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SUMMARY

Soil surveys are the main source of spatial information on soils and have a

range of different applications, mainly in agriculture. The continuity of this activity

has however been severely compromised, mainly due to a lack of governmental

funding. The purpose of this study was to evaluate the feasibility of two different

classifiers (artificial neural networks and a maximum likelihood algorithm) in the

prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain

attributes such as elevation, slope, aspect, plan curvature and compound

topographic index (CTI) and indices of clay minerals, iron oxide and Normalized

Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery,

were used as discriminating variables. The two classifiers were trained and validated

for each soil class using 300 and 150 samples respectively, representing the

characteristics of these classes in terms of the discriminating variables. According

to the statistical tests, the accuracy of the classifier based on artificial neural

networks (ANNs) was greater than of the classic Maximum Likelihood Classifier

(MLC). Comparing the results with 126 points of reference showed that the resulting

ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when

using the two classifiers were caused by: a) the geological heterogeneity of the area

coupled with problems related to the geological map; b) the depth of lithic contact

and/or rock exposure, and c) problems with the environmental correlation model

used due to the polygenetic nature of the soils. This study confirms that the use of

terrain attributes together with remote sensing data by an ANN approach can be a

tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost

remote sensing data and the ease by which terrain attributes can be obtained.

Index terms: terrain attributes; neural networks; maximum likelihood.
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RESUMO: COMPARAÇÃO ENTRE REDES NEURAIS ARTIFICIAIS E
CLASSIFICAÇÃO POR MÁXIMA VEROSSIMILHANÇA NO
MAPEAMENTO DIGITAL DE SOLOS

O levantamento de solos é a principal fonte de informação espacial sobre solos para
diferentes usos, principalmente o uso agrícola. No entanto, a continuidade dessa atividade tem
sido grandemente comprometida, principalmente pela escassez de recursos financeiros. O objetivo
deste estudo foi avaliar a eficiência da utilização de dois classificadores distintos (redes neurais
artificiais - RNAs e o algoritmo da máxima verossimilhança - Maxver) na predição de classes
de solos em uma área na região noroeste do Estado do Rio de Janeiro. As variáveis
discriminantes usadas incluem atributos do terreno, como elevação, declividade, aspecto, plano
de curvatura e índice topográfico combinado (CTI) e índices clay minerals, iron oxide e de
vegetação NDVI, derivados de uma imagem do sensor ETM+ do LANDSAT 7. Para o
treinamento e a validação dos classificadores, foram utilizadas, respectivamente, 300 e 150
amostras por classe de solo, representativas das características dessas classes, com relação às
variáveis discriminantes utilizadas. De acordo com os testes estatísticos realizados, o
classificador com base na RNA produziu maior exatidão do que o classificador clássico da
máxima verossimilhança (Maxver). A comparação com 126 pontos de referência coletados no
campo evidenciou que o mapa produzido pela RNA teve desempenho superior (73,81 %) ao
mapa produzido pelo algoritmo Maxver (57,94 %). As principais causas de erros detectadas
na utilização desses classificadores foram: a heterogeneidade geológica da área aliada a
problemas no mapa geológico utilizado; profundidade do contato lítico e, ou, exposição da
rocha; e problemas com o modelo de correlação ambiental utilizado em razão da natureza
poligenética dos solos. Os resultados obtidos permitem inferir que a utilização de atributos do
terreno juntamente com dados de sensoriamento remoto em uma abordagem por RNAs pode
contribuir para facilitar o mapeamento de solos no Brasil, principalmente por causa da
disponibilidade de dados de sensores remotos a custos mais baixos e da facilidade de obtenção
dos atributos do terreno.

Termos de indexação: atributos do terreno; redes neurais artificiais; máxima verossimilhança.

INTRODUCTION

Soil survey is one of the main sources of spatial
information on soils and has a wide range of uses.
The qualitative landscape approach used in these
surveys based on the interpretation of aerial
photographs has however been criticized, for not
allowing an understanding of the quantitative
relationships between the shape of the land surface and
the soils and their properties (McBratney et al., 2000).

Therefore, various quantitative methods
(McBratney et al., 2003) have been developed over the
last few years to describe, classify and study patterns
of spatial distribution in soils. These methods are
grouped together in an emerging field of soil science
known as pedometrics (McBratney et al., 2000). This
way of mapping soils digitally involves the quantitative
prediction of soils and their properties using measured
and/or observed and auxiliary data representing
factors of soil formation. Various techniques have been
used to predict soil properties and/or classes, such as
kriging (Brus & Heuvelink, 2007; Weindorf & Zhu,
2010), multiple logistic regression (Hengl et al., 2007;
Ten Caten et al., 2011), decision trees (Elnaggar &
Noller, 2010; Giasson et al., 2011), and artificial neural
networks (Behrens et al., 2005; Boruvka & Penizek,
2007; Chagas et al., 2010), among others.

The main advantages of artificial neural networks
(ANNs) are an efficient handling of large quantities
of data and their capacity for generalization.
Furthermore, they require no specific type of data
distribution, unlike the traditional parametric
statistical approach, which implies normal data
distribution, and allow the manipulation of data from
different sources, with different levels of precision and
noise (Atkinson & Tatnall, 1997; Benediktsson &
Sveinsson, 1997).

