

The first complete mitochondrial genomes of three dobsonfly species (Megaloptera: Corydalidae) from Pakistan with phylogenetic implications

Muhammad Asghar Hassan¹ , Rongrong Shen¹ , Muhammad Ali² , Xingyue Liu^{1*}

¹ China Agricultural University, Department of Entomology, Beijing, China.
² University of Baltistan Skardu, Department of Zoology, Gilgit-Baltistan, Pakistan.

ARTICLE INFO

Article history: Received 29 December 2022 Accepted 09 February 2023 Available online 10 March 2023 Associate Editor: Renato Jose Machado

Keywords: Phylogenetic analysis Mitochondrial genome Neuropterida Corydalinae Northern Pakistan

ABSTRACT

Megaloptera is a small holometabolous insect order that includes two genera and three species of Corydalidae in Pakistan. Here we sequenced the complete mitochondrial genomes of these three Pakistani corydalids: *Nevromus intimus* (McLachlan, 1869) (16,614 bp), *Protohermes motuoensis* Liu & Yang, 2006 (16,238 bp), and *Protohermes walkeri* Navás, 1929 (16,514 bp). It also represents the first set of complete mitogenomes sequenced for Neuropterida in Pakistan. The gene order was found to be similar to other published dobsonfly mitogenomes except the variable length of the non-coding region in each species. The phylogenetic analysis using 13 protein-coding genes by Maximum likelihood and Bayesian inference yielded largely consistent topologies, in which the phylogenetic positions of the three species herein studied are recovered.

Introduction

The insect mitochondrial genome (mitogenome or mtDNA) is a closed-circular double-stranded molecule of 14–20 kilobases (kb) in size that encodes 37 genes, including 13 protein-coding genes (PCGs: nad1–6, nad4L, atp6, atp8, cox1–3, cob), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs: rrnS, rrnL), and a variable-length of non-coding A+T-rich region (Boore, 1999; Cameron, 2014). To date, the mitogenomes of 28 recognized insect orders have been sequenced (Cameron, 2014) and are extensively used for analyzing the evolutionary history, biogeographical history, population phylogeographic relationships, and molecular phylogenetic studies at various taxonomic levels (Cameron, 2014; Cameron et al., 2009; Ma et al., 2012; Simon and Hadrys, 2013; Timmermans et al., 2014; Jiang et al., 2020, 2022). The gene arrangements within mtDNA are a key feature that provides valuable information regarding the evolutionary relationships at different taxonomic ranks and can be variable among insects (Boore et al., 1995; Boore, 1999).

To date, more than 160 complete or nearly complete mitogenomes of Neuropterida species have been sequenced and are available on GenBank

E-mail: xingyue_liu@yahoo.com (X. Liu).

https://doi.org/10.1590/1806-9665-RBENT-2022-0112

(https://www.ncbi.nlm.nih.gov/). The mitochondrial phylogenomics have greatly improved our knowledge on the phylogeny and biogeography of various groups of Neuropterida (Jiang et al., 2016; Wang et al., 2017; Yang et al., 2018; Jiang et al., 2022; Shen et al., 2022). However, no complete mitochondrial genome is available on the Pakistani species of Neuropterida until now. Here, the complete mitochondrial genomes of three Pakistani Megaloptera species are first sequenced and analyzed. This research provides a basic foundation for future molecular phylogenetic studies on Megaloptera and other groups of Neuropterida in Pakistan.

Materials and Methods

Sampling and DNA extraction

Adult specimens of *Nevromus intimus* (Punjab: Murre [1♂, 30.VII.2019, 33.92192°N, 73.40353°E, 1928 m]), *Protohermes motuoensis* (Khyber Pakhtunkhwa: Swat [1♂, 11.IX.2019, 35.054092°N, 72.564847°E, 760 m]) and *Protohermes walkeri* (Azad Kashmir: Bagh [1♀, 04.VIII.2019, 34.5844°N, 73.4638°E, 1628 m]) were collected from the northern areas of Pakistan

© 2022 Sociedade Brasileira de Entomologia Published by SciELO - Scientific Electronic Library Online.. This is an open-access article distributed under the terms of the Creative Commons Attribution License (type CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original article is properly cited.

^{*}Corresponding author.

in 2019. The specimens were stored in 95% ethanol and refrigerated at -20°C. The specimens are deposited in the Entomological Museum of China Agricultural University (CAU), Beijing, China. Total genomic DNA was extracted from the thoracic muscle tissues or several legs of each individual sample preserved in ethanol, using the TIANamp Genomic DNA Kit (TIANGEN BIOTECH CO., LTD, Beijing, China) following manufacturers' instructions.

