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SUMMARY

Map units directly related to properties of soil-landscape are generated by
local soil classes. Therefore to take into consideration the knowledge of farmers is
essential to automate the procedure.  The aim of this study was to map local soil
classes by computer-assisted cartography (CAC), using several combinations of
topographic properties produced by GIS (digital elevation model, aspect, slope,
and profile curvature).  A decision tree was used to find the number of topographic
properties required for digital cartography of the local soil classes.  The maps
produced were evaluated based on the attributes of map quality defined as
precision and accuracy of the CAC-based maps.  The evaluation was carried out in
Central Mexico using three maps of local soil classes with contrasting landscape
and climatic conditions (desert, temperate, and tropical).  In the three areas the
precision (56 %) of the CAC maps based on elevation as topographical feature was
higher than when based on slope, aspect and profile curvature.  The accuracy of
the maps (boundary locations) was however low (33 %), in other words, further
research is required to improve this indicator.

Index terms: decision tree, digital elevation model, map quality.
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RESUMO:   CARTOGRAFIA ASSISTIDA POR COMPUTADOR USANDO
PROPIEDADES TOPOGRAFICOS: PRESICIÃO E EXACTIDÃO
DOS MAPAS DE SOLOS LOCAIS NA REGIÃO CENTRAL DE
MÉXICO

Mapas de solos locais gerado unidades do mapa diretamente relacionadas às propriedades
de solo-paisagem. Portanto, para ter em conta o conhecimento dos agricultores é fundamental
para automatizar o processo. O objetivo deste estudo foi realizar a cartografia assistida por
computador (CAC) das classes de solos locais, por meio de várias combinações de atributos
topográficos produzidos em GIS (modelo numérico do terreno, aspecto, declividade e curvatura
do perfil).  O método da árvore de decisão foi utilizado para localizar o número de atributos
topográficos necessários à produção de cartografia digital das classes de solo.  Os mapas
produzidos foram avaliados usando o atributo de qualidade do mapa, definido como sua
precisão e exatidão dos mapas produzidos pelo CAC.  A avaliação foi realizada no centro do
México, com três mapas de classes de solos locais com diferentes paisagens e condições climáticas:
árida, temperada e tropical.  Os resultados mostraram que, nas três áreas estudadas, os
mapas produzidos pelo CAC, usando o atributo de elevação como característica topográfica,
obtiveram a maior precisão (56 %).  No entanto, a exatidão dos mapas (localização dos
limites) foi menor: 33 %.  Isso significa que a precisão dos mapas produzidos ainda permanece
baixa, havendo necessidade de novas pesquisas para melhorar esse indicador.

Termos de indexação: árvore de decisão, modelo de elevação digital, qualidade do mapa.

INTRODUCTION

Soil maps generated with the photo-interpretation
technique are designed as landscape units, based on
Jenny’s paradigm of five soil-forming factors, which
associates soil variation with: climate, vegetation,
topography, parent material, and time (Hudson, 1992).
In this case, the photo-interpreter defines the
elementary mapping units, based on the interaction
of these factors, which govern the occurrence of soils
in the forms of the landscape (Bui, 2004).  However,
another methodology called Digital Soil Mapping
(DSM) used in soil science (McBratney et al., 2003) or
predictive soil mapping (Scull et al., 2003) is the
computer-assisted production of digital maps of soil
class and soil properties.  DSM makes use of
technological advances, including GPS receivers for
remote sensing, computational tools, considering
geostatistical interpolation and inference algorithms,
digital elevation models, and data mining.  Semi-
automated techniques and technologies are used to
acquire, process and visualize information on soils and
auxiliary aspects, reducing the costs (Hengl &
Rossiter, 2003).  Several methods for DSM have been
developed, for example: SoLIM (Zhu et al., 2001; Qi &
Zhu, 2003) or scorpan-SSPFe (soil spatial prediction
function with spatially autocorrelated errors)
(McBratney et al., 2003).  These models are based on
the five soil-forming factors associated with soil
variation: climate, vegetation, topography, parent
material, and time, and depend mainly on
topographical features.