In soil science, ANNs have already been used to
map soil properties, mainly (McBratney et al., 2003).
However, their application in the mapping of soil
classes is less common and has been reported in only
a few studies. Zhu (2000) used ANNs to populate a
soil similarity model constructed to represent soil
landscape as spatial continua. In this study, a set of
soil formative factors were used as input data for the
network, and the map derived by this approach was
more detailed and superior to that derived from a
conventional soil map.

An approach to the digital mapping of soil classes
based on ANNs was developed by Behrens et al. (2005),
using 69 terrain attributes, 53 geological units and
three types of land use, extracted from existing maps
and databases. In general, this approach proved fairly
satisfactory, saved time, reduced financial costs and
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provided reliable results, with an average accuracy of
the evaluated soil units of over 92 % for both training
and validation. Boruvka & Penizek (2007) used ANNs
for the mapping of soil classes with data of pH, clay
levels and textural gradient from pre-existing soil
surveys, as well as data on elevation, aspect and plan
curvature as discriminating variables. The results
demonstrated differences in the allocation of the soil
classes.

In Brazil, the use of ANNs for the prediction of
soil class was described by Chagas et al. (2010, 2011),
who demonstrated the efficiency of this approach in
digital soil mapping. Despite the growing use in recent
years, there is still an enormous lack of studies
involving digital soil mapping in Brazil, and mainly
with a view to the selection of predictors, soil sampling
techniques, evaluation of prediction methods (MLC,
ANNs, decision trees, multiple logistic regressions,
etc.), validation methods, and even the evaluation of
the different environmental conditions in the country.

In this context, this study differs from previous work
in its objective to compare the efficiency of the two
prediction methods (ANNs and MLC) for digital soil
mapping, using terrain attributes derived from a digital
elevation model (DEM) and data from an orbital remote
sensor (Landsat 7), to evaluate the real possibility of
using these approaches in medium-scale soil surveys.

MATERIALS AND METHODS

The study was carried out in an area of
approximately 10,000 ha in the basin of the São
Domingos River, a tributary of the Muriaé River in
the northwestern region of the State of Rio de Janeiro,
between the UTM coordinates 7,629,223N to
7,638,239N and 186,146E to 197,180E, Zone 24K,
Datum Córrego Alegre (Figure 1). Two geomorphological
systems can be found in the region: the hillslope area
Mar de Morros and mountain chains and layered
structures (NE-SW); the predominant lithology
structure in the region comprise noritic granulites,
heterogeneous migmatites and Quaternary alluvial
deposits (DRM-RJ, 1980).

To understand the soil-landscape relationships, the
area was surveyed according to procedures established
for pedological surveys (Embrapa, 1995). For the
characterization of the identified soil classes, 73 soil
profiles and 11 extra samples were collected with
augers and classified according to the Brazilian Soil
Classification System (Embrapa, 2006). In view of the
high number of soil classes and the high complexity
of the training and validation processes, mainly for
ANNs, as well as the limitations of the different
programs used at each step, the area was subdivided
(shown in table 1). The Quaternary deposit areas were
considered to be the flattened patches in the areas of
noritic granulites and heterogeneous migmatites.

This approach, which uses two different supervised
classification algorithms (ANNs and the maximum
likelihood algorithm), is based on the soil-landscape
concept developed by Jenny (1941), according to which
the soil is the result of interactions between formation
factors over time.

Firstly, a digital elevation model (DEM) with a
spatial resolution of 30 m was generated using the
Topo to Raster option of the ArcGIS 10 program
(ESRI, 2010). For this purpose, contour lines (20 m
intervals), hydrography and elevation points contained
in the topographic maps of IBGE SF-23-X-D-III-4
(Miracema) and SF-24-G-I-3 (São João do Paraíso) were
used, both at a scale of 1:50,000. Then, after removing
the spurious pits, this DEM was used to calculate the
terrain attributes: elevation, slope, aspect, plan
curvature and compound topographic index (CTI),
according to Gallant & Wilson (2000), which together
with the clay minerals, iron oxide (Sabins Junior, 1997)
and Normalized Difference Vegetation Indices (NDVI)
(Wiegand et al., 1991), derived from Landsat 7 ETM+
sensor imagery, represent the main factors of soil
formation (discriminating variables) for the study
area.

The compound topographic index (CTI) was
obtained by equation 1:

(1)

where As is the contributing area ((flow accumulation
+ 1) x cell size of the grid in m2) and β is the slope
expressed in radians.

The indices derived from the Landsat 7 ETM+
sensor images were used to reduce the work involved
with data analysis by maximizing spectral information
for a reduced number of sensor bands. Some studies
demonstrated the relationship between the NDVI and
soil moisture (Narasimha Rao et al., 1993) and the
soil physical properties (Yang et al., 1997). This index
was calculated as follows:

(2)

Similarly, clay minerals and iron oxide indices are
frequently included in geological studies, underlying
the distinction of soils with different physical and
mineralogical characteristics (Sabins Junior, 1997).
The clay mineral index was obtained by the ratio of
band 5 (1.55-1.75 µm) by band 7 (2.08-2.35 µm) and
the iron oxide index by the division of band 3 (0.63-
0.69 µm) by band 1 (0.45-0.52 µm), both obtained from
images of ETM+ sensor (LANDSAT 7) taken in
August, 1999, using ERDAS Imagine 8.5 software.

