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In Plasmodium falciparum, the formation of isopentenyl diphosphate and dimethylallyl diphosphate, central
intermediates in the biosynthesis of isoprenoids, occurs via the methylerythritol phosphate (MEP) pathway.
Fosmidomycin is a specific inhibitor of the second enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phos-
phate reductoisomerase. We analyzed the effect of fosmidomycin on the levels of each intermediate and its
metabolic requirement for the isoprenoid biosynthesis, such as dolichols and ubiquinones, throughout the
intraerythrocytic cycle of P. falciparum. The steady-state RNA levels of the MEP pathway-associated genes were
quantified by real-time polymerase chain reaction and correlated with the related metabolite levels. Our re-
sults indicate that MEP pathway metabolite peak precede maximum transcript abundance during the
intraerythrocytic cycle. Fosmidomycin-treatment resulted in a decrease of the intermediate levels in the MEP
pathway as well as in ubiquinone and dolichol biosynthesis. The MEP pathway associated transcripts were
modestly altered by the drug, indicating that the parasite is not strongly responsive at the transcriptional level.
This is the first study that compares the effect of fosmidomycin on the metabolic and transcript profiles in
P. falciparum, which has only the MEP pathway for isoprenoid biosynthesis.
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Malaria is a leading cause of morbidity and mortality
in the tropical regions, with 300 to 500 million clinical
cases and 1.5 to 2.7 million deaths per year (Snow et al.
2005). With the availability of the complete genome
sequence from Plasmodium falciparum, increasing at-
tention has focused on transcript profiling and proteomic
analyses of the parasite stages responsible for severe
disease and pathogenesis in humans (Florens et al. 2002,
Bozdech et al. 2003, Le Roch et al. 2003, Nirmalan et
al. 2004, Llinas et al. 2006).

Two different biosynthetic routes are used to pro-
duce isopentenyl diphosphate (IPP) and dimethylallyl
diphosphate (DMAPP) for isoprenoid biosynthesis in-
cluding ubiquinones, dolichols and the prenylation of
proteins (Sacchettini & Poulter 1997, Sinensky 2000,
Barkovich & Liao 2001). In mammals, plants (cyto-
plasm), fungi, some bacteria and several protozoa, the
isoprenic units are derived from the classical mevalonate
pathway (Goldstein & Brown 1990). In plastids of plants,
several algae, eubacteria, cyanobacteria and apicomplexa

(apicoplast), the 2C-methyl-D-erythritol-4-phosphate
(MEP) pathway produces IPP and DMAPP (Rohmer
1999). The MEP pathway starts with the condensation
of pyruvate and glyceraldehyde-3-phosphate (GAP),
which yields 1-deoxy-D-xylulose-5-phosphate (DOXP)
catalyzed by DOXP synthase (DXS); for reviews see ref-
erences (Lichtenthaler 1999, Rohmer 1999, Eisenreich
et al. 2004, Rodriguez-Concepcion 2004). DOXP re-
ductoisomerase (DXR) then catalyzes the intramolecu-
lar rearrangement and reduction of DOXP to MEP. The
activity of this enzyme is specifically inhibited by
fosmidomycin (Kuzuyama et al. 1998). Several subse-
quent reaction steps are necessary for the conversion of
MEP to IPP and DMAPP (Fig. 1).

Discovery of the MEP pathway for isoprenoid bio-
synthesis in P. falciparum revealed several antimalarial
drug targets (Jomaa et al. 1999). Jomaa and co-workers
demonstrated that fosmidomycin and its derivate
FR900098, are able to inhibit the growth of P. falciparum
in culture and to cure mice infected with the related
malaria parasite, P. vinckei (Jomaa et al. 1999). Recent
field trials in humans have also demonstrated the effec-
tiveness of fosmidomycin in the treatment of human
malarial infections, but it has to be administered for more
than four days when used alone (Missinou et al. 2002,
Borrmann et al. 2005, 2006). Recently, biochemical and
mass spectrometric analyses revealed that the MEP path-
way is functionally active in all intraerythrocytic stages
of P. falciparum (Cassera et al. 2004).

In this study we characterized the effect of fos-
midomycin on the metabolic levels of each intermedi-
ate of the MEP pathway as well as dolichol and ubiquino-
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nes in ring, trophozoite and schizont stages of P.
falciparum parasites and correlated these to the steady-
state MEP enzyme transcript levels under drug pressure.