Library preparation, and Illumina sequencing

The sequencing library was generated using Truseq Nano DNA Sample Prep Kits (Illumina, USA) with insert sizes from 350 bp sequence data with 150 bp paired-end reads. Raw reads were trimmed of adapters using Trimmomatic (Bolger et al., 2014). GenBank accession numbers of all sequences used in this study are provided in Table 1. The clustering of the index-coded samples was performed on a cBot Cluster Generation System using Novaseq PE Cluster Kit v.2.5 (Illumina).

Genome assembly and annotation

We did the reference-guided assembling by mapping to the mitogenome of Nevromus exterior Navás, 1927 and Protohermes concolorus Yang & Yang, 1988 as the reference sequences (Hua et al., 2009; Jiang et al., 2015) through GENEIOUS v. 9.0 (Kearse et al., 2012) (https://www. geneious.com), with the parameters set as follows: 95% minimum overlap identity, 4 maximum ambiguity, and minimum overlap of 25 bp. The other parameters use the default settings. The preliminary mitogenome annotations were conducted using the MITOS web server, under default settings, and the invertebrate genetic code for mitochondria (Bernt et al., 2013). For the mitochondrial protein-coding genes, we first removed the stop codon of each sequence. Then, the nucleotide sequences were aligned based on their corresponding amino acid translations using the MAFFT algorithm implemented in TranslatorX (Abascal et al., 2010). Poorly aligned sites were removed with Gblocks v 0.91 (Talavera and Castresana, 2007), under options for a less stringent selection. For the mitochondrial tRNA and rRNA genes, each of them was aligned using MAFFT (Katoh and Standley, 2013) under the iterative refinement method incorporating the most accurate local pairwise alignment information (E-INS-i), and ambiguously aligned sites were pruned using Gblocks with the same settings mentioned above. All alignments were checked in MEGA 7 (Kumar et al., 2016). Finally, all alignments were concatenated using FASconCAT_v1.0 (Kück and Meusemann, 2010) to construct the full dataset of PCGs. Mitogenome maps were constructed using CG View server V 1.0 (http://stothard.afns.ualberta. ca/cgview_server/) (Grant and Stothard, 2008).

Phylogenetic analyses

To test the phylogenetic positions of the three Pakistani dobsonflies, the phylogenetic analyses were carried out based on two mitogenomic datasets: PCG123 (nucleotide data of 13 PCGs) and PCG_AA (amino acid sequences of the 13 PCGs) of 49 species (44 ingroup taxa of Corydalinae and 5 outgroup taxa respectively belonging to Chauliodinae, Sialidae, and Raphidioptera), including the three species from Pakistan (Table 1). We used PartitionFinder v.2.1.1 (Lanfear et al., 2016) to determine the best partitioning schemes for the datasets under the Bayesian Information Criterion (BIC). Detailed information on the partitions and the best models selected are summarized in Table 2.

Phylogenies were inferred based on Bayesian inference (BI) and Maximum likelihood (ML). ML analysis was performed in IQ-TREE (Nguyen et al., 2015; Trifinopoulos et al., 2016) and the BI analysis was performed in MrBayes v.3.2.7a (Ronquist et al., 2012) implemented on XSEDE (Extreme Science and Engineering Discovery Environment) through the CIPRES Science Gateway (Miller et al., 2010) (http://www.phylo.org/) with various data partition schemes and best-fitting models determined by PartitionFinder. The maximum likelihood method was performed on IQ-tree website server (http://iqtree.cibiv.univie.ac.at) with 1000 bootstrap replicates. The BI analysis contains four simultaneous Markov chain Monte Carlo (MCMC) runs of 2 million generations. Trees were sampled every 1000 generations and the burn-in fraction set to 25%. Analyses terminated when the standard deviation of clade frequencies fell below 0.01, which indicates that stationarity had been reached. A majority-rule consensus tree was calculated with posterior probabilities (PPs) for each node. The phylogenetic relationships were also reconstructed with the MrBayes and IQ-TREE plugin in PhyloSuite 1.2.2 (Zhang et al., 2020). Trees were visualized and edited with FIGTREE v1.3.1 (Rambaut, 2009).

Results

The complete mitogenome of *Nevromus intimus* is 16,614 bp in length, which is similar to *Protohermes motuoensis* (16,238 bp) and *Protohermes walkeri* (16,585 bp), and the mitochondrial genome maps are presented in Fig. 1. It contains 13 PCGs, two rRNAs, 22 tRNAs, and a variably lengthed control region: 1,867 bp (*Protohermes walkeri*), 1,527 bp (*Protohermes motuoensis*), and 1,858 bp (*Nevromus intimus*) (Tables 3-5). Genetic divergence was calculated with the Kimura 2-parameter (K2P) model (Kimura, 1980) in MEGA 7.0 based on COI. The intraspecific genetic distance of *P. motuoensis* was 0.010 between the specimens respectively from Pakistan and China (Table S1).