The application of ANNs starts with the network
training process (Tso & Mather, 2009). Firstly, the
values related to all discriminating values were
normalised to the interval between 0 and 1
[(discriminating variable - minimum value)/
(maximum value - minimum value)] to facilitate the
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training process and avoid ANN saturation, as very
large values can hamper the problem solution
(saturation of the transfer functions could hinder the
convergence of the network). Furthermore, efforts were
made to prevent large variations in unimportant
variables from inhibiting small variations in other
more important variables.

The Java Neural Network Simulator was used for
the classification by ANNs, based on the Stuttgart
Neural Network Simulator 4.2 Kernel (Zell et al.,
1996), and an applicable algorithm (funcpow) developed
by Vieira (2000) for the classification by a Maximum
Likelihood Classifier (MLC).

Two sets of independent stratified samples were
collected from the areas containing profiles

considered to be representative of each soil class,
one for the training process and the other for
validation of the two classifiers. In this way, efforts
were made to represent the characteristics of each
one in relation to the discrimination variables used
(elevation, slope, aspect, plan curvature, CTI index,
clay mineral index, iron oxide index, and NDVI
index). It should be highlighted that the soil classes
differed in relation to one or more of the
discriminating variables. The training samples were
used so that the classifiers could establish
relationships between the discriminating variables
(input data) and the soil classes (output data)
through a learning process. The validation samples
were then used to test this relationship by statistical
means.

Figure 1. Localization of the study area in the basin of the São Domingos River (in the northwest of Rio de

Janeiro state) and elevation profile across the diagonal line A-B, showing the geomorphological domains

and main lithology of the area.
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The training samples for both classifiers consisted
of 300 samples or pixels per class, i.e., 3,600 samples
for Area 1 and 3,000 samples for Area 2. The number
of validation samples was limited to 50 % of the number
of training samples (150 samples or pixels per class),
with 1,800 samples for Area 1 and 1,500 samples for
Area 2, according to Zhu (2000).

In the training step, 10 ANN architectures were
tested, which differed only in terms of the number of
neurons in the internal layer (3, 5, 6, 7, 8, 9, 10, 15,
20, and 25 neurons). All of these had the same number
of neurons in the input layer (number of
discriminating variables) and in the output layer (12
soil classes for Area 1 and 10 for Area 2). The learning
algorithm used was the backpropagation method, with
random allocation of interneuron weights between -
0.5 and 0.5 and a learning rate of 0.2, involving 10,000
learning cycles.

The results were evaluated through statistical
means using the Kappa coefficient and overall
classification accuracy, derived from a confusion
matrix (Congalton & Green, 1999) from the validation
samples. In this way, the ANN architecture obtaining
the best result for the Kappa coefficient was selected
for the prediction of the soil classes.

A statistical test to verify the significance of the
differences between two or more classifiers (represented

by their respective confusion matrices) using Kappa
coefficient analysis is proposed as an alternative
approach for the comparison of independent confusion
matrices. In this way, a significance matrix was
generated using the results of the statistical tests for
the chosen ANN and the classification with MLC,
using the Kappa values and Kappa variance between
the classifications, by means of the Z statistical test.
The formula to test the significance between two
independent Kappa coefficients (Z test) is given in the
following equation:

(3)

Where Ka1 and Ka2 are the two Kappa coefficients
that are being compared (Congalton & Mead, 1986)
and var is the variance of the Kappa coefficient (Ka).

Thus, the Z test firstly verifies if the classification
differs from a causal classification. In other words, if
Z calculated < Zα/2 tabulated, the classification is
significantly better than a random classification,
where α/2 is the confidence level of the Z test and the
number of degrees of freedom is assumed to be infinite.
In a second analysis, the test verifies if there is a
significant difference between the Kappa values
resulting from the evaluation by the different
classifiers. Values < than 1.96 (95 % confidence level)

Symbol Soil class No. profiles and/or extra samples

Area 1 - Noritic granulites 39

AR1 Rock Outcrop -

CXbe typical eutrophic Tb Haplic Cambisol 5

GXbe solodic or typical eutrophic Tb Haplic Gleysol 2

LVAd typical dystrophic Red-Yellow Latosol 2

PAe1 typical eutrophic Yellow Argisol 2

PVe1 saprolitic eutrophic Red or Red-Yellow Argisol 2

PVe2 typical eutrophic Red Argisol 6

PVe3 nitosolic eutrophic Red Argisol 4

PVAe1 typical eutrophic Red-Yellow Argisol, highly undulating topography 4

PVAe2 typical eutrophic Red-Yellow Argisol, undulating topography 4

PVAd latosolic dystrophic Red-Yellow Argisol 6

RLe1 typical eutrophic Litholic Neosol 2

Area 2 - Heterogeneous migmatites 45

AR2 Rock Outcrop -

CXve typical eutrophic Ta Haplic Cambisol 10

GXve solodic or typical eutrophic Ta Haplic Gleysol 9

LVd typical dystrophic Red Latosol 2

PAe2 abruptic eutrophic Yellow Argisol 4

PVe4 saprolitic abruptic eutrophic Red Argisol 3

PVe5 abruptic eutrophic Red Argisol, highly undulating topography 7

PVe6 latosolic abruptic eutrophic Red Argisol 4

PVe7 abruptic eutrophic Red Argisol, undulating topography 4

RLe2 typical eutrophic Litholic Neosol 2

Table 1. Soil classes identified in the study areas
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indicate no significant difference between the
estimated Kappa values, while values > 1.96
demonstrate a significant difference.

