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The utility of rhesus monkey (Macaca mulatta) and
other non-human primate models for preclinical testing
of Leishmania candidate vaccines - A Review

Gabriel Grimaldi Jr

Laboratério de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, 21045-900 Rio de Janeiro, R}, Brasil

Leishmaniasis causes significant morbidity and mortality, constituting an important global health problem for
which there are few effective drugs. Given the urgent need to identify a safe and effective Leishmania vaccine to help
prevent the two million new cases of human leishmaniasis worldwide each year, all reasonable efforts to achieve this
goal should be made. This includes the use of animal models that are as close to leishmanial infection in humans as
is practical and feasible. Old world monkey species (macaques, baboons, mandrills etc.) have the closest evolution-
ary relatedness to humans among the approachable animal models. The Asian rhesus macaques (Macaca mulatta)
are quite susceptible to leishmanial infection, develop a human-like disease, exhibit antibodies to Leishmania and
parasite-specific T-cell mediated immune responses both in vivo and in vitro, and can be protected effectively by
vaccination. Results from macaque vaccine studies could also prove useful in guiding the design of human vaccine
trials. This review summarizes our current knowledge on this topic and proposes potential approaches that may re-
sult in the more effective use of the macaque model to maximize its potential to help the development of an effective
vaccine for human leishmaniasis.
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Leishmaniasis is one of the major infectious diseases
primarily affecting some of the poorest regions of the
world. The disease is endemic in 88 countries, and the
World Health Organization estimates that it is a threat
to 350 million people with a worldwide prevalence of
12 million cases. Among the annual incidence of 2 mil-
lion new cases of human infections, 0.5 million are life-
threatening visceral leishmaniasis (VL) (www.who.int/
tdr/diseases). Cutaneous leishmaniasis (CL) caused by
highly pathogenic parasites is also characterized by its
chronicity, latency and tendency to metastasize, result-
ing in recurrent skin lesions with the potential for mu-
cosal involvement. It should be noted that an estimated
2.4 million disability adjust life years, in addition to
59,000 lives, were lost to leishmaniasis in 2001 alone
(Davies et al. 2003). Concerns about chemotherapy fail-
ure for both VL and CL are exacerbated by geographical
variation in antimonial treatment regimens, severity of
disease and sensitivity of Leishmania species. In addi-
tion, no proven successful vaccine for controlling hu-
man leishmaniasis is in routine use (Davies et al. 2003,
Kedzierski et al. 2006). Moreover, at least 20 genetically
heterogeneous Leishmania species infect humans and
each of them has a unique epidemiological pattern, such
that two or more parasite species are often sympatric in
sylvan areas of the Neotropics (Grimaldi & Tesh 1993).
These data explain the limited success of current control
strategies based on conventional measures (such as vec-
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tor reduction and elimination of infected reservoir) for
American leishmaniasis.

The solid protective immunity observed in humans
following convalescence to CL formed the basis for
practice of active immunization, beginning with delib-
erate inoculation of virulent organisms (“leishmaniza-
tion”) in centuries past and continuing with vaccination
using a crude antigen preparation obtained from inac-
tivated (“killed”) promastigotes of one or various spe-
cies of Leishmania, formulated either with or without
BCG (bacillus of Calmette and Guerin) as an adjuvant
(Grimaldi 1995). While accumulated experience with
mass vaccination both in the ex-USSR and in Israel has
clearly shown that a virulent strain of Leishmania must
be used for vaccination to succeed (Gunders 1987), sev-
eral Phase III trials testing the potential efficacy of vari-
ous crude vaccine approaches have given conflicting
results. Overall, the results vary from 0-75% efficacy
against CL and little (< 6%) or no protection against VL
(Grimaldi 1995, Coler & Reed 2005). Although host ge-
netics can have dramatic effects on T-cell responses to
existing vaccines (Lambert et al. 2005), several techni-
cal problems (including inadequate information about
the quality, stability and potency of the antigens) may
provide explanation for some of the variation in efficacy
observed in those human vaccine studies. Nevertheless,
most experts believe that a preventive vaccine will be
essential if this disease is ever to be controlled world-
wide (Coler & Reed 2005, Tabbara 2006, Kedzierski et
al. 2006, Palatnik-de-Souza 2008, Silvestre et al. 2008).