For the phylogenetic analyses, the PCG123 dataset includes 11061 bp nucleotides for each taxon, and the PCG_AA dataset includes 3687 bp amino acids for each taxon. Four phylogenetic trees were obtained from the ML and BI analysis of the above two datasets (Fig. 2, Figs. S1-S4). The 13 Neoneuromus species form a monophyletic group with high nodal supports and *Nevromus* was recovered as sister group with high support values in all analysis as in Tu et al. (2021). Similarly, 28 Protohermes species for a monophyletic group with high nodal supports in all analysis except for some branches with low support in ML analysis in PhyloSuite. In all analysis, the phylogenetic placement of the newly sequences species of Nevromus and Protohermes are consistent with Tu et al. (2021) and Jiang et al. (2022), respectively. However, the basal-most portion of Chloroniella in Corydalinae was only supported in BI analysis by PhyloSuite (Fig. 2), which is consistent with the phylogenetic results in Jiang et al. (2022), whereas in the ML tree through IQ-tree website server, the BI tree through the CIPRES Science Gateway, and ML tree in PhyloSuite, Chloroniella was recovered as sister to Protohermes (Figs. S1-S4).

Discussion

Our study provides the first detailed mitochondrial genome data on Megaloptera from Pakistan. In particular, we added the mitogenomic data of *P. walkeri* and *N. intimus* that have not yet been sequenced. The sister-group relationship between *P. walkeri* and *P. niger*, and their grouping with the other species of the *P. costalis* species-group support our previous placement of *P. walkeri* in the *P. costalis* group based on morphological characters, such as the widely separated lateral ocelli, the short, subcylindrical male ectoproct, and the female sternum 9 with a pair of sac-like lobes (Hassan et al., 2020). Moreover, the morphological similarity between *P. walkeri* and *P. niger* is also noteworthy. *Protohermes niger* is a spectacular species with sexual

M.A. Hassan et al.	/ Revista	Brasileira de	Entomologia	66(s	pe):e20220112, 2	2022
				· · ·		· · · · · · · · · · · · · · · · · · ·	

Table 1List of taxa included in this study.