MATERIALS AND METHODS

Experimental design - Three characteristic devel-
opmental stages: ring (6 h ± 4 after reinvasion), tropho-
zoite (23 h ± 4 after reinvasion) and schizont (36 h ± 4

after reinvasion) were chosen as representative for the
intraerythrocytic cycle of P. falciparum. Two indepen-
dent experiments using [1-14C]sodium acetate as a meta-
bolic precursor were conducted to monitor each inter-
mediate of the MEP pathway, dolichols and ubiquinones
for each developmental stage. [1-14C]sodium acetate is
well incorporated into the MEP pathway intermediates
in P. falciparum (Cassera et al. 2004) instead of [1-
14C]pyruvic acid or [2-14C]pyruvic acid, which is not in-
corporated by blood-stage P. falciparum (Cranmer et al.
1995, Elliott et al. 2001). Two cycles after sorbitol syn-
chronization, cultures in ring, trophozoite or schizont
stages with approximately 10% parasitemia, untreated
or treated with 1 µM fosmidomycin for 31 h, were la-
beled with 6.25 µCi/ml of [1-14C]sodium acetate (56
mCi/mmol, Amersham Biosciences) in the last 17 h, and
recovered for analysis. Seventeen hours of exposure time
is the minimum time to detect 14C incorporation into
the MEP pathway intermediates (Cassera et al. 2004).
The parasites were isolated by treatment with 0.1%
(w/v) saponin for 5 min, followed by two washes with
phosphate-buffered saline (PBS), pH 7.2, and stored in
liquid N2 for subsequent HPLC analysis. Analyses of me-
tabolites were accomplished by using 1 × 1011 parasites
of each stage obtained from treated or untreated syn-
chronous cultures of P. falciparum. The same numbers
of uninfected erythrocyte were analyzed in parallel. For
transcript analysis, samples of RNA from three indepen-
dent experiments were prepared using the same scheme
of synchronization and treatment for the metabolic la-
beling described above. The IC50 value of fosmidomycin
for the 3D7 strain is 1.25 ± 0.05 µM (Cassera et al. 2004).
All experiments were performed with 1 µM fosmi-
domycin during 48 h because under these conditions only
a small percentage of parasites die and the length of the
developmental cycle are not affected. The overall pro-
tein synthesis was controlled by quantification of TCA
precipitates and by SDS-PAGE analysis at 48 h. Protein
synthesis was not affected in accordance to our earlier
results (Cassera et al. 2004). Microscopic evaluation of
Giemsa-stained thin smears was carried out very care-
fully to ensure that the parasites were at the same stage
of development in control and fosmidomycin-treated
cultures. Percent effect was determined as follows: [100
- (cpm or copy number in treated parasites × 100/cpm
or copy number in untreated parasites)].

Parasite cultures - All experiments were performed
with the P. falciparum 3D7 clone. Parasites were culti-
vated according to the method of Trager and Jensen (1976),
modified by Kimura et al. (1996). Culture synchronization
was carried out by two treatments with 5% (w/v) sorbi-
tol solution in water (Lambros & Vanderberg 1979).

RNA isolation, cDNA synthesis and real-time quan-
titative transcript analysis - Total RNA was prepared
directly from 200 µl of a saponin-treated cell pellet ly-
sed in 2 ml Trizol® (Invitrogen) and RNA was extracted
according to the manufacturer’s instructions. Subsequent
cDNA synthesis for construction of the standard curves
and quantitative real time PCR were performed with 5
µg total RNA from ring, trophozoite or schizont stages