The only existing soil survey in the area has a
scale of 1:250,000 (Embrapa, 2003), a scale
incompatible with the level of detail required for
comparison with the digital maps produced by the
two classifiers (between 1:100,000 and 1:50,000,
medium scale). Therefore, 126 points of reference were
used to determine the percentage of locations classified
correctly on the maps, according to the procedure used
by Zhu (2000). These reference points were collected
by projects developed by Embrapa Solos in the area
(the CNPq/CTHidro project, the Radema project and
the Aquiferos project), including soil profiles, extra
samples and observation points that were not used
for the training and validation processes (independent
points). The highest concentration of points in the
middle of the area refers to a semi-detailed study
carried out in the Barro Branco watershed for the
Aquiferos project.

RESULTS AND DISCUSSION

The contribution of the different variables in the
discrimination of soil class in Areas 1 and 2 are shown
in table 2.

In general, the differentiation of the soil classes
detected by terrain attributes was much clearer than
by the Landsat 7 indices. Studies carried out by Dobos
et al. (2000, 2001) using terrain attributes and data
from the Advanced Very High Resolution Radiometer
(AVHRR) on the NOAA satellite for soil mapping
showed that terrain attributes alone were not
sufficient for the discrimination of the soils in the areas
studied, while integrating this data with the AVHRR
data increased classification performance.

The best architecture for final data classification
was selected based on the results of the Kappa
coefficient and the overall accuracy, obtained using
the validation samples (Figure 2).

In this evaluation, the highest values for the overall
accuracy and the Kappa coefficient for Area 1, obtained
using the validation samples, were achieved using
network architecture with only one input layer
containing 8 neurons (Kappa value of 0.908). The
Kappa coefficient for Area 2 performed best when using
a network architecture with an input layer containing
five neurons (Kappa value of 0.893). An analysis of
the Kappa significance matrix (Table 3) showed
significant differences between these networks and
the others. These two architectures were therefore
selected for the final data classification.

On the other hand, using MLC in the classification
led to an overall accuracy of 84.4 % and a Kappa
coefficient of 0.830 for Area 1, and an overall accuracy

of 72.3 % and a Kappa coefficient of 0.693 for Area 2.
A comparison of the performances of the two
classification types, based on an analysis of the Kappa
significance matrix, indicated significant differences
between these classifications for both areas (Table 4).

The results obtained in this evaluation are similar
to those in other studies, in which the approach via
ANNs generally led to better results than by the MLC,
mainly in the classification of soil use and cover using
remote sensing data (Heermann & Khazenie, 1992;
Bischof et al., 1992; Paola & Schowengerdt, 1995;
McBratney et al., 2000).

Despite the significant differences between the two
classifiers, with a better performance of the ANN
classification (Kappa values of 0.908 and 0.893 for
Areas 1 and 2 respectively), it should be emphasized
that this approach requires more time and more
computational resources for the training process than
the classic approach using the MLC. However, for
Yool (1998), ANNs have an advantage over
conventional supervised classification methods such
as MLC, as these are inadequate and impractical for
the mapping of large areas.

According to Kanellopoulos & Wilkinson (1997),
one aspect that has been neglected in the comparisons
between statistical classifiers and artificial neural
networks is the existence of significant differences in
the performance of these classifiers when classes are
considered individually. The confusion matrices
obtained for the tested classifications based on the
validation set are presented in tables 5 and 6.

In the area characterized by noritic granulites
(Area 1), the worst performance for ANN classification
occurred for class PAe1 (62.0 %), with greatest
confusion with classes PVAe2, GXbe and LVAd. In
the case of PVAe2 and GXbe, the confusion can be
explained by the extremely similar characteristics of
the discriminating variables between these classes,
mainly for slope, CTI index and the indices derived
from Landsat 7 (Table 2). For class LVAd, the
differentiation was clearest with regard to elevation,
slope and CTI index (Table 2); therefore, the confusion
observed must be attributed to an error in the
classifier. Accuracies exceeded 85 % for all other soil
classes (Table 5).

In the area characterized by Heterogeneous
Migmatites (Area 2), the worst performance occurred
for class PVe5 (70.7 %), with greatest confusion with
class PVe6 (Table 5). These classes have very similar
environmental characteristics and can be
differentiated only by their aspect (Table 2). Accuracies
exceeded 95 % for all other soil classes (Table 5).