S.N.	Order	Family	Species	Number (bp)	Accession number	Locality	References
1	Megaloptera	Corydalidae	Acanthacorydalis orientalis	15753	KF840564	China (Sichuan)	Wang et al. (2014)
2			Chloroniella peringueyi	15764	MW642269	South Africa (Elandsbos River)	Jiang et al. (2022)
3			Corydalus cornutus	15687	FJ171323	Florida	Beckenbach and Stewart (2009)
4			Platyneuromus soror	15750	MW642273	Mexico (Veracruz)	Jiang et al. (2022)
5			Protohermes motuoensis	16238	ON209202	Pakistan (Khyber Pakhtunkhwa)	Present study
6			Protohermes motuoensis	15849	MW642284	China (Tibet)	Jiang et al. (2022)
7			Protohermes walkeri	16522	2573900	Pakistan (Azad Kashmir)	Present study
8			Protohermes cangyuanensis	15826	MW642275	China (Yunnan)	Jiang et al. (2022)
9			Protohermes concolorus	15851	EU526394	China (Yunnan)	Hua et al. (2009)
10			Protohermes concolorus	15852	MW642276	China (Yunnan)	Jiang et al. (2022)
11			Protohermes costalis	10413	MW642321	China (Guangxi)	Jiang et al. (2022)
12			Protohermes davidi	15851	MW642277	China (Sichuan)	Jiang et al. (2022)
13			Protohermes dichrous	15827	MW642278	Malaysia (Borneo)	Jiang et al. (2022)
14			Protohermes differentialis	15255	MW642303	China (Guangxi)	Jiang et al. (2022)
15			Protohermes flavinervus	15854	MW642279	China (Yunnan)	Jiang et al. (2022)
16			Protohermes grandis	15840	MW642280	Japan (Oita)	Jiang et al. (2022)
17			Protohermes gutianensis	15434	MW642304	China (Fujian)	Jiang et al. (2022)
18			Protohermes hainanensis	15841	MW642281	China (Hainan)	Jiang et al. (2022)
19			Protohermes infectus	15848	MW642282	China (Tibet)	Jiang et al. (2022)
20			Protohermes latus	15852	MW642283	China (Tibet)	Jiang et al. (2022)
21			Protohermes basimaculatus	15838	MW642274	China (Yunnan)	Jiang et al. (2022)
22			Protohermes niger	15749	MW642285	China (Yunnan)	Jiang et al. (2022)
23			Protohermes similis	15844	MW642286	China (Sichuan)	Jiang et al. (2022)
24			Protohermes sinensis	14774	MW642305	China (Hubei)	Jiang et al. (2022)
25			Protohermes sinuolatus	15851	MW642287	Laos (Attapeu)	Jiang et al. (2022)
26			Protohermes spectabilis	15869	MW642288	Malaysia (Borneo)	Jiang et al. (2022)
27			Protohermes subnubilus	15511	MW642306	China (Yunnan)	Jiang et al. (2022)
28			Protohermes tonkinensis	14291	MW642320	China (Yunnan)	Jiang et al. (2022)
29			Protohermes xanthodes	15846	MW642289	China (Hunan)	Jiang et al. (2022)
30			Neoneuromus sikkimmensis	15767	MW965204	China (Yunnan)	Tu et al. (2021)
31			Neoneuromus latratus	15772	MW965206	China (Yunnan)	Tu et al. (2021)
32			Neoneuromus coomani	15766	MW965203	Laos (Champasak)	Tu et al. (2021)
33			Neoneuromus indistinctus	15770	MW965202	China (Yunnan)	Tu et al. (2021)
34			Neoneuromus maclachlani	15770	MW965201	China (Hubei)	Tu et al. (2021)
35			Neoneuromus vanderweelei	15767	MW965200	China (Yunnan)	Tu et al. (2021)
36			Neoneuromus fenestralis	15769	MW965199	China (Yunnan)	Tu et al. (2021)
37			Neoneuromus maculatus	15772	MW965197	Vietnam (Thua Thien Hue)	Tu et al. (2021)
38			Neoneuromus niger	15772	MW965196	Vietnam (Kon Tum)	Tu et al. (2021)
39			Neoneuromus similis	15771	MW965198	China (Fujian)	Tu et al. (2021)
40			Neoneuromus orientalis	15771	MW965205	China (Anhui)	Tu et al. (2021)
41			Neoneuromus ignobilis	15768	MW642272	China (Zhejiang)	Tu et al. (2021)
42			Neoneuromus tonkinensis	15776	KP126231	Vietnam (Vinh Phuc)	Jiang et al. (2015)
43			Nevromus exterior	15763	KP126232	Vietnam (Bac Kan)	Jiang et al. (2015)
44			Nevromus intimus	16614	ON209201	Pakistan (Punjab)	Present study
45			Neochauliodes fraternus	15768	MW642326	China (Zhejiang)	Jiang et al. (2022)
46			Neochauliodes formosanus	14476	MW642325	China (Guangdong)	Jiang et al. (2022)
47		Sialidae	Sialis jiyuni	15590	MW642261	China (Sichuan)	Jiang et al. (2022)
48			Sialis koreana	15537	MW642300	Korea	Jiang et al. (2022)
49	Raphidioptera	Raphidiidae	Mongoloraphidia harmandi	16006	FJ859902	Japan	Cameron et al. (2009)

S.N.: serial number; bp: base pair.

Table 2

Best-fit partitioning schemes and models of evolution determined by PartitionFinder.

Subset Partitions	Best Model	Alignment
COX1, ND3, ATP6, COX2, CYTB, COX3	GTR+I+G	814-2334 6892-7212 1-651 2335-3012 3799-4935 3013-3798;
ND2, ATP8, ND6	GTR+I+G	5878-6891 652-813 10540-11043;
ND1, ND5, ND4L, ND4	GTR+I+G	4936-5877 8842-10539 8548-8841 7213-8547;

Figure 1 The maps of the complete mitochondrial genome of three Pakistani dobsonfly species. A. Protohermes walkeri; B. Protohermes motuoensis; C. Nevromus intimus.

Table 3

Organization of the complete mt genome in Protohermes walkeri.