Fig. 1: isoprenoid biosynthesis pathway in Plasmodium falciparum.
∅  indicates the step that is inhibited by fosmidomycin. The following
metabolites and enzymes are shown: PDX1, pyridoxal-5´-phosphate
synthase; GAP, glyceraldehyde-3-phosphate; DOXP, 1-deoxy-D-xylu-
lose-5-phosphate; DXS, DOXP synthase; MEP, 2C-methyl-D-erythritol-
4-phosphate; DXR, DOXP reductoisomerase; CDP-ME, 4-(cytidine-5-
diphospho)-2C-methyl-D-erythritol; MCT, 2C-methyl-D-erythritol-4-(cy-
tidine-5-diphospho) transferase; CDP-MEP, 4-(cytidine-5-diphospho)-2C-
methyl-D-erythritol-2-phosphate; CMK, CDP-ME kinase; MEcPP, 2C-
methyl-D-erythritol-2,4-cyclodiphosphate; MCS, MEcPP synthase;
HMBPP, 4-hydroxy-3-methyl-but-2-enyl pyrophosphate; GcpE, HMBPP
synthase; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphos-
phate; LytB, HMBPP reductase; GPP, geranyl diphosphate; FPP, farnesyl
diphosphate; FPPs, FPP synthase; GGPP, geranylgeranyl diphosphate.
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parasites, from three independent experiments untreated
or treated with 1 µM fosmidomycin for 48 h. All RNAs
were treated with DNAseI (RNAse free, Invitrogen) be-
fore cDNA synthesis, according to the manufacturer’s
instructions. First strand cDNA was then synthesized
using Superscript II reverse transcriptase (Invitrogen) and
a gene-specific primer mix with 2 pmol of each antisense
oligonucleotide as described by the manufacturer. Gene-
specific oligonucleotide primers for P. falciparum genes
DXS, DXR, MCT, CMK, MCS, GcpE, LytB, FPPs, PDX1,
and liver stage antigen-1 (Lsa-1, negative control) were
designed using the Primer Express Software v.1.5 (Ap-
plied Biosystems) (see Table I). PCR products from
cDNA of each gene were cloned using the TOPO TA
cloning kit (Invitrogen) and sequenced. The purified plas-
mids were quantified and linearized with PstI (Invitrogen).
A representative standard curve was constructed for each
gene using serial dilutions of the respective plasmids.
For real-time PCR quantification of each generated
cDNA, SYBR® green system was used (SYBR® green
PCR Master Mix, Applied Biosystems) on a GeneAmp®

5700 Sequence Detection system (Applied Biosystems)
according to the manufacturer’s instructions. Experi-
mental PCR conditions included 300 nM of each primer
and cDNA corresponding to 100 ng converted RNA in
25 µl final volume per reaction. Each point was mea-
sured in triplicate. The real-time PCR consisted of one
cycle of 50°C for 2 min and 95°C for 10 min, followed
by 40 cycles of 95°C for 15 s and 60°C for 1 min. Am-

plification specificity was checked using melting curve
analysis following the manufacturer’s instructions. Data
analysis utilized the GeneAmp 5700® SDS Software (ver-
sion 1.3) to determinate the threshold cycle (Ct) for each
amplified product.

Cell extracts and high-performance liquid chroma-
tography (HPLC) - Each purified parasite stage was
freeze-dried and successively extracted with hexane (3
× 0.5 ml) and ethanol/water (1:1, v/v; 1 × 1 ml at 55ºC
for 1.5 h). Aliquots of each extract were monitored for
radioactivity with a Beckman LS 5000 TD β-counter.
Metabolic analyses by HPLC of DOXP, pyridoxal 5'-
phosphate (PNP), MEP, CDP-ME, CDP-MEP, MEcPP,
dolichols and ubiquinones were carried out as described
previously (Cassera et al. 2004).

RESULTS

Metabolic and transcript profiles of the MEP path-
way during the intraerythrocytic cycle - The metabo-
lite and transcript levels of the intermediates of the MEP
pathway were analyzed to investigate the relationship
between the intermediate levels and the metabolic re-
quirement for the isoprenoid biosynthesis (dolichols and
ubiquinones) throughout the intraerythrocytic cycle of
P. falciparum (Fig. 2). Since GAP is also direct precur-
sor in pyridoxal 5'-phosphate (PNP) biosynthesis (Fig.
1), PNP was included in our analyses (Burns et al. 2005,
Gengenbacher et al. 2006, Zein et al. 2006). The me-
tabolite levels of all analyzed intermediates showed an

TABLE I

Gene-specific oligonucleotides used for the real-time polymerase chain reaction transcript analysis

Amplicon   Length
Gene PlasmoDB ID Primers coordinates (base pairs)