For the Maximum Likelihood classification (Table
6), the performances in the classification of the area
of noritic granulites (Area 1) was poorest for the
classes PVAd (60 %) and PAe1 (56 %), versus 92.7
and 62 % obtained using ANNs. The confusion of PVAd
was greater with PVe1, and since the average values
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Classe
Elevation Slope Aspect Plan CTI Clay Iron

NDVI
(m) (%) (degrees) curvature index minerals oxide

Area 1 - Noritic granulites

AR1 Average 634.24 83.73 145.54 0.09 5.01 126.31 80.06 151.10

S.D. 81.26 11.38 102.80 0.33 0.53 28.37 30.40 32.38

CXbe Average 426.23 29.97 182.65 0.04 5.69 148.73 66.12 173.27

S.D. 156.15 9.87 96.88 0.35 0.67 20.69 31.35 24.41

GXbe Average 128.19 1.68 179.38 0.00 9.98 124.88 117.06 135.58

S.D. 9.85 1.00 127.49 0.02 1.99 17.73 25.15 21.11

LVAd Average 221.60 8.52 180.63 0.05 6.61 118.61 119.08 120.03

S.D. 12.85 3.49 103.71 0.13 0.58 14.51 25.80 12.55

PAe1 Average 147.73 6.52 217.91 -0.01 8.22 124.16 114.20 132.42

S.D. 14.79 0.80 121.18 0.13 1.17 16.31 19.79 23.30

PVe1 Average 367.17 44.64 147.45 -0.40 6.89 137.53 92.64 152.08

S.D. 146.38 11.34 113.77 0.19 0.69 22.04 34.25 26.57

PVe2 Average 248.07 34.04 37.56 0.15 5.48 115.53 134.38 125.45

S.D. 72.85 10.97 18.74 0.13 0.35 17.25 32.87 14.93

PVe3 Average 231.80 36.63 308.82 0.16 5.64 116.29 108.80 120.09

S.D. 69.06 12.67 18.74 0.12 0.61 11.81 22.06 12.86

PVAe1 Average 237.01 36.35 239.59 0.12 5.48 124.04 88.73 122.08

S.D. 94.00 9.04 18.70 0.22 0.46 17.11 22.67 17.40

PVAe2 Average 135.75 11.07 138.85 -0.008 7.60 119.17 117.25 127.78

S.D. 22.41 1.80 81.60 0.13 1.00 17.49 22.63 18.59

PVAd Average 208.33 34.89 139.18 0.15 5.56 119.69 115.21 126.45

S.D. 65.99 8.52 22.63 0.19 0.45 16.33 25.70 19.75

RLe1 Average 717.55 57.59 208.11 0.14 5.21 156.26 43.63 179.93

S.D. 56.17 3.38 69.12 0.35 0.57 26.71 19.61 35.80

Area 2 - Heterogeneous migmatites

AR2 Average 487.79 82.40 191.04 0.18 4.90 122.57 62.32 112.57

S.D. 49.40 8.66 60.40 0.24 0.44 17.33 27.29 29.84

CXve Average 276.00 44.54 182.34 -0.10 6.47 127.85 97.51 137.03

S.D. 57.43 7.60 95.11 0.17 0.71 16.35 26.72 18.98

GXve Average 145.63 2.46 177.37 -0.001 9.71 120.86 112.20 132.46

S.D. 6.96 1.38 135.25 0.04 1.75 15.74 21.77 17.37

LVd Average 210.52 9.58 182.15 0.07 6.41 127.30 111.91 121.88

S.D. 11.46 3.94 96.85 0.13 0.43 12.55 21.61 12.17

PAe2 Average 158.65 5.53 220.38 0.01 8.20 118.44 109.37 133.88

S.D. 15.97 1.45 115.49 0.08 1.08 19.84 22.65 23.83

PVe4 Average 279.31 49.24 176.26 -0.08 6.25 127.27 93.85 133.03

S.D. 65.91 9.22 86.87 0.22 0.80 14.59 25.70 21.30

PVe5 Average 224.49 33.89 290.93 0.11 5.78 116.65 105.57 117.46

S.D. 52.73 9.33 73.25 0.18 0.60 10.61 24.38 12.69

PVe6 Average 237.63 32.41 128.41 0.13 5.61 118.13 113.22 123.98

S.D. 32.85 10.20 19.56 0.18 0.55 12.31 22.03 14.21

PVe7 Average 154.84 11.73 247.36 -0.02 7.48 123.28 107.54 133.32

S.D. 21.01 1.69 85.34 0.17 0.99 14.39 18.52 18.17

RLe2 Average 547.34 63.63 3.06 0.10 5.36 165. 62 46.33 167.39

S.D. 111.02 16.11 1.89 0.36 0.75 23.17 16.92 33.85

S.D.: standard deviation.

Table 2. Descriptive statistics for the discriminating variables between the soil classes
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of the discriminating variables of these classes are
very different (Table 2), it can be concluded that MLC
was less efficient than ANNs in the discrimination of
these classes. The confusion of class PAe1 was greatest
with class PVAe2 (Table 6), in part related to the
similarity of the discriminating variables between
these classes (Table 2). Therefore, the result of ANNs
for class PAe1 (62 %) suggests that MLC is less
efficient.