The current effort to develop improved vaccines for
leishmaniasis has led to the need for appropriate ani-
mal models in which to test candidate vaccines (Hein &
Griebel 2003). There are reminders that the results from
rodent models do not automatically translate to humans
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(MacGregor et al. 1998). The use of non-human primates
(NHP) as animal models for the study of human diseases
(including immunological studies and drug and vaccine-
development studies against infectious diseases) has
become increasingly important (Campos-Neto et al.
2001, Delgado et al. 2005, Giavedoni 2005, Gibbs et al.
2007, Nikolich-Zugich 2007, Souza-Lemos et al. 2008).
For instance, the SIV-macaque model is widely used for
testing vaccine and therapeutic strategies prior to con-
ducting human clinical trials (Nathansson et al. 1999,
Hu 2005). This review aims to provide insight into the
current knowledge on vaccine studies against leishma-
niasis, with emphasis on studies involving vaccination
and experimental infection in monkeys.

Vaccine studies against leishmaniasis

A major international research effort over the past
20 years has resulted in the identification of various
Leishmania antigen candidates for second and third-
generation vaccines (Coler & Reed 2005, Palatnik-de-
Souza 2008). Information about a multitude of immuni-
zation approaches representing all of the major vaccine
design strategies, including vaccines using live geneti-
cally attenuated parasites, subunit proteins/peptides in
adjuvants, naked DNA and infectious vectored vaccines
expressing genes coding for specific leishmanial an-
tigens and combinations thereof has been given in re-
cent review articles (Coler & Reed 2005, Tabbara 2006,
Kedzierski et al. 2006, Palatnik-de-Souza 2008, Silvestre
et al. 2008). Many of these vaccines have been tested for
immunogenicity and protective efficacy in a variety of
experimental models (such as inbred laboratory rodents,
dogs and NHP). Depending on the particular vaccine ap-
proach and animal model used, varying degrees of pro-
tective immunity have been achieved, as determined by
the level of parasite burden in infected sites and/or lesion
size following infectious challenge.

Vaccination strategies are based on the immunology
of Leishmania infection (Vanloubbeeck & Jones 2004,
Von Stebut 2007). On the basis of compelling evidence
that both CD4" (including multifunctional Th1 cells and
central memory CD4" T-cells) and CD8" T-cells are key
players in the immune response to leishmaniasis (Reed
& Scott 2000, Zaph et al. 2004, Darrah et al. 2007), the
scientific community has focused considerable efforts
on the development of prophylactic vaccines that elicit
T-cell responses (Rhee et al. 2002, Tapia et al. 2003,
Sharma et al. 2006, Dondji et al. 2008) with the prem-
ise that such interventions will confer protective effects
in these conditions. In this regard, sustained protective
immunity against both murine CL and VL has been
achieved by DNA vaccines encoding antigen candidates
(Gurunathan et al. 2000, Mendez et al. 2001, Campos-
Neto et al. 2002, Zanin et al. 2007, Dondji et al. 2008)
or leishmanial recombinant protein(s) formulated with
improved vaccine adjuvants (Pashine et al. 2005), in-
cluding cytosine phosphate guanosine oligodeoxynucle-
otides, CpG ODN (Rhee et al. 2002, Iborra et al. 2005)
and cationic distearoyl phosphatidylcholine (DSPC)
liposomes (Bhowmick et al. 2007). Of note, long-term
immunity elicited by those vaccines corresponded to,
in addition to the presence of leishmania-specific Thl,

CDB8" T-cells responses (Gurunathan et al. 2000, Rhee et
al. 2002, Sharma et al. 2006). Additionally, heterologous
prime-boost vaccination regimes, such as combining
DNA priming with a live vectored boost (Gonzalo et al.
2002, Ramiro et al. 2003), or two different live vectors to
prime and boost a response (Dondji et al. 2005, Ramos
et al. 2008) have been explored as a means of raising
protective T-cell responses (Hu 2005).