DXS MAL13P1.186 F: 5´-CTTTAAAGGTTATAATTGGAAGAAGTGGA-3´
R: 5´-GTGTTGCCCCATCCTCTCC-3´ 2768 - 2821 3618

DXR PF14_0641 F: 5´-AAAACCTTTAGATTTGGCTCAGGTT-3´
R: 5´-GTTGTTAGCTATTTCATTTGACGCA-3´ 1134 - 1284 1467

MCT PFA0340w F: 5´-ACTGAATTGATCGGTCCTAAGCA-3´
R: 5´-TTATACTGTGGATGATACATGAAAAATGTT-3´ 625 - 775 2205

CMK PFE0150c F: 5´-TGGCTCATCTAATGGTGCTACTG-3´
R: 5´-TCCGTACAATAAGCAAATCCAGAAC-3´ 876 - 1028 1614

MCS PFB0420w F: 5´-TTTTAGGTGCCTTAGGTTCTTTAGACAT-3´
R: 5´-ACATTAATATCCACGTTCCCAATATCA-3´ 386 - 536 723

GcpE PF10_0221 F: 5´-TGCTGACATTGTAAGGTTGACTGTT-3´
R: 5´-ACACATCAGCTGCCATTAAAGC-3´ 492 - 643 2475

LytB PFA0225w F: 5´-AATCAGAAATGTTCCAGCAGTATTACTT-3´
R: 5´-TGGAGGGTTTGTTAATAGGTTGACA-3´ 1356 - 1506 1608

FPPs PF11_0295 F: 5´-TGAGTGGGAAAAAGTGGCTTGTA-3´
R: 5´-CACCGCATTCTTAATTTCAACGT-3´ 192 - 342 1110

PDX1 MAL6P1.215 F: 5´-TTGTTAATTTTGCTGCTGGAGGT-3´
R: 5´-TTGCTAACAGCTGAAACGATTGA-3´ 626 - 776 906

Lsa 1 PF10_0356 F: 5´-CAGAAAATGAACGTGGATATTATATACCA-3´
R: 5´-TGTATATCCCTTCGTCCTTCAACAT-3´ 4055 - 4205 4791
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increase from the ring to the trophozoite stage (Fig. 2A-
F, line). In the schizont stage, levels of PNP, DOXP, and
MEcPP were maintained (Fig. 2A, B and F, line), but the
levels of MEP, CDP-ME and CDP-MEP decreased rela-
tive to the trophozoite stage (Fig. 2C-E, line). Dolichol
levels showed only a slight increase towards the sch-
izont stage but the ubiquinone level was significantly
increased from the ring to the schizont stage (Fig. 2I).

The intermediates HMBPP, IPP, DMAPP and geranyl
pyrophosphate (GPP) were not resolved in the HPLC
system used in our analyses. Nevertheless, the corre-
sponding genes GcpE, LytB, and FPPs were included in
the transcript analysis (Fig. 2G). Quantification and tran-
script analysis of these and the MEP pathway genes re-
vealed different transcript profiles. Interestingly, except
DXS, all genes involved in the MEP pathway (DXR, MCT,
CMK, MCS, GcpE, and LytB) had peak transcript abun-
dance in the schizont stage (Fig. 2B-G, bar). DXS tran-
scripts showed an increase in trophozoites and were main-
tained in schizont stage (Fig. 2B, bar). PDX1 and FPPs tran-
script profiles displayed a maximum in trophozoite (Fig.
2A and G bars). The Lsa-1 gene is normally not expressed
in the erythrocytic cycle and was employed as a negative
control. Lsa-1 transcripts were almost undetectable in tro-
phozoite and schizont stages and the quantity detected in
ring stage was very low (Fig. 2H), possibly due to re-
laxed transcription in ring stage (Blair et al. 2002).

Effect of fosmidomycin on the metabolic and tran-
script profiles - To evaluate if changes in the metabolic
activity of the MEP pathway affect the transcript levels
(Table II), we investigated the effect of fosmidomycin
on metabolite and transcript levels. In general, the ef-
fect of fosmidomycin on the biosynthesis of the MEP
pathway intermediates (DOXP to MEcPP), dolichols and
ubiquinones was mainly observed in ring stages, where
DOXP was accumulated, whereas MEP and downstream
intermediates were observed in decreased levels. The
most substantial effect on the end products of the iso-
prenoid biosynthesis was observed on the ubiquinones.
Similar results, but less evident, were obtained in the
schizont stage. The effect on the steady-state RNA lev-
els of the analyzed genes was greater in the schizont stage,
where the transcripts were accumulated, except MCT. A
slight effect of fosmidomycin in the trophozoite stage
was observed on metabolite and transcript levels. Inter-
estingly, we observed that transcript level of LytB, which
codes for the last enzyme of the MEP pathway, was not
altered. FPPs transcript levels were only affected in the
schizont stage, where 30% increase of transcripts was
detected in fosmidomycin-treated parasites. The level
of the PDX1 transcripts but not of the PNP metabolite
was affected by fosmidomycin treatment in ring-stage
parasites. In trophozoite and schizont stages both PNP
metabolite and PDX1 transcript levels were increased.