The most commonly used topographical features
in DSM are elevation, slope, aspect, and profile

curvature.  The precision of the generated maps
ranges from 50 to 88 % (Lagacherie & Holmes, 1997;
Dobos et al., 2001; Moran & Bui, 2002; Hengl &
Rossiter, 2003; Peng et al., 2003; Qi & Zhu, 2003;
Schmidt & Hewitt, 2004; Scull et al., 2005; Giasson
et al., 2006; Smith et al., 2006; Qi et al., 2006; Ziadat,
2007; Figueiredo et al., 2008; Schmidt et al., 2008;
Hansen et al., 2009; Ballabio, 2010; Behrens et al.,
2010).  These maps produced by DSM are based on
scientific data by the extrapolation of soil properties,
but do not take local soil knowledge into consideration.
Alternatively, local soil classification has been the
central focus of studies undertaken worldwide to
understand farmers´ local knowledge about their soils
and the majority of studies include the cartography
of local soil classes (Barrera-Bassols & Zink, 2000;
Niemeijer & Mazzucato, 2003; Ortiz-Solorio et al.,
2005).  The local soil maps were generated based on
the local knowledge of farmers that identifies more
soillandscape relationships than scientific procedures
(Lleverino et al., 2002; Krasilnikov & Tabor, 2003).
The local soil classes are identified by the construction
of cartographic units.  These units are related to direct
observations of the farmers on soil-landscape relations.
In addition, the maps are strongly related to features
considered important for the farmers, e.g., workability,
yield, fruit quality, vegetation, and others (Ortiz-
Solorio et al., 2001).

The objective of this study was to evaluate the
precision and accuracy of maps produced with
computer-assisted cartography (CAC) in three areas
of Mexico with contrasting climate and landscapes.
The map quality was estimated based on precision
and accuracy (Brown, 1988).  Precision refers to the
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dispersion of the soil properties from the central
concept or typical profile in the case of the cartographic
unit.  Accuracy represents the correct location of the
soil boundaries.  CAC –based maps for these three
areas were produced using the following topographic
properties: elevation, slope, aspect, and profile
curvature, which are commonly used together, but
in this study the features were also considered
individually.

MATERIALS AND METHODS

Study regions

Three contrasting regions were selected whose soils
had been studied previously.  One is an arid region of
San Luis Potosi (long.  101 ° – 101 ° 20 ’ W.  and lat.
22 ° 16 ’ – 22 ° 34 ’ N; 2217–2244 asl); the climate
according to Garcia (1988) is arid or dry temperate
(BS); the main rock types are calcareous, shale,
conglomerates, gritty with some blotches of igneous
and metamorphic rocks (INEGI, 1988).  The second
is located in the temperate region of the state of Mexico
(long 98 ° 39 ’ – 99 ° W and lat 19 ° 22 ’ – 19 °32 ’ N;
1770–2000 m asl); the climate is sub-humid tempered
(C(w)); geology consists of basic vulcanoclastic
extrusive and acid igneous rocks (Garcia, 1988;
INEGI, 1988).  The third study area was Veracruz,
in the tropical region (long 97 ° 10 ’ – 97 ° 30 ’ W, lat
20 ° 10 ’ and 20 ° 40 ’ N; 50–300 m asl); the climate
is sub-humid warm (Garcia 1988); lithology was
characterized by calcareous shale, alluvial silts, and
small portions of tuff (INEGI, 1988).

Maps of local soil classes and topographic
properties

The soil class or ground truth maps (Figure 1)
published by Martinez et al. (2003) for the arid region,
by Pajaro & Ortiz (1987) for the temperate region,
and by Cruz Cadenas et al. (2008) for the tropical
region were used, generated with the methodology of
Ortiz et al. (1990).  The maps were digitalized in
ArcView 8.1 of ESRI® (Shaner & Wrightsell, 2000)
and imported into IDRISI® (Eastman, 2006).  The
digital elevation model (DEM) was extracted from the
download system of the Continuo de Elevaciones
Mexicano (INEGI, 2007) and resized to each study
area.  The pixel size was 28.5 x 28.5 m to enhance
precision for automated cartography of local soil maps
using the nearest neighbor technique (Smith et al.,
2006). From the DEM were used to extract slope,
aspect, profile curvature, flow, analytical hillshading,
convergence index, wetness index and catchment area
were generated using IDRISI® and SAGA System
(Cimmery, 2007).