In the area characterized by Heterogeneous
Migmatites (Area 2), the worst performances were
obtained for classes PVe6, PVe4 and GXve, with
accuracies of 44.7, 48.0 and 49.3 % respectively.
Accuracies of 83.3, 92.7 and 97.3 % were obtained
using ANNs for the same classes, which shows that
the MLC was less efficient than ANNs in the
discrimination of these classes. For PVe6, the

Figure 2. Kappa coefficient obtained from the neural

networks tested.

Area 1 - Noritic granulites

Network R3(1) R5 R6 R7 R8 R9 R10 R15 R20 R25

Overall accuracy 86.6 813 86.4 86.9 91.6 89.2 88.6 88.0 89.7 78.9

Kappa 0.85 0.80 0.85 0.86 0.91 0.88 0.88 0.87 0.88 0.77

Variance(2) 0.077 0.100 0.078 0.075 0.051 0.063 0.067 0.070 0.061 0.110

R3 97.21

R5 4.28* 79.60

R6 0.08 4.20* 96.47

R7 0.41 4.69* 0.49 99.07

R8 4.86* 9.11* 4.93* 4.45* 127.15

R9 2.45* 6.74* 2.53* 2.04* 2.44* 111.12

R10 1.92 6.19* 1.99* 1.51 2.95* 0.53 107.02

R15 1.32 5.60* 1.40 0.91 3.55* 1.13 0.60 103.87

R20 2.30* 6.62* 2.38* 1.89 2.65* 0.18 0.35 0.96 112.67

R25 6.07* 1.79 5.98* 6.47* 10.88* 8.52* 7.97* 7.38* 8.41* 73.42

Area 2 - Heterogeneous migmatites

Network R3 R5 R6 R7 R8 R9 R10 R15 R20 R25

Overall accuracy 82.8 90.4 83.7 80.4 83.9 80.8 81.8 82.9 79.6 86.8

Kappa 0.809 0.893 0.819 0.782 0.822 0.787 0.798 0.811 0.774 0.853

Variance(2) 0.117 0.071 0.112 0.128 0.11 0.126 0.121 0.116 0.132 0.094

R3 74.79

R5 6.13* 105.98

R6 0.66 5.47* 77.39

R7 1.73 7.87* 2.39* 69.12

R8 0.86 5.28* 0.20 2.59* 78.38

R9 1.41 7.55* 2.07* 0.31 2.28* 70.11

R10 0.71 6.86* 1.38 1.01 1.58 0.70 72.55

R15 0.13 6.00* 0.53 1.86 0.73 1.54 0.84 75.30

R20 2.22* 8.35* 2.88* 0.50 3.09* 0.81 1.51 2.35* 67.37

R25 3.03* 3.11* 2.37* 4.77* 2.17* 4.45* 3.75* 2.90* 5.26* 87.98

Table 3. Significance matrix for the different architectures tested

* Significant difference of 95 %; (1) numbers correspond to the neurons in the hidden layer; (2) values multiplied by 1000.
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confusion with class PVe5 was greatest, as well as for
GXve with PAe2 and PVe4 with PVe6 (Table 6). The
MLC performed well in discriminating the other
classes, despite some confusion, with accuracy values
exceeding 78.7 %.

Finally, a comparison between ANN and MLC shows
a differentiated classification in Area 1, with ANNs
performing better for the classes AR1, GXbe, PAe1, PVe1,
PVe2, PVe3, PVAd, PVAe2, and RLe1, while MLC was
only better in the classification of CXbe and PVAe1. The
LVAd was classified equally by the two classifiers (Tables
5 and 6). In Area 2, the ANN approach was better in the
classification of all classes except PVe5.

According to Landis & Koch (1977), the Kappa
coefficient value obtained through the neural network

Area 1 - Noritic granulites

Class AR1 CXbe GXbe LVAd PAe1 PVe1 PVe2 PVe3 PVAe1 PVAe2 PVAd RLe1 Total User’s(1)

AR1 147 0 0 0 0 0 0 0 0 0 0 5 152 96.7

CXbe 0 135 0 0 0 1 1 0 0 0 0 2 139 97.1

GXbe 0 0 143 4 10 0 0 0 0 0 0 0 157 91.1

LVAd 0 0 0 131 8 0 2 0 0 3 4 0 148 88.5

PAe1 3 0 6 5 93 0 0 0 0 1 0 0 108 86.1

PVe1 0 0 0 2 0 145 1 1 0 0 0 1 150 96.7

PVe2 0 0 0 0 0 0 144 6 0 0 3 0 153 94.1

PVe3 0 0 0 0 0 2 0 140 3 1 0 0 146 95.9

PVAe1 0 1 0 0 0 1 0 3 146 0 4 0 155 94.2

PVAe2 0 0 1 6 39 0 2 0 0 143 0 0 191 74.9

PVAd 0 0 0 0 0 0 0 0 1 2 139 0 142 97.9

RLe1 0 14 0 0 0 1 0 0 0 0 0 142 157 90.4

Total 150 150 150 150 150 150 150 150 150 150 150 150 1800

Producer's(2)98.0 90.0 95.3 87.3 62.0 96.7 96.0 93.3 97.3 95.3 92.7 94.7

Overall accuracy = 91.6; Kappa = 0.908; Variance = 0.000051; Z calculated = 127.14; Z tabulated = 1.96