Fig. 2: metabolite and transcript profiles of each analyzed intermediate and its metabolizing enzyme during the intraerythrocytic cycle of Plasmodium
falciparum. Panels A to F show the metabolite profile (line) and transcript level (bar) for the first five intermediates of the MEP pathway and PNP.
Panels G and H display the transcript profiles for the GcpE, LytB, FPPs, and Lsa-1 genes. Dolichol and ubiquinone metabolite profiles are shown in
panel I. Ring (R), trophozoite (T) and schizont (S). The absolute transcript quantities per 100 ng converted RNA are indicated. Metabolite quantities
are given in counts per minute (cpm).
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DISCUSSION

This is the first analysis that compares the effect of
fosmidomycin on the metabolic and transcript profiles
in P. falciparum, which has only the MEP pathway for
IPP and DMAPP biosynthesis. A combined analysis of
metabolic and transcript profiles may be a useful proce-
dure for the identification of candidate enzymes as new
drug targets (Urbanczyk-Wochniak et al. 2003).

Following the discovery of the MEP pathway, sev-
eral studies have been conducted to understand the regu-
lation of this metabolic route. Fruit development in the
tomato has been widely used as a system for these stud-
ies due to the observation that a significant increase in
the supply of isoprenoid precursors is required to per-
mit the massive accumulation of carotenoids that takes
place during ripening. In this process, MEP-pathway key
enzyme transcripts are accumulated; meanwhile, the tran-
script levels of the other MEP enzymes remain unchanged
(Lois et al. 2000, Rodriguez-Concepcion et al. 2001,
2003, Botella-Pavia et al. 2004). Despite the differences,
P. falciparum intraerythrocytic development may be
compared with tomato fruit ripening, since malaria para-
sites showed an increased biosynthesis of isoprenoids
towards the end of schizogony (Fig. 2I). Therefore, us-
ing an approach similar to employed monitoring caro-
tenoid synthesis during the fruit development in the to-
mato, we chose ubiquinones as the biological marker of
isoprenoid precursor requirement from the MEP path-
way in P. falciparum. Importantly, the comparative study
of metabolite biosynthesis was conducted using the same
absolute number of parasites, obtained from highly syn-
chronized stages. In fact, ubiquinone levels were in-
creased at the end of the intraerythrocytic cycle when
the parasite is preparing for schizogony. Dolichol, the
other isoprenoid studied herein, did not show signifi-
cant variation in its levels during the intraerythrocytic
cycle of the parasite, and its overall quantity detected
was very low (Fig. 2I). This was expected because the

main function of dolichols, as dolichyl phosphate, is their
participation in glycoprotein synthesis in the endoplas-
mic reticulum, where the dolichol carrier is recycled
(Chojnacki & Dallner 1988, Burda & Aebi 1999).

In this framework, the metabolite levels of most of
the intermediates of the MEP pathway showed an increase
in trophozoite and a decrease in schizont stages, when
ubiquinones were accumulated. Interestingly, metabolic
profiles showed that DOXP and CDP-ME were highly
accumulated when compared to the other intermediates,
mainly in the trophozoite and schizont stages (Fig. 2).

We considered that both DOXP and CDP-ME could
act as a metabolite reserve, which might be used in the
schizogony to sustain the high demand of isoprenoids,
and both intermediates might be key metabolites of the
MEP pathway in P. falciparum.