Pre-processing of the topographic properties

Before using the nine topographic properties (TP)
to run a classification tree analysis, the problem or
multicolinearity effect of information overlap in the
predictors had to be corrected.  The multinomial logistic
regression was used to evaluate multicolinearity
(Debella-Gilo & Etzelmüller, 2009, Kempen et al.,
2009).

Regression coefficients were fitted for each local
soil class by using the single-hidden-layer neural
network (Venables & Ripley, 2002).  Two models were
evaluated, one with the nine TP and one with four
TP (DEM, aspect, profile curvature and slope) then a
X2 test was applied to detect whether they differ from
each other.

Training sites, classifier and input data

Polygons were projected onto the maps of local soil
classes to be used as training sites.  The IDRISI®

decision tree was used as a classifier.Decision tree
begin from a root and training sites. After pixels are
separated by binary rules.  If the separated pixels
belong to a single class, they are combined to form a
layer.  If the separation contains pixels from different
classes, an internode is fixed and the separation process
continues until classification is finished (Quinlan,
1988).  The combination of the TP used in the CAC is
presented in Table 1.  To obtain the maps 6, 7, 8, and
9, a single topographical property (DEM, slope, aspect,
and profile curvature, respectively) was used at a time.
The combination of the mentioned attributes was used
in the three study regions.

Evaluation of precision and accuracy

For an evaluation of precision, the Kappa index
(Congalton, 1988) and ordinary nonparametric
bootstrap were used to calculate the confidence
interval (DiCiccio & Efron, 1996).  A representative
sample for each whole area of the local soil class
(ground truth) maps was generated with 1 % of the
total pixels.  The spatial sampling was randomly
stratified, as proposed by François et al. (2003).  These
maps of sample points were crossed with the 27 CAC-
based maps and with the local soil maps of the three
studied areas.  The results were 27 grids of the sample
points (1 %) with the information of the CAC-based
maps from TP, and three grids of sample points for
the local soil classes.  A review of the Kappa index
was performed using the R system (Venables & Smith,
2010) comparing sampling points of ground truth with
each set of nine maps of the three regions.

The map accuracy was evaluated according to
Burgess & Webster (1984) as follows:first, a grid of
1 cm2 was projected according to the scale of each map.
Then, the distance between two consecutive
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Figure 1. Maps of local soil classes; regions: arid (a), temperate (b) and tropical (c).
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boundaries in a line was determined in meters.  In
this way, the distance in the two directions North-
South and East-West was measured and multiplied
by 0.52 to generate the optimum distance; then the
total longitude of the boundaries was divided by the
mean optimum distance to produce the optimum
sample size (number of points).  The number of
successes points on boundaries was registered.  The
binomial test was applied to contrast the total accuracy
of the maps using the R system (Venables & Smith,
2010).

RESULTS AND DISCUSSION

The X2 test showed no difference between the
models with nine or four TP in most study regions.
It is therefore possible to use the DEM, aspect, profile
curvature and slope in classification tree analysis
(Table 2).  Debella-Gilo & Etzelmüller (2009) argued
that elevation, aspect and slope are signiûcantly
correlated with soil spatial distribution because some
terrain attributes are related with radiation,
temperature, moisture and flow of materials, which
in turn control pedogenesis.

Evaluation of Precision (Kappa index)

The maps with highest precision in the arid,
temperate, and tropical regions were the maps 1, 2, 3
4, and 6, all of which included the DEM (Figure 2).
The precision of maps based on four attributes for all
areas was not better according to the statistical test
than map 6 with only DEM.  This means that the
CAC-based maps can be produced using only the DEM

Table 1. Topographic attributes used in the classification with the decision tree

Table 2. Multinomial logistic regression

(1)  α = 0.05.

Figure 2. Kappa confidence intervals of the maps of
the Arida (a), Temperate (b) and Tropical (c)
regions (Bootstrap = 10,000 replicates). Map 1, 2,
3, 4, 5, 6, 7, 8, and 9 see Table 1.
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regions.  Similar to the results obtained in the case of
precision, the maps with highest accuracy were those
where the DEM was used as input data for CAC
(Table 4).  Nevertheless, the highest accuracy was
less than 56 % in all maps generated.