Due to the genetic variability of human T-cell re-
sponses (across HLA haplotypes), T-cell vaccines can
elicit variable protective immunity (Robinson & Amara
2005). A second limitation of T-cell vaccines is the po-
tential for T-cells to become exhausted by high levels of
persisting antigens (Kostense et al. 2002). Another chal-
lenge is the ability of leishmanial parasites to modulate
their antigens to evade immune responses (Vanloubbeeck
& Jones 2004). Therefore, a successful DNA or subunit
protein-based vaccine will likely require a cocktail of
proven immunogens. Accordingly, there is increasing
emphasis on strategies for combining protective anti-
gen candidates in the same regimen (Campos-Neto et al.
2002, Skeiky et al. 2002, Iborra et al. 2004, Zadeh-Vakili
et al. 2004, Moreno et al. 2007, Rodriguez-Cortés et al.
2007, Zanin et al. 2007). It should be noted that a triple
fusion protein vaccine (termed Leish-111f-MPL®-SE),
consisting of the T-cell adjuvant antigens thiol-specific
antioxidant, Leishmania major stress-inducible protein
1 and Leishmania elongation initiation factor formulated
in monophosphoryl lipid A plus squalene, which confers
protection in the mouse model against L. major, Leish-
mania amazonensis (Coler & Reed 2005) and Leishma-
nia infantum infections (Coler et al. 2007) is now within
reach. Whether prophylactic immunization using this
vaccine can achieve similar levels of immunity against
all parasite species that cause disease in genetically di-
verse human subjects (who also may differ significantly
in their nutritional status and previous immunological
experience) has yet to be determined.

Additionally, the potential efficacy of the Leish-111{/
GM-CSF adjuvant vaccine in a post-exposure paradigm
is currently being tested in cases of drug-refractory dis-
ease with encouraging results (Badaré et al. 2006). On
the other hand, the potential for immunomodulatory fac-
tors of sandfly saliva to serve as vaccine targets to prevent
pathogen transmission (Titus et al. 2006) has received in-
creased attention by investigators. In this regard, two can-
didates are the Lutzomyia longipalpis salivary gland pro-
tein maxadilan (Brodie et al. 2007) and the recombinant
protein SP15; a vaccine composed of the latter antigen
confers protection in the mouse model against L. major
challenge infection (Valenzuela et al. 2001).

Natural and experimental leishmanial infections
in NHP

Table I summarizes the published studies on natural
leishmanial infections in NHP. At least four species of
Neotropical monkeys are susceptible to natural infection
with human pathogenic Leishmania (Viannia) species
(Herrer et al. 1973, Lainson et al. 1988, 1989). In contrast,
only one species of old world monkeys was found to be
naturally infected with L. major (Binhazim et al. 1987).
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TABLE I

Natural leishmanial infections occurring in Neotropical and old world monkeys

Primate species Leishmania species

Geographic origin References

Aotus trivirgatus L. braziliensis s.1.

Saguinus geoffroyi L. braziliensis s.1.
Cebus apella L. shawi
Chiropotes satanus L. shawi
Cercopithecus aethiops L. major

Panama Herrer et al. (1973)

Panama Herrer et al. (1973)
Brazil Lainson et al. (1988, 1989)
Brazil Lainson et al. (1988, 1989)
Kenya Binhazim et al. (1987)

Monkeys have varying degrees of susceptibility to
leishmanial parasites and the specific disease course de-
pends on the challenge parasite (Amaral et al. 1996, 2001,
Teva et al. 2003), host species or individual (Dennis et al.
1986, Porrozzi et al. 2006) challenge dose and route of
exposure (Lujan et al. 1986a, Amaral et al. 1996). More-
over, sand fly saliva immunomodulators are known to
exacerbate leishmanial infection in rodents (Lima & Ti-
tus 1996). Accordingly, when rhesus macaques are in-
fected with L. major transmitted by Phlebotomus papa-
tasi (Probst et al. 2001), they developed skin lesions that
lasted longer (12-28 weeks post-infection) than typical
infections (11 weeks) induced by needle inoculation with
larger numbers (1 x 107) of L. major culture metacyclics
(Amaral et al. 2001).

Table II summarizes the essential features of the
published studies on experimental infection of NHP by
various Leishmania species. Different NHP species have
become useful in studying the biology of infection and
in dissecting the host response to these parasites. Those
reported as being highly susceptible to Leishmania don-
ovani complex parasites include the Neotropical simians
Aotus trivirgatus (Chapman et al. 1981, Broderson et
al. 1986), Saimiri sciureus (Chapman & Hanson 1981,
Dennis et al. 1985, 1986) and Callithrix jacchus jacchus
(Marsden et al. 1981). All of these species have since
been used as NHP models of VL for anti-leishmanial
chemotherapy studies (Dietze et al. 1985, Madindou et al.
1985, Berman et al. 1986). Conversely, East African pri-
mates such as Sykes monkeys (Cercopithecus mitis) and
baboons (Papio cynocephalus) all supported low-grade
L. donovani infections for periods ranging between 4-8
months and subsequently showed evidence of self-cure
(Githure et al. 1986). Furthermore, disease mimicking
human VL was established in langur monkeys (Presby-
tis entellus) (Dube et al. 1999), vervet monkeys (Cerco-
pithecus aethiops) (Binhazim et al. 1993, Gicheru et al.
1995) and macaques (Macaca mulatta) (Porrozzi et al.
2006). The L. donovani-langur monkey model has also
been explored to assess different vaccine formulations
against VL (Dube et al. 1998, Misra et al. 2001).