Metabolic results were correlated with the transcript
profiles of genes involved in the MEP pathway. In gen-
eral, transcript profiles of MEP pathway genes as well
as PDX1 and FPPs were similar to the results obtained
by P. falciparum microarray studies (Le Roch et al. 2003,
Llinas et al. 2006), taking in to consideration that the
resolution of quantitative real time PCR is higher than
the microarray technique. All genes involved in the MEP
pathway had maximal transcript quantities in the schizont
stage. Of those, MCT and CMK transcripts were always
the most abundant in all stages (Fig. 2). Maximal tran-
script levels in the schizont stage were concomitant with
an increase in the ubiquinone biosynthesis and a reduc-
tion of the respective MEP pathway intermediate. Sev-
eral studies showed that in tomato fruit ripening the accu-
mulation of carotenoids only requires increased levels of
DXS, DXR, and LytB transcripts (Lois et al. 2000, Rodriguez-
Concepcion et al. 2001, 2003, Botella-Pavia et al. 2004).
Interestingly, we observed a positive correlation in P.
falciparum between enhanced isoprenoid biosynthesis
(ubiquinones) and accumulation of transcripts encoding
all enzymes of the MEP pathway except for DXS.

TABLE II

Effect of 1 µM of fosmidomycin on the metabolite and transcript levels of each analyzed intermediate and its respective metabolizing
enzyme at the three characteristic developmental stages of Plasmodium falciparum

Ring (% effect) Trophozoite (% effect) Schizont (% effect)

Intermediate Metabolite Transcript Metabolite Transcript Metabolite Transcript Gene

PNP 0 -45 16 5 28 30 PDX1
DOXP 4 -19 -2 0 -23 50 DXS
MEP -13 0 0 -17 -15 16 DXR
CDP-ME -35 33 -2 10 -26 -5 MCT
CDP-MEP -30 35 0 -5 -7 33 CMK
MEcPP -41 0 -35 19 0 34 MCS
HMBPP – 39 – -3 – 31 GcpE
IPP / DMAPP – -7 – 0 – 0 LytB
GPP – 0 – 0 – 30 FPPs
Ubiquinones -24 – -11 – -18 – –
Dolichols -2 – 0 – 0 – –

Positive values indicate increase of the intermediate or transcript levels and negative values indicate reduction of the intermediate or
transcript levels compared to corresponding untreated control samples. A zero indicates no-effect. (–): not analyzed.
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The effect of fosmidomycin treatment was stage-
dependent both at RNA transcripts and metabolite lev-
els. Treatment with 1 µM of fosmidomycin resulted,
mainly in the ring stage, in a decrease in the intermedi-
ate biosynthesis of the MEP pathway as well as in the
ubiquinone and dolichol biosynthesis as compared to
controls. Slight differences were observed using asyn-
chronous cultures in our previous work, predominantly
in schizont stages (Cassera et al. 2004). In fosmido-
mycin-treated parasites, an increase of the transcript lev-
els of the MEP pathway genes was mainly observed in
the schizont stage. The general effect of fosmidomycin
on the transcript levels of the analyzed genes was small
(Table II). This effect is very similar to what was ob-
served in previous studies when parasites were treated
with pyrimethamine (Altschul et al. 1997, Gunasekera
et al. 2003). These findings and our results reinforce
the point of view that drug-target finding in P. falciparum
is very difficult using only transcript-based analysis.

We observed a reduction of the level of PDX1 tran-
scripts by fosmidomycin treatment in ring-stage para-
sites but the PNP metabolite was not affected; while in
trophozoite and schizont stages both PNP metabolite and
PDX1 transcript levels were increased. The substrates
for P. falciparum PDX1 (ribose 5-phosphate and ribu-
lose 5-phosphate and GAP as well as dihydroxyacetone)
and its cytosolic localization have been recently charac-
terized (Gengenbacher et al. 2006). The intermediate
GAP is also substrate of DOXP synthase (Fig. 1). In P.
falciparum, the MEP pathway occurs in the apicoplast,
where the substrates for the DOXP synthesis are imported
from the cytosol as phosphoenolpyruvate and dihydroxy-
acetone phosphate (DHAP). The DHAP is converted into
GAP in a reversible reaction and can be transport outside
of the apicoplast (Ralph et al. 2004 and references herein).
Therefore, changes on the MEP pathway metabolites
could affect the cytoplasmatic GAP and PNP levels.

Since the main effect of fosmidomycin treatment on
the metabolic and transcript profiles was observed at dif-
ferent times during the developmental cycle and the effect
on the transcript levels, we suggest a post-transcriptional
regulation of the MEP pathway in P. falciparum.
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