Gene	Direction	Position (bp)	Size (bp)	IGN*	Anticodon	Start Codon	Stop Codon
tRNA ^{IIe}	F	1—63	63		GAT		
tRNAGIn	R	61—129	69	-3	TTG		
tRNA ^{Met}	F	136—204	69	6	CAT		
ND2	F	205—1222	1018	0		ATT	TGT
tRNA ^{Trp}	R	1223—1288	66	0	TCA		
tRNA ^{Cys}	F	1281—1345	65	-8	GCA		
tRNA ^{Tyr}	R	1346—1410	65	0	GTA		
COI	F	1403—2944	1542	-8		ATT	TAA
$tRNA^{Leu(UUR)}$	F	2946-3010	65	1	TAA		
COII	F	3013—3696	684	2		ATG	TAA
tRNALys	F	3698—3767	70	1	CTT		
tRNA ^{Asp}	F	3768—3835	68	0	GTC		
ATP8	F	3836—3991	156	0		ATT	TAA
ATP6	F	3988-4643	656	-4		ATG	TAA
COIII	F	4662—5448	787	18		ATG	GCT
tRNAGly	F	5449—5511	63	0	TCC		
ND3	F	5512-5863	352	0		ATT	ACT
tRNA ^{Ala}	F	5864—5928	65	0	TGC		
tRNA ^{Arg}	F	5946-6007	62	17	TCG		
tRNA _{Asp}	F	6007-6073	67	-1	GTT		
tRNA ^{Ser(AGN)}	F	6074—6140	67	0	GCT		
tRNAGlu	F	6141-6205	65	0	TTC		
tRNA ^{Phe}	R	6204—6266	63	-2	GAA		
ND5	R	6267—7992	1726	0		AAA	AAT
tRNA ^{His}	R	7993—8056	64	0	GTG		
ND4	R	8057—9395	1339	0		ACA	CAT
ND4L	R	9389—9685	297	-7		TTA	CAT
tRNA ^{Thr}	F	9688—9750	63	2	TGT		
tRNA ^{Pro}	R	9751—9815	65	0	TGG		
ND6	F	9818—10333	516	2		ATT	TAA
CytB	F	10330—11464	1135	-4		ATG	ATT
tRNA ^{Ser(UCN)}	F	11465—11531	67	0	TGA		
ND1	R	11544—12497	954	12		TTA	CAA
tRNA ^{Leu(CUN)}	R	12499—12561	63	1	TAG		
lrRNA	R	12562—13875	1314	0		ATT	TAA
tRNA ^{Val}	R	13876—13945	70	0	TAC		
srRNA	R	13946—14717	772	0		ATC	TAA
Control region	-	14718—16585	1867	0		GCC	ATA

bp: base pair. *IGN: intergenic nucleotides.

Table 4

Organization of the complete mt genome in Protohermes motuoensis.

Gene	Direction	Position (bp)	Size (bp)	IGN*	Anticodon	Start Codon	Stop Codon
tRNA ^{lle}	F	1—63	63		GAT		
tRNAGIn	R	61—129	69	-3	TTG		
tRNA ^{Met}	F	134—201	68	4	CAT		
ND2	F	202—1219	1018	0		ATT	TTT
tRNA ^{Trp}	R	1220—1285	66	0	TCA		
tRNA ^{Cys}	F	1278—1341	64	-8	GCA		
tRNA ^{Tyr}	R	1342—1406	65	0	GTA		
COI	F	1399—2940	1542	-8		ATT	TAA
$tRNA^{Leu(UUR)}$	F	2942-3006	65	1	TAA		
COII	F	3009—3692	684	2		ATG	TAA
tRNALys	F	3694—3763	70	1	CTT		
tRNA ^{Asp}	F	3764—3830	67	0	GTC		
ATP8	F	3831—3989	159	0		ATA	TAA
ATP6	F	3983—4657	675	-7		ATG	TAA
COIII	F	4657—5443	787	-1		ATG	GTT
tRNA ^{Gly}	F	5444—5506	63	0	TCC		
ND3	F	5507—5858	352	0		ATC	ATT
tRNA ^{Ala}	F	5859—5923	65	0	TGC		
tRNA ^{Arg}	F	5941-6003	63	17	TCG		
tRNA ^{Asn}	F	6003—6068	66	-1	GTT		
tRNA ^{Ser(AGN)}	F	6069—6135	67	0	GCT		
tRNA ^{Glu}	F	6136—6200	65	0	TTC		
tRNA ^{Phe}	R	6199—6261	63	-2	GAA		
ND5	R	6262—7987	1726	0		AAA	AAT
tRNA ^{His}	R	7988—8050	63	0	GTG		
ND4	R	8051—9389	1339	0		AAA	CAT
ND4L	R	9383—9679	297	-7		TTA	CAT
tRNA ^{Thr}	F	9682—9744	63	2	TGT		
tRNA ^{Pro}	R	9745—9809	65	0	TGG		
ND6	F	9812—10327	516	2		ATT	TAA
CytB	F	10327—11461	1135	-1		ATG	ATT
tRNA ^{Ser(UCN)}	F	11462—11528	67	0	TGA		
ND1	R	11541—12494	62	12		TTA	CAA
tRNA ^{Leu(CUN)}	R	12496—12557	62	1	TAG		
lrRNA	R	12558—13869	1312	0		ATT	CTT
tRNA ^{Val}	R	13870—13939	70	0	TAC		
srRNA	R	13940—14713	774	0		ATC	TTA
Control region	-	14712—16238	1527	-2		GCC	TAA

bp: base pair. *IGN: intergenic nucleotides.