Area 2 - Heterogeneous migmatites

AR2 CXve GXve LVd PAe2 PVe4 PVe5 PVe6 PVe7 RLe2 Total User’s(1)

AR2 150 2 1 0 0 1 0 0 0 0 154 97.4

CXve 0 145 2 3 0 3 0 0 0 0 153 94.8

GXve 0 2 143 1 0 7 3 0 0 0 156 91.7

LVd 0 1 0 139 7 1 0 0 0 0 148 93.9

PAe2 0 0 3 1 106 3 0 7 0 0 120 88.3

PVe4 0 0 1 6 24 125 0 9 0 0 165 75.8

PVe5 0 0 0 0 3 0 128 2 0 1 134 95.5

PVe6 0 0 0 0 10 9 17 130 4 2 172 75.6

PVe7 0 0 0 0 0 0 0 0 146 3 149 98.0

RLe2 0 0 0 0 0 0 2 2 0 144 148 97.3

Total 150 150 150 150 150 150 150 150 150 150 1500

Producer's(2)100 95.3 97.3 86.7 96 92.7 70.7 83.3 85.3 96.7

Overall accuracy = 90.4; Kappa = 0.893; Variance = 0.000071; Z calculated = 105.79; Z tabulated = 1.96

Table 5. Confusion matrix obtained via ANN classification

(1) User accuracy of a pixel classified in the image actually representing the same category in the field (Vieira, 2000); (2) Producer
accuracy of a pixel being correctly classified in its class.

Classifier

Area 1 Area 2

Noritic Heterogeneous

granulites migmatites

ANN MLC ANN MLC

Overall accuracy 91.6 84.4 90.4 72.3

Kappa 0.908 0.830 0.893 0.693

Variance 0.000051 0.000086 0.000071 0.000162

ANN 127.145 105.98 -

MLC 6.66* 89.50 13.10* 54.45

Table 4. Significance matrix for the classifications

carried out in the two areas studied

* Significant difference of 95 %.
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approach indicates a very good to excellent performance
for this classifier (Kappa < 0.75) for both Area1 (0.908)
and Area 2 (0.893). On the other hand, the MLC
presented a very good to excellent classification for
Area 1 (0.830) and a moderate performance (0.4 <
Kappa < 0.75) for Area 2.

Considering that some classes occupy small and/
or very fragmented patches in the study area, some
were grouped together to facilitate understanding
of the ANN- and MLC-based maps. The criteria for
this grouping was similarity in the characteristics
of the area of occurrence, as mentioned in the key
to Figure 3.

Although the results for the Kappa coefficient
obtained from the validation samples were satisfactory
for both classifiers, the resulting maps were different.

Area 1 - Noritic granulites

Class AR1 CXbe GXbe LVAd PAe1 PVe1 PVe2 PVe3 PVAe1 PVAe2 PVAd RLe1 Total User’s(1)

AR1 146 13 0 0 0 0 0 0 0 0 0 5 164 89

CXbe 0 137 0 0 0 0 0 0 0 0 0 21 158 86.7

GXbe 0 0 124 0 1 0 0 0 0 0 0 0 125 99.2

LVAd 0 0 0 131 3 0 9 0 0 0 0 0 143 91.6

PAe1 0 0 5 0 84 0 0 0 0 1 0 0 90 93.3

PVe1 0 0 0 4 0 141 3 21 1 8 33 0 211 66.8

PVe2 0 0 0 0 1 0 137 2 0 4 16 0 160 85.6

PVe3 0 0 0 0 0 0 0 123 2 1 0 0 126 97.6

PVAe1 0 0 0 0 0 5 0 4 147 0 9 0 165 89.1

PVAe2 0 0 21 14 61 0 0 0 0 136 2 0 234 58.1

PVAd 0 0 0 1 0 4 1 0 0 0 90 0 96 93.8

RLe1 4 0 0 0 0 0 0 0 0 0 0 124 128 96.9

Total 150 150 150 150 150 150 150 150 150 150 150 150 1800

Producer’s(2)97.3 91.3 82.7 87.3 56 94 91.3 82 98 90.7 60 82.7

Overall accuracy = 84.4; Kappa = 0.830; Variance = 0.000086; Z calculated = 89.35; Z tabulated = 1.96

Area 2 - Heterogeneous migmatites

AR2 CXve GXve LVd PAe2 PVe4 PVe5 PVe6 PVe7 RLe2 Total User’s(1)

AR2 150 0 0 0 0 1 0 0 0 24 175 85.7

CXve 0 120 0 0 0 0 0 4 0 26 150 80

GXve 0 0 74 0 0 0 0 0 0 0 74 100

LVd 0 0 0 103 0 0 6 3 17 0 129 79.8

PAe2 0 0 62 0 136 0 0 0 4 0 202 67.3

PVe4 0 0 0 0 0 72 3 4 0 0 79 91.1

PVe5 0 29 0 29 0 19 138 67 2 0 284 48.6

PVe6 0 0 0 0 0 53 0 66 1 0 120 55

PVe7 0 0 14 18 14 0 3 2 126 0 177 71.2

RLe2 0 1 0 0 0 5 0 4 0 100 110 90.9

Total 150 150 150 150 150 150 150 150 150 150 1500

Producer’s(2) 100 80 49.3 68.7 90.7 48 92 44.7 84 66.7 100

Overall accuracy = 72.3; Kappa = 0.693; Variance = 0.000162; Z calculated = 54.46; Z tabulated = 1.96

Table 6. Confusion matrix obtained using validation samples for classification using the maximum likelihood

algorithm

(1) User accuracy of a pixel classified in the image actually representing the same category in the field (Vieira, 2000); (2) Producer
accuracy of a pixel being correctly classified in its class.