Consistent with documented cases of human CL
caused by L. major, experimental infection in macaques
induced by the same parasite species causes a self-lim-
iting CL of moderate severity (Fig. 1), which resolves
within three months (Fig. 2) and provides the most ethi-
cally acceptable model for vaccine testing (Amaral et al.

2001, 2002, Campos-Neto et al. 2001). When infected
with L. amazonensis, macaques developed greater lesion
size with longer duration (Amaral et al. 1996). In both
experiments, active skin lesions contained amastigotes
with a mononuclear infiltrate of macrophages, plasma
cells and lymphocytes and formation of tuberculoid-
type granulomas. In L. amazonensis-infected macaques
it was demonstrated that CD4"/CD8" T-cell ratios fa-
vour CD8" cells in both active and healing skin lesions
(Amaral et al. 2000). A more marked variation in the
clinical course of infection was found when groups of
macaques were inoculated with different Leishmania
braziliensis strains (Teva et al. 2003, Souza-Lemos et
al. 2008). The inocula produced lesions of variable se-
verity, ranging from localized self-healing CL to non-
healing disease (Figs 3A, C). Pathological findings
included a typical cell-mediated immunity-induced
granulomatous reaction (Fig. 3D), which consisted of
all cell types found within human granulomas, includ-
ing the presence of both IFN-y- or TNF-a-producing
CD4" and CDS8" T-cells, as well as IL-10-producing
CD4°CD25" T-cells (Souza-Lemos et al. 2008). While
several groups have described that ML (mucosa lesions)
has not been observed in Neotropical monkey models
of CL (Lainson & Shaw 1977, Lujan et al. 1986a, 1990,
Cuba Cuba et al. 1990), in our own studies (Teva et
al. 2003, G Grimaldi Jr, unpublished data) two of 30
(6.7%) L. braziliensis-infected macaques developed
nasal ML (Fig. 3C). In the original model description
(Marques da Cunha 1944), ML was observed in two of
seven (28.5%) monkeys infected with L. braziliensis. Of
note, therapeutic responses of L. braziliensis-infected
macaques to the reference drug N-methylglucamine an-
timoniate (Glucantime®) were consistent with those re-
ported in human disease (Teva et al. 2005).

Contrary to the traditional belief that human self-res-
olution of CL confers life-long immunity against further
infection by the same parasite (Gunders 1987), Killick-
Kendrick et al. (1985) and Saraiva et al. (1990) provided
evidence that immunity conferred by prior self-resolving
leishmanial infection may not always be complete in hu-
mans. Likewise, in L. amazonensis (Amaral et al. 1996)
or L. major-infected out-bred macaques (Amaral et al.
2001) both the level of resistance and the acquired im-
mune response to subsequent homologous challenge(s)
are variable. The mechanism causing partial protection
in primates is not yet clear, but may be related to differ-
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Fig. 1: clinical outcome of self-healing Leishmania major cutaneous infection in the primate Macaca mulatta. The pictures show the clinical pre-
sentations of primary skin lesions observed in monkeys over time post-infection (p.i). In addition, a depiction of a leishmanin skin test-positive

reaction detected [rhesus monkey (Rh) 13] is illustrated at week 3 p.i.

180 o N25
—g N5
160
— A N15
140 0%
NE 120 ~ A O19
g 100 —0— 041
(]
§ so ~e 02
(0]
)
60
40
20
0 T I T

0 3 5 8 "1 26 27 3
Weeks post infection

Fig. 2: course of skin lesion development in rhesus monkeys following
primary infection with Leishmania major (strain LV39). A standard-
ized inoculum of 1 x 107 promastigotes (Amaral et al. 1996) was in-
jected intradermally into the orbit of the right eye of each monkey. All
of the challenge-infected monkeys developed a typical ulcerated skin
lesion at the site of inoculation (Fig. 1). Skin lesions were measured as
previously described (Teva et al. 2003).

ential performance of memory T cells (Zaph et al. 2004).
In addition, IL-10-producing CD4°CD25'T cells are
known to control acquired immunity in mice (Belkaid et
al. 2002) and macaques (Souza-Lemos et al. 2008) with
leishmanial infections.