Figure 2 Phylogenetic relationships among the selected species of Megaloptera based on mitogenomic data. BI tree for Megaloptera based on concatenated 13 PCGs with branch supports shown as Bayesian posterior probabilities. The colors represent different genera.

Table 5

Organization of the complete mt genome in Nevromus intimus.

Gene	Direction	Position (bp)	Size (bp)	IGN*	Anticodon	Start Codon	Stop Codon
tRNA ^{lle}	F	1—65	65		GAT		
tRNA ^{GIn}	R	66—134	69	0	TTG		
tRNA ^{Met}	F	134—202	69	-1	CAT		
ND2	F	203—1219	1017	0		ATT	TAA
tRNA ^{Trp}	R	1218—1284	67	-2	TCA		
tRNA ^{Cys}	F	1277—1340	64	-8	GCA		
tRNA ^{Tyr}	R	1341—1404	64	0	GTA		
COI	F	1397—2937	1541	-8		ATT	GTA
$tRNA^{Leu(UUR)}$	F	2938—3001	64	0	TAA		
COII	F	3004—3687	684	2		ATG	TAA
tRNA ^{Lys}	F	3688—3757	70	0	CTT		
tRNA ^{Asp}	F	3758—3824	67	0	GTC		
ATP8	F	3825—3983	159	0		ATT	TAA
ATP6	F	3977—4651	675	-7		ATG	TAA
COIII	F	4651—5437	787	-1		ATG	GTT
tRNA ^{Gly}	F	5438—5499	62	0	TCC		
ND3	F	5500—5851	352	0		ATT	ACT
tRNA ^{Ala}	F	5852—5914	63	0	TGC		
tRNA ^{Arg}	F	5929—5992	64	14	TCG		
tRNA ^{Asn}	F	5992—6056	65	-1	GTT		
tRNA ^{Ser(AGN)}	F	6057—6122	66	0	GCT		
tRNA ^{Glu}	F	6123—6187	65	0	TTC		
tRNA ^{Phe}	R	6186—6248	63	-2	GAA		
ND5	R	6249—7974	1726	0		AAA	AAT
tRNA ^{His}	R	7975—8037	63	0	GTG		
ND4	R	8038—9376	1339	0		ACA	CAT
ND4L	R	9370—9666	297	-7		TTA	CAT
tRNA ^{Thr}	F	9669—9731	63	2	TGT		
tRNA ^{Pro}	R	9732—9797	66	0	TGG		
ND6	F	9800—10315	516	2		ATT	TAA
CytB	F	10315—11449	1135	-1		ATG	TTT
tRNA ^{Ser(UCN)}	F	11451—11517	67	1	TGA		
ND1	R	11530—12483	954	12		TTA	CAA
$tRNA^{Leu(CUN)}$	R	12485—12546	62	1	TAG		
lrRNA	R	12547—13859	1313	0		ATT	ATG
tRNA ^{Val}	R	13860—13929	70	0	TAC		
srRNA	R	13930—14757	828	0		TTA	TAA
Control region	-	14758—16614	1858	0		TAA	TAA

bp: base pair. *IGN: intergenic nucleotides.

dimorphism, as the male is blackish in body and wing coloration, but the female is yellowish (Chang et al., 2013). The females of *P. niger* have almost identical cephalic and pronotal marking patterns (different from most other Protohermes species) with P. walkeri. Thus, the present molecular data also suggests consistent interspecific relationship to the morphological inference concerning above two *Protohermes* species. For P. motuoensis, which is a species ranging along southern Himalayas (Hassan et al., 2020), the low genetic divergence of COI between the specimens respectively from Pakistan and southeastern Tibet confirms that they are conspecific despite long geographic distance of their distribution. By adding the mitogenome of *N. intimus*, the mitogenomic data are available for only two species of Nevromus. Nevromus intimus was assigned in a monophyletic group with Nevromus aspoeck Liu, Hayashi & Yang and N. exterior based on morphological data (Liu et al., 2012). Further molecular data are needed to investigate the phylogenetic position of *N. intimus* in *Nevromus*. The mitochondrial genome data of insects from Pakistan are still scarce. Our study may promote future works on molecular taxonomy and phylogeny of Neuropterida and other insect groups from Pakistan.

