a Lys residue, can completely block the
action of trypsin.

Recent studies show that mucins from
trypomastigotes, but not from epimastigotes and
metacyclic forms, can potently induce the synthe-
sis of proinflammatory cytokines (TNF-α, IL-12)
and nitric oxide (NO) by IFN-γ-primed murine
macrophages (Camargo et al. 1997a, 1997b,
Gazzinelli et al. 1997). The strong inducing activ-
ity of the trypomastigote mucins is achieved at
subpicomolar (0.01-0.1 pM) concentrations. Ex-
perimental evidence indicates that the mucin GPI
contains the minimal structure responsible for its
bioactivity. Chemical treatments, such as nitrous
deamination and mild alkaline hydrolysis, under
conditions that exclusively affect the GPI anchor
structure can completely abolish the cytokine/NO
inducing activity of trypomastigote mucins
(Camargo et al. 1997). Recent observations clearly
demonstrate that, indeed, a highly purified
trypomastigote mucin GPI can strongly activate
murine macrophages.  The precise role of GPI-an-
chored trypomastigote mucins in the pathophysi-
ology of experimental and human infection by T.
cruzi is not known, but mucins induce several
cytokines, such as IL-12 and TNF-α, which are
thought to be involved in protection and patho-
physiology of experimental Chagas disease (Brener
& Gazzinelli 1997). We have also provided strong
evidence that cyclic AMP modulates trypomas-
tigote mucin-induced IL-12 production by mac-
rophages indirectly, following the release of IL-
10. In contrast, the effects of cyclic AMP regula-
tion of TNF-α production are probably direct, and
largely independent of IL-10 production (Procópio
et al. 1999).

Another important development in the study of
T. cruzi trypomastigote mucins has been that of
diagnostic application.  Based on the knowledge
that trypanolytic antibodies found in sera from
patients with  chronic Chagas disease react prefer-
entially with trypomastigote mucins, particularly
with epitopes containing terminal α-galacto-
pyranosyl  units (Almeida et al. 1991, 1993,
1994a,b) a diagnostic method has been devised
using chemiluminescent (CL)-ELISA of high sen-
sitivity and specificity (Almeida et al. 1997) which
can also be used in blood bank screening.  Since
lytic antibodies correlate with active infection
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(Krettli & Brener 1982, Galvão et al. 1993) the
CL-ELISA method has also been used to monitor
successful chemotherapy of Chagas disease in chil-
dren from an endemic area (Andrade et al. 1997)
and adults (unpublished). In both cases the CL-
ELISA using purified trypomastigote mucin anti-
gens proved to be a powerful diagnostic procedure
clearly correlating negative titers with parasitologi-
cal cure.

The importance of the mucin glycoproteins in
T. cruzi both as constitutive structural elements in
all developmental stages of the parasite and as in-
ducers of immunological responses which can
deeply affect the progression of Chagas disease is
now well documented, stimulating studies to fur-
ther our knowledge of  their chemical character-
ization and functional properties.
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