The findings from cross-immunity experiments
between different species or strains of Leishmania in
monkeys (Table IIT) may give important clues to vac-
cine reseach. The relative variability in protection after
self-cure or drug-cured experimental leishmaniasis to
challenge by heterologous parasites appears to reflect
both the nature (i.e., etiologic agent) and the course of
primary infection or disease tempo (i.e., the progression
and resolution of leishmanial lesions). Another factor
that can influence acquired immunity is the time be-
tween recovery from primary infection and re-challenge.
For example, a self-healing CL following infection with
L. major induces significant protection for L. amazo-
nensis and Leishmania guyanensis and was dependent on
time of re-challenge by L. amazonensis after animals had
recovered from primary lesions, but lacked protection
against L. braziliensis. Conversely, macaques immune to
either L. braziliensis or Leishmania chagasi (syn. L. in-
Jfantum) were found to be fully protected to challenge with
L. braziliensis or L. amazonensis (Porrozzi et al. 2004).

All infected animals responded with increased
production of immunoglobulins capable of binding to
cross-reacting parasite antigens (Lujan et al. 1987, Por-
rozzi et al. 2004). Although an antigen-specific Thl-like
response appears critical for mediating protection in
a variety of primate models of CL (Olobo et al. 1992,
Olobo & Reid 1993, Amaral et al. 2001, Teva et al. 2003)
and VL (Porrozzi et al. 2006), the current parameters of
cell-mediated immunity [i.e., by measuring delayed-type
hypersensitivity reaction (DHT) to the leishmanin skin
test (LST) in vitro lymphocyte proliferation and IFN-y
production] do not always correlate with clinical recov-
ery and resistance to infectious re-challenge (Amaral et
al. 2001, Porrozzi et al. 2004, 2006). Certainly, further
studying the immune response in primates may clarify
what is required to develop and maintain protective im-
munity to re-challenge(s).
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Fig. 3: non-curing Leishmania braziliensis-induced cutaneous and mucocutaneous leishmaniasis observed post-infection (p.i.) in a macaque
over time. The images show the characteristic clinical features of the disease: the primary ulcerated skin lesion (A); secondary skin lesions
(metastases in the extremities) (B); and nasal mucosa granulomata lesion (C). Tuberculoid-type granulomatous reaction (D) was the main his-
topathological feature of the disease. A standardized inoculum of 1 x 107 L. braziliensis (strain IOC-L2483) promastigotes (Amaral et al. 1996)

was injected intradermally into the left forearm of each monkey.

Use of primate models to assess leishmaniasis
vaccines

Divergent evolution (~ 210 million year divergence
between rodents and humans) limits the relevance of mu-
rine models in guiding the design of human vaccine trials
(Nikolich-Zugich 2007). In this regard, old world simian
species which diverged from humans approximately 25
million years ago (Gibbs et al. 2007) are emerging as
invaluable in vivo models of pathogenesis and immunity
to infectious diseases requiring cellular immunity, but
are also a key tool for conducting comparative studies
of vaccine approaches (Nathansson et al. 1999, Jonhston
2000). Because of the homology between the M. mulatta
and human immune systems (Kennedy et al. 1997b,
Shearer et al. 1999, Pahar et al. 2003, Giavedoni 2005),
the NHP model is frequently used to determine which
vaccine candidates are most worthy of accelerated de-
velopment (Johnston 2000, Nikolich-Zugich 2007).

A variety of NHP models for both CL and VL have
been used to assess the safety (to verify whether vac-
cination itself causes adverse effects), immunogenic-
ity (including evaluation of potential correlates of im-
mune protection) and protective efficacy (to determine
whether vaccination protects the animal host against

infective challenge) of vaccine formulations (Table IV).
To date, the only way to determine acquired resistance
afforded by a candidate vaccine is to challenge the vac-
cinated animals with virulent leishmanial parasites.
However, because of (i) the limited number of monkeys
per experimental group and (ii) the fact that stationary-
phase promastigotes can have varying numbers of the
infectious form of metacyclic promastigotes within each
preparation, researchers use a high inoculum dose to
achieve uniform infection for challenge, which may ac-
count for the relative variability in the levels of vaccine-
induced protection. On the other hand, the use of a short
interval between the last boost and the infectious chal-
lenge (as short as 3-5 weeks in some studies), makes it
difficult to interpret the results in terms of the ability
of the vaccine to induce a sustained memory T-cell re-
sponse (Pitcher et al. 2002). In addition, in most stud-
ies of this nature, it is difficult to accurately assess par-
tial host immunity during infection since lesion size, a
highly variable parameter (due to the out-bred nature of
monkeys used for such studies) is commonly used as a
correlate of protection.