Acknowledgements

The first author would like to express his gratitude to Aqib Mateen (University of Poonch Rawalakot, Azad Kashmir, Pakistan) for his support and cooperation in collecting the megalopteran samples studied in this study from Azad Kashmir.

Funding

This research was supported by the Chinese Government Scholarship, the Beijing Natural Science Foundation (No. 5212011), the National Natural Science Foundation of China (No. 32170448), and the National Animal Collection Resource Center, China.

Conflicts of interest

The authors declare no conflicts of interest.

Author contribution statement

Conceptualization, MAH and XL; writing—original draft preparation, MAH, RS and MA; writing—review and editing, MAH and XL; supervision, XL; figures and tables, MAH and RS; funding acquisition, XL. All authors have read and agreed to the published version of the manuscript.

References

- Abascal, F., Zardoya, R., Telford, M.J., 2010. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, 7-13. https://doi.org/10.1093/nar/gkq291.
- Beckenbach, A.T., Stewart, J.B., 2009. Insect mitochondrial genomics 3: the complete mitochondrial genome sequences of representatives from two neuropteroid orders: a dobsonfly (order Megaloptera) and a giant lacewing and an owlfly (order Neuroptera). Genome. 52, 31-38.
- Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., Stadler, P.F., 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313-319. https://doi.org/10.1016/j.ympev.2012.08.023.
- Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114-2120. https:// doi.org/10.1093/bioinformatics/btu170.
- Boore, J.L., Collins, T.M., Stanton, D., Daehler, L.L., Brown, W.M., 1995. Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements. Nature. 376, 163-165. https://doi.org/10.1038/376163a0.
- Boore, J.L., 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767-1780. https://doi.org/10.1093/nar/27.8.1767.
- Cameron, S.L., Sullivan, J., Song, H., Miller, K.B., Whiting, M.F., 2009. A mitochondrial genome phylogeny of the Neuropterida (lacewings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zool. Scr. 38, 575-590. https://doi. org/10.1016/j.gene.2014.07.052.
- Cameron, S.L., 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95-117. https:// doi.org/10.1146/annurev-ento-011613-162007.
- Chang, W., Hayashi, F., Liu, X.Y., Yang, D., 2013. Discovery of the female of *Protohermes niger* Yang & Yang (Megaloptera: Corydalidae): sexual dimorphism in coloration of a dobsonfly revealed by molecular evidence. Zootaxa. 3745, 84-92. http://dx.doi.org/10.11646/ zootaxa.3745.1.7.
- Grant, J.R., Stothard, P., 2008. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36 (Suppl 2), W181. https://doi.org/10.1093/nar/gkn179.
- Hassan, M.A., Hayashi, Y., Liu, X.Y., 2020. First record of the dobsonfly genus *Protohermes* van der Weele, 1907 from Pakistan (Megaloptera: corydalidae). Zootaxa. 4732, 422-434.
- Hua, J., Li, M., Dong, P., Xie, Q., Bu, W., 2009. The mitochondrial genome of *Protohermes concolorus* Yang et Yang, 1988 (Insecta: Megaloptera: Corydalidae). Mol. Biol. Rep. 36, 1757-1765. https://doi.org/10.1007/ s11033-008-9379-0.
- Jiang, Y.L., Zhou, Y.J., Wang, Y.Y., Yue, L., Yan, Y., Wang, M.Q., Liu, X.Y., 2015. Complete mitochondrial genomes of two Oriental dobsonflies, *Neoneuromus tonkinensis* (van der Weele) and *Nevromus exterior* (Navás) (Megaloptera: Corydalidae), and phylogenetic implications of Corydalinae. Zootaxa. 3964, 44-62. https://doi.org/10.11646/ zootaxa.3964.1.2.
- Jiang, Y.L., Yang, F., Yang, D., Liu, X.Y., 2016. Complete mitochondrial genome of a Neotropical dobsonfly *Chloronia mirifica* Navás, 1925 (Megaloptera: Corydalidae), with phylogenetic implications for the genus *Chloronia* Banks, 1908. Zootaxa. 4162, 46-60.