The agreement between the ANN- and MLC-based
maps was only 47.28 %. According to Kanellopoulos
& Wilkinson (1997), this low agreement demonstrates
the differing nature of the mathematic models used
in the classifications and the way they structure the
space.

Figure 3 shows that both maps contain many
spatial details, reported by Zhu (2000). Using terrain
attributes and geological properties as discriminating
environmental variables therefore showed the soil-
landscape relationships in the area more clearly,
resulting in spatially more detailed maps.

 In the absence of a conventional soil map on an
adequate scale ( < 50,000), reference points were used
to compare and evaluate the maps obtained using
ANNs and MLC, according to Zhu (2000). In this
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Figure 3. Maps obtained by the two classifiers.

comparison, the classification using ANNs correctly
inferred the soil classes at 93 locations (73.81 %) and
MLC at 73 (57.94 %) (Table 6), which was comparable
to results reported in other studies (Zhu, 2000; Zhu
et al., 2001).

The matrix of Kappa significance (Table 7)
indicated a significant difference between the
classifiers. Better results were obtained using ANNs
(Kappa coefficient of 0.709), which were significantly
different from those obtained by MLC.

In the ANN classification, possible causes of the
low agreement with the reference points include the
rather complex geological nature of the area, which
in some situations impeded the correct
determination of soil-landscape relationships; the
quality of the geological map used; the lack of
information on the depth of lithic contact; and
problems related to the environmental correlation
model used. Most misclassified observations
occurred at the boundaries between the units of the
geological map. Problems related to the quality of
geological maps used in environmental correlation
studies were also reported by Thomas et al. (1999)
and McKenzie & Ryan (1999).

McKenzie & Austin (1993) found that the presence
of an impediment layer at low depths is a strong
predictor of soil properties and the presence of
geological structures such as dikes can control the
soil distribution pattern. Dikes of basic material are
common in the area studied, but are not shown on
the geological map (DRM-RJ, 1980).

On the other hand, McKenzie & Ryan (1999)
emphasized that there are circumstances in which
soil variation occurs without any direct relation to
easily observable environmental variables (lack of a
reliable predictor) and in these cases, detailed sampling
is inevitable and some form of interpolation is
necessary to generate a spatial prediction.

In the case of MLC-based classifications, the low
agreement with the reference points was mostly due
to the inefficiency of the classifier.

The main lack of agreement between ANN- and
MLC-based classifications can be verified in the flatter
areas of the landscape (flat and gently undulating
topography), classified by ANNs as belonging to the
Haplic Gleysol class (GXbe and GXve for Areas 1 and
2 respectively) and by MLC as belonging to classes
PVAe2 and PVe7 (for Areas 1 and 2 respectively),
which occurs in undulating topography. In this case,
the ANN-based classification was more accurate while
MLC was less effective in adequately discriminating
areas with very similar slope values.

Conversely, by the ANN-based classification the
class LVd (top-left corner of the image) was incorrectly
identified in areas that should have been classified as
belonging to class PVe7. In spite of the similar slope
values of these classes, they occupy different positions
on the landscape, with class LVd in even areas at
high elevations and class PVe7 in the lower third of
slopes close to wetlands. This result demonstrates an
inefficiency in the ANN-based classification that was
not observed for the MLC-based classification.
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Table 7. Confusion matrix between the maps

obtained using ANN and MLC considering

reference points

Classification ANNs MLC

Total number of points 126 126

Correctly classified points 93 73

Overall accuracy 73.81 57.94

Kappa 0.709 0.534

Variance 0.001826 0.002236

Neural network 16.59

Maximum likelihood 2.75* 11.29

* Significant difference of 95 %.

CONCLUSIONS

1. The Artificial Neutral Network classifier
resulted in a higher accuracy for general classification
when validation samples were used, producing
significantly better statistical results than the
Maximum Likelihood Classifier.

2. A comparison of reference points showed that
the ANN-based was more accurate than the MLC-
based map, which was significantly different. The
main cause of data classification errors of the
classifiers may be related to the geological
heterogeneity of the area, the depth of lithic contact
and problems associated with the environmental
correlation model used, including the discriminating
variables selected.

3. The use of terrain attributes and remote sensing
data with spatial resolution compatible with the
objectives of the study, together with a neural network
approach, can help accelerate, extend and cheapen
soil mapping in Brazil, due to the availability of lower-
cost digital satellite images and the ease at which
terrain attributes can be obtained.
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