The results from primate vaccine studies are summa-
rized in Table I'V. Protective efficacy with crude vaccine
approaches against CL in macaques was achieved only
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References

Acquired immunity®

Rechallenge infection’

Challenge infection(s)

Species of monkey, number*

Complete

L. braziliensis, L5

L. chagasi, L9

Macaca mulatta, 4
Macaca mulatta, 2
Macaca mulatta, 3
Macaca mulatta, 2
Macaca mulatta, 3
Macaca mulatta, 3
Macaca mulatta, 3
Macaca mulatta, 3
Macaca mulatta, 3

Lack of protection

L. braziliensis, L6

L. major, L1; L. amazonensis, L2
L. major, L1; L. guyanensis, L7
L. major, L1; L. braziliensis, L5

Lack of protection

L. braziliensis, L6

Lack of protection

L. braziliensis, L6
L. guyanensis, L7

Complete (1), partial

L. braziliensis, L3; L. braziliensis, L5

Complete (1), partial

Complete

L. amazonensis, 1.2
L. amazonensis, L2

L. panamemsis, L8

L. braziliensis, L4; L. braziliensis, L5
L. chagasi, 1.9; L. braziliensis, L5

Complete

L. braziliensis, L3; L. braziliensis, L5; L. guyanensis, L7

Complete
Partial

L. braziliensis, L4; L. braziliensis, L5; L. amazonensis, L2 L. guyanensis, L7

L. major, NLB1444

Githure et al. (1987)

L.major, NLB144¢
L.major, NLB144

L.major, NLB144¢
L.major, NLB144°¢

Cercopithecus aethiops, 2

Gicheru et al. (1997)
Githure et al. (1987)

Complete (4), partial

Complete
Complete

L. donovani, NLB065

L. major, NLB144¢
L. major, NLB144¢

Cercopithecus aethiops, 5
Cercopithecus mitis, 4

Githure et al. (1987)

Papio cynocephalus, 2

a: number of animals used in each experiment; b: monkeys were rechallenge-infected after they had recovered from previous (primary, secondary and/or tertiary) infection(s). In

some experiments, animals were injected with the same parasite strain/dose, but at different time points as indicated (at 28" and 44* weeks post-infection); ¢: as indicated by the level
of clinical resistance to each rechallenge: complete (no lesion), partial (lesion size was smaller and healed faster than in the primary infection) or lack (failure) of protection. In this

case, individuals that had recovered from previous infection(s) remained susceptible to the last rechallenge; d: host infected twice with the same parasite; e: animals were rechallange-

infected nine months after primary lesion resolution.
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when the inactivated parasites were combined with alum
plus recombinant human IL-12 (Kenney et al. 1999) or
CpG ODN (Verthelyi et al. 2002) as adjuvants. In addi-
tion, successful vaccination against L. donovani visceral
infection in langur monkeys was obtained using alum-
precipitated autoclaved L. major with BCG (Misra et al.
2001). In our previous studies (Amaral et al. 2002) we
have compared the potential efficacy of two L. major
vaccines, one genetically attenuated (DHFR-TS deficient
organisms), the other inactivated organisms (autoclaved
promastigotes with BCG), in protecting macaques against
homologous challenge. While a positive antigen-specific
recall proliferative response was observed in those vac-
cinated (79% in attenuated parasite-vaccinated monkeys,
versus 75% in ALM-plus-BCG-vaccinated animals),
none of these animals exhibited either augmented in
vitro INF-y production or a positive DTH response to the
leishmanin skin test prior to challenge. Following chal-
lenge, significant differences in blastogenic responses
were found between attenuated-vaccinated monkeys and
naive controls. Protective immunity did not follow vac-
cination, in that monkeys exhibited skin lesions at the site
of challenge in all experimental groups. In contrast, vac-
cination using a mix of the recombinant antigens LmSTI1
and TSA (Webb et al. 1996, 1998) formulated with rhIL-
12 and alum as adjuvants induced excellent protection in
the high dose L. major-macaque model (Campos-Neto et
al. 2001). Likewise, vervet monkeys, when immunized
with recombinant histone HI antigen using Montanide as
an adjuvant, mounted good protection against challenge
with L. major (Masina et al. 2003).