- Jiang, Y.L., Yang, Y., Yue, L., Hayashi, F., Yang, D., Liu, X.Y., 2020. Origin and spatio-temporal diversification of a fishfly lineage endemic to the islands of East Asia (Megaloptera: corydalidae). Syst. Entomol. 46, 124-139. https://doi.org/10.1111/syen.12452.
- Jiang, Y.L., Yue, L., Yang, F., Gillung, J.P., Winterton, S.L., Price, B.W., Contreras-Ramos, A., Hayashi, F., Aspöck, U., Aspöck, H., Yeates, D.K., Yang, D., Liu, X.Y., 2022. Similar pattern, different paths: tracing the biogeographical history of Megaloptera (Insecta: Neuropterida) using mitochondrial phylogenomics. Cladistics. 38, 374-391. https:// doi.org/10.1111/cla.12494.
- Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010.
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A., 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28, 1647-1649. https:// doi.org/10.1093/bioinformatics/bts199.
- Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.
- Kück, P., Meusemann, K., 2010. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115-1118. https://doi. org/10.1016/j.ympev.2010.04.024.
- Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054.
- Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., Calcott, B., 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772-773.
- Liu, X.Y., Hayashi, F., Viraktamath, C.A., Yang, D., 2012. Systematics and biogeography of the dobsonfly genus *Nevromus* Rambur (Megaloptera: Corydalidae: Corydalinae) from the Oriental realm. Syst. Entomol. 37, 657-669.
- Ma, C., Yang, P.C., Jiang, F., Chapuis, M.P., Shali, Y., Sword, G.A., Kang, L., 2012. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Mol. Ecol. 21, 4344-4358. https://doi.org/10.1111/j.1365-294X.2012.05684.x.
- Miller, M., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE), 2010, New Orleans. Annals. New York: IEEE, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129.
- Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximumlikelihood phylogenies. Mol. Biol. Evol. 32, 268-274. https://doi. org/10.1093/molbev/msu300.
- Rambaut, A., 2009. FigTree Version 1.3. 1. Available in: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 4 January 2011).
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539-542. https:// doi.org/10.1093/sysbio/sys029.
- Shen, R., Aspöck, H., Aspöck, U., Plant, J., Dai, Y., Liu, X.Y., 2022. Unraveling the evolutionary history of the snakefly family Inocelliidae (Insecta: Raphidioptera) through integrative phylogenetics. Cladistics. 38, 515-537.
- Simon, S., Hadrys, H., 2013. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol. Phylogenet. Evol. 69, 393-403. https://doi.org/10.1016/j.ympev.2013.03.033.

- Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. https://doi. org/10.1080/10635150701472164.
- Timmermans, M.J.T.N., Lees, D.C., Simonsen, T.J., 2014. Towards a mitogenomic phylogeny of Lepidoptera. Mol. Biol. Evol. 79, 169-178. https://doi.org/10.1016/j.ympev.2014.05.031.
- Trifinopoulos, J., Nguyen, L.T., von Haeseler, A., Minh, B.Q., 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, 232-235.
- Tu, Y.Z., Lin, A.L., Jiang, Y.L., Liu, X.Y., 2021. Comparative mitochondrial genomics and phylogenetics among species of the Oriental dobsonfly genus *Neoneuromus* van der Weele, 1909 (Megaloptera: corydalidae).
 J. Asia Pac. Entomol. 24, 1257-1265. https://doi.org/10.1016/j. aspen.2021.08.013.
- Wang, Y.R., Wang, Y.Y., Chang, W.C., Liu, X.Y., Yang, D., 2014. Sequencing and analysis of the complete mitochondrial genome of the giant dobsonfly *Acanthacorydalis orientalis* (McLachlan) (Insecta: Megaloptera: Corydalidae). Zool. Syst. 39, 209-223.
- Wang, Y.Y., Liu, X.Y., Garzón-Orduña, I.J., Winterton, S.L., Yan, Y., Aspöck, U., Yang, D., 2017. Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics. 33, 1-20.
- Yang, F., Chang, W.C., Hayashi, F., Gillung, J., Jiang, Y.L., Yang, D., Liu, X.Y., 2018. Evolutionary history of the complex polymorphic dobsonfly genus *Neoneuromus* (Megaloptera: corydalidae). Syst. Entomol. 43, 568-595.
- Zhang, D., Gao, F.L., Jakovlic, I., Zou, H., Zhang, J., Li, W.X., Wang, G.T., 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355. https://doi. org/10.1111/1755-0998.13096.

Supplementary Material

The following online material is available for this article:

- Figure S1 Phylogenetic relationships among the selected species of Megaloptera based on mtDNA. 1. BI analysis with MrBayes in PhyloSuite.
- Figure S2 ML analysis performed in IQ-TREE embedded in PhyloSuite.

Figure S3 - ML tree through IQ-tree website.

Figure S4 - BI tree through the CIPRES Science Gateway.

Table S1 - Genetic divergence among samples based on mtDNA.