The differences between accuracy and precision of
the maps found in this study coincided with that of
Lleverino et al. (2000).  They found that these
parameters could have a variation of more than 20 %.
This means that a map can be precise but not have
the appropriate accuracy in all cases.  For this study,
the difference between precision and accuracy was
more than 30 %, which is a higher variation than
reported by Lleverino et al. (2000) for the three study
regions.

The best CAC-based maps are presented in
Figure 3.  Map 4 of the arid region is considered the
best because its precision and accuracy are 27 and
10 % respectively, in comparison with the other eight
maps (Figure 3a).  The low quality of the map is
because the local soil classes Arena, Arena gravosa,
Calichuda, Cuerpo and Enlamada were
underestimated by more than 20 % and the
remaining classes were overestimated by more than

as input data.  On the other hand, the map quality
varies depending on the region: for the arid and
temperate regions the precision was less than 45 %,
and for the tropical region, the precision was higher
than 57 % (Figure 2).  The reason could be that the
decision tree model for the tropical region had fewer
bugs and the setting to identify the local soils classes
was better.  These results showed that DEM was a
good attribute for the delimitation of a map of local
soil classes in a tropical region.  Moreover, the number
of local soil classes identified in the maps of the
temperate and arid areas affects map precision, by
the inherent complexity of the distribution of local
soil classes, reducing the quality of the CAC-based
maps.  In addition, maps of local soil classes of the
arid and temperate region have small soil classes and
therefore proportional sampling must be used to obtain
more reliable results (Schmidt et al., 2008).  The
poorest topographic properties for map delimitation
were profile curvature, aspect, and slope as input data,
individually as well as combined (maps 7, 8, and 9),
which indicates that elevation is more closely related
with the soil classes than the other three elements.
Similar results were found by Ballabio (2009), who
assessed 20 maps of prediction variables and derived
topographic and geomorphometric data.

Evaluation of accuracy

According to the technique of Burgess & Webster
(1984), the highest sample size was from 448 points
(map 9) to 2425 points (map 2) for the map of local
soil classes of San Luis Potosi, since it has the longest
boundaries, followed by the temperate region from
16 points (map 7) to 111 points (map 4) in number of
samples, and finally the tropical region from 26 points
(map 1) to 58 points (map 8).  The tropical region has
longer boundaries than the temperate area, but the
average distance between boundaries, resulting in a
smaller number of samples per ha (Table 3).

The accuracy obtained in this study for the maps
of local soil classes was highest for the tropical region
followed by the maps of the temperate, and arid

Table 4. Binomial test (ααααα = 0.05) to evaluate accuracy
of boundaries

Table 3. Sample size per map type and climatic region to calculate accuracy

(1) The term “empaty” means that the decision tree classifier was able to identify only one class in the entire area.
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30 %.  Map 6 of the temperate region had the highest
precision and accuracy, with 45 and 14 %, respectively.
However, the quality is still considered low because
neither attribute exceeds 50 %.  The main problems
found were the overestimation by more than 60 % of
the Arena and Lama soil classes, and the soil classes
of Blanca and Cacahuatuda underestimated by less

than 16 % (Figure 3b).  In the tropical area, map 6
was the best with 56 % precision and 33 % accuracy.
The local soil class of Arenal was overestimated by
more than 100 %, which could be explained because
some Barrial class sites were confused with the Arenal
classes, reducing the precision of estimation
(Figure 3c).

Figure 3. Map 1 (DEM, aspect, slope and profile curvature) of the arid region (a), Map 6 (DEM) of the temperate
region (b) and Map 6 (DEM) of the tropical region (c).
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CONCLUSIONS

1. In general, the DEM was the topographic
property that produced the best maps, because the fit
of the local soil classes was better with elevation than
with slope, profile curvature and aspect.

2. The precision of the best maps ranged from 27
to 56 % and the accuracy of the best maps from 10 to
33 %.

3. The precision and accuracy were highest for
maps of the tropical region, while the decision tree
models of the arid and temperate region showed
misclassifications.

The study showed that the precision of CAC-based
maps could be acceptable for some regions whereas
the accuracy of the maps still remains a problem.
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