Ample evidence supports the notion that different
prime-boost vaccination regimens can elicit greater im-
mune responses than single immunization modalities.
The use of heterologous prime-boost approaches was
originally explored as a means to overcome vector-spe-
cific immunity elicited against the priming immunogen
and to augment antigen-specific responses by subunit
protein boost (Hu et al. 1991). This approach was found
to enhance antigen-specific antibody responses in mice,
macaques and humans primed with a recombinant vac-
cinia virus and boosted with recombinant HIV-1 enve-
lope protein (Hu 2005). Conversely, immunization with
DNA priming and recombinant virus boosting elicited
strong T-cell responses (Schneider et al.1999, Barouch &
Letvin 2000). The effect regarding the order of DNA ver-
sus recombinant vector for priming or boosting can have
in eliciting protective immunity has been debated (Han-
ke et al. 1998, McClure et al. 2000). Over the past three
years, several primate studies have been performed in our
laboratory to establish vaccination procedures, improve
vaccine immunogenicity and minimize vector-specific
immunity. Indeed, it is now clear that detectable Leish-
mania-specific T-cell responses can be induced safely in
primates by vaccination, but, depending on the particu-
lar regimen used, varying degrees of acquired immunity
have been achieved (ranging from non-existent to full
protection after the infectious challenge). Further experi-
ments are in progress in the Leishmania-macaque model
to comparatively examine the potential efficacy of vari-
ous vaccine approaches afforded by vaccine candidates.
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Protection conferred
by vaccination®

Challenge infection,

Leishmania
vaccine

HKLV

Species of monkey,

number?

References

inoculum dose, route

Vaccination protocol

Dube et al. (1998),

Complete (by triple
dosage), partial

Animals were challenged on week 8
after vaccination with 10% viable

L. donovani ama, iv

Monkeys were vaccinated with ALM (3 mg)
plus BCG (3 mg) using a single or triple dose

schedule, id

Prebytis entellus, 8

Anuradha et al. (1998)

(by single dose)

Complete

Misra et al. (2001)

Animals were challenged on week 8
after vaccination with 10% viable

L. donovani ama, iv

Monkeys received a single dose of

HKLV

Prebytis entellus, 8

alum-precipitated ALM (1 mg) plus BCG

(1 mg) in 0.1 mL saline, id

a: number of animals vaccinated in each experiment; b: as indicated by the level of clinical resistance after challenge infection: complete (vaccinated monkeys showed early containment

of parasite growth in the infected sites and/or developed little or no dermal lesions), partial (lower level of parasite burden in the infected sites and/or skin lesion size was smaller and

healed faster in vaccinated monkeys than in control groups) or lack (failure) of protection (the time of skin lesion onset and healing or levels of parasite burden in infected sites were

similar in challenged monkeys from either control or vaccinated group); ALM: autoclaved L. major; alum: aluminum hydroxide gel (act as adjuvant); ama: amastigotes; BCG: bacil-

lus Calmete-Guerin (used as adjuvant); cfu: colony forming units; CpG ODN: synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs (act as adjuvant); HKLV:
heat-killed leishmania vaccine; id: intradermally; iv: intravenously; LAV: live genetically attenuated (DHFR-TS deficient organisms) vaccine; MISA720: Montanide ISA 720 (adjuvant);

prom: promastigotes; rGP63: a recombinant L. major glycoprotein (the major leishmanial surface glycoprotein); rGST-H1: a recombinant glutathione-S-transferase fused to L. major

histone H1 nuclear antigen (that has no homology to human H1 protein); rhIL-12: recombinant human interleukine-12 (act as adjuvant); rLmSTI1: a recombinant L. major homolog of
the eukaryotic stress-inducible protein-1 (Webb et al. 1997); rTSA: a recombinant L. major homolog of the eukaryotic thiol-specific antioxidant protein (Webb et al. 1998); sb: subcutane-

ously; sc: subcutaneous; SUPV: subunit protein-based vaccine.
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Determining correlates of immune protection
to Leishmania

While the functional heterogeneity (across HLA hap-
lotypes) of T-cell cytokine responses to existing vaccines
is undoubtedly of importance (Robinson & Amara 2005),
they have not been extensively analyzed. In fact, T-cell
vaccines for microbial infections have been developed
without a clear understanding of their mechanism(s) of
protection (Lambert et al. 2005). With regard to leish-
maniasis, most vaccine studies measure the frequency of
IFN-y-producing Th1 cells as the primary immune corre-
late of protection (Coller & Reed 2005), but in vitro [IFN-y
production as a single immune parameter may not be suf-
ficient to predict protection (Elias et al. 2005, Oliveira et
al. 2005). Recent data have shed important insight on the
potential correlates of protection, showing that the mag-
nitude, potency and durability of a multifunctional CD4*
Thl-cell cytokine response can be a crucial determinant
in whether a vaccine is protective (Darrah et al. 2007).
Conversely, it is likely that IL-10-producing CD4*CD25*
T regulatory cells are functional in determining vaccine
failure (Stober et al. 2005). In another study (Stadger et
al. 2000), vaccine-induced protection, using the recombi-
nant hydrophilic acylated surface protein Bl (HASPBI)
of L. donovani, correlates with the presence of rHASPBI-
specific, IFN-y-producing CDS8" T cells.

Neither study in the L. amazonensis (Kenney et al.
1999) or L. major-macaque model (Campos-Neto et al.
2001, Amaral etal. 2002), nor those in the L. major-vervet
monkey model (Gicheru et al. 2001), have resulted in a
clear definition of what T-cell responses will be required
for vaccine-induced protective immunity. Without such
knowledge, vaccine design strategies will remain largely
empirical, and further failures are likely to occur. This
is due, in part, to the high degree of variability in the
antigen-specific recall blastogenic and IFN-y responses
detected among primates (Campos-Neto et al. 2001, Pa-
har et al. 2003). This appears to result from the outbred
genetics of macaques used for such studies, which indeed
makes them the most appropriate model when predicting
the diversity of responses that could be expected in the
human population. Increasing the number of monkeys
per experimental group can help address this condition.
Unfortunately, by definition this is not feasible. On the
other hand, using macaques with defined genotypes
with respect to immune response genes (MHC class I
and II) would minimize individual variability, but un-
fortunately this approach introduces bias into the results
(Johnston 2000, Hu 2005).

Finally, the application of ELIspot and cytokine flow
cytometry assays has provided new insights into the at-
tributes of both CD4"and CD8" T cells that mediate pro-
tection in macaques (Mékitalo et al. 2002, Keeney et al.
2003). This technology should help to identify correlates
of protection in future primate vaccine studies.

Concluding remarks

Clinical development of the available subunit protein
or DNA-based vaccines against leishmaniasis may not be
fully protective across all HLA haplotypes and Leishma-
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nia species. This is due, in part, to the inherent difficul-
ties that hinder full characterization of the determinants
of successful T-cell immunity in humans (Robinson &
Amara 2005, Appay et al. 2008). Nevertheless, most ex-
perts believe that a successful Leishmania vaccine will
likely require (i) selection of a cocktail of protective im-
munogens; (ii) identification of efficient prime-boost
strategies in order to provide broad, cross-reactive and
long-lasting protection; and (iii) selection or identifica-
tion of an adjuvant formulations or delivery systems that
can be used in human clinical trials. Nonetheless, given
these intrinsic vaccine development requirements, regu-
latory authorities are willing to regulate safety data on
infectious vectored vaccines generated from primates.

However, primate testing should be reserved for the
final stages of evaluation of vaccine candidates that have
already shown consistent induction of significant protec-
tive immunity in conventional mouse models. Consider-
ations for employing the primate M. mulatta to evaluate
vaccine safety and protective efficacy should also include
costs and availability (Kennedy et al. 1997a). Available
data indicates that vaccine trials in macaques will not be
hindered due to divergence of MHC class I and class II
molecules (Watkins et al. 1988, Klein et al. 1993, Doxi-
adis et al. 2001). Moreover, rhesus macaques have been
successfully infected with a variety of human pathogenic
Leishmania species either by syringe or sandfly chal-
lenge and develop a human-like disease (including the
non-curing L. braziliensis granulomata ML). Most of the
published information on the course of primary or sec-
ondary infection, clinicopathological changes, immune
responses and vaccination data was gained using outbred
macaques. Although the predictive value for any animal
model in vaccine development ultimately depends on
validating data from human trials, further development
of the Leishmania-macaque model should prove useful
in guiding the design of human vaccine trials.
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