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ABSTRACT: Seagrass meadows are considered one of the most important and valuable 
ecosystems on the planet, but also one of the most threatened. Missing knowledge about 
their existence and their subtidal nature are the main reasons for the lack of information 
about seagrass soils, especially in Brazil and other tropical areas. This study discussed the 
paradoxical lack of information about subaqueous soils, with a view to stimulate research 
on soil properties of seagrass meadows. This short communication provides information 
about the ecosystem and first descriptions of seagrass soils along the Brazilian Coast, 
marked by gleyzation, sulfidization, salinization, paludization, solonization, and classified 
as Gleissolos tiomórficos. Pedological studies on these ecosystems provide useful tools 
for their management, protection, and restoration. Thus, it is fundamental that soil 
scientists increase their knowledge about subaqueous soils, not only as a contribution 
to the Brazilian Soil Classification System, but for the conservation of these ecosystems.
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INTRODUCTION
Seagrass meadows (or submerged aquatic vegetation) represent complex ecosystems 
formed by one or more angiosperm species colonizing shallow areas of the oceans 
and inland waters, associated with fauna and algal epiphytic-cover (Coles et al., 2011; 
Short et al., 2011; Copertino et al., 2016). This ecosystem can be found in more than 
120 countries on all continents, except Antarctica (Spalding et al., 2003, 2010) and 
covers an estimated 300,000 to 600,00 km2 around the globe (Duarte et al., 2005; 
Fourqurean et al., 2012), i.e., the equivalent to twice the area covered by mangroves 
(Siikamäki et al., 2013). 

The total coverage area along the Brazilian coast is still unknown, despite scientific reports 
indicating the presence of seagrass meadows along the entire coast (Vilanova et al., 
2013; Copertino et al., 2016). Only in the lagoon Lagoa dos Patos (state of Rio Grande 
do Sul), the seagrass meadows cover an area of 120 km2 (Creed, 2003). Considering 
the 9,200 km long coastline of Brazil and the innumerous rivers that discharge into the 
Atlantic Ocean, it is supposed that seagrass ecosystems cover extensive areas in Brazil 
(Copertino et al., 2016), mostly vegetated by Halodule wrightii Ascherson, associated to 
other Halodule and Halophila species, and Ruppia maritima Lipkin (Vilanova et al., 2013).

Seagrasses form extensive vegetated areas at sites where clear waters allow light 
diffusion through the water column (Short et al., 2007; Brodersen et al., 2015). Generally, 
the plants of a meadow grow in areas protected from wave action (Phillips et al., 1988; 
Orth et al., 2006) to a maximum water depth of 90 m (Duarte, 1991; Coles et al., 2009). 
However, most of the meadows are found in shallow water areas, less than 10 m deep 
(Grech et al., 2012). 

The plants consist of a polyphyletic assemblage of monocots, grouped in 60 known 
species, 12 genera, and four families (Cymodoceaceae, Hydrocharitaceae, Posidoniaceae, 
and Zosteraceae) of the order Alismatales (Les et al., 1997; Orth et al., 2006). These 
phanerogams have developed a series of ecological, physiological, and morphological 
adaptations that allow the colonization of completely submerged soils, for example: 
internal gas transport; epidermal chloroplasts; underwater pollination and dispersion; 
and absence of stomatal differentiation (Orth et al., 2006; Olsen et al., 2016).

Several studies consider these ecosystems as worldwide most productive (Duarte and 
Chiscano, 1999; Olsen et al., 2016), mainly for their role as basis of many food webs, 
providing nutrients (mainly N and P) and biomass for other parts of the ocean (Short et al., 
2011). Thus, seagrass meadows interact with other adjacent coastal ecosystems, 
contributing to the maintenance and diversity of the surrounding ecological systems 
(e.g., mangroves, salt marshes, and coral reefs) (Short et al., 2006, 2007). Compared to 
other ecosystems, the economic value of seagrass meadows is one of the highest (dollars 
per ha) (Costanza et al., 1997; Barbier et al., 2011), estimated at US$ 28,000 ha-1 yr-1 in 
2010 (Costanza et al., 2014). More recently, seagrasses and other coastal wetland soils 
were recognized as key drivers of carbon concentration reduction in the atmosphere and 
mitigators of global warming effects (Chmura et al., 2003; Mcleod et al., 2011; Chmura, 
2013; Grimsditch et al., 2013).

Since these ecosystems are submerged, environmental impacts on their areas have been 
neglected (Waycott et al., 2009; Gladstone and Courtenay, 2014). Globally, about 30 % of 
seagrass meadows were lost in the last 50 years, at a higher rate than that reported for 
other ecosystems (e.g., tropical rainforest) (Waycott et al., 2009; Siikamäki et al., 2013). 
The expansion of cities and industries associated with unsustainable fishing practices 
have been cited as the most relevant threats to seagrass meadows (Waycott et al., 
2009). In addition, the submerged nature of the seagrass meadows and apparently low 
species diversity disenchant the general public interest and support (Duarte et al., 2008; 
Randall Hughes et al., 2009). 
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Regardless of the great importance of seagrass meadows and the demand for restorative 
practices, the lack of knowledge about the underlying soils hampers the implementation 
of many potentially successful restoration and management practices (York et al., 2016). 
Thus, pedological studies of seagrass meadow soils may provide useful tools for the 
management and protection of these ecosystems by deepening the understanding of 
inter-relationships between soils and seagrasses and of the genesis of edaphic properties 
that influence seagrass persistence and susceptibility to environmental stressors. 
Thus, it is crucial that soil scientists increase their knowledge on subaqueous soils and 
their functioning. 

This this research highlights the paradoxical lack of information about seagrass meadows 
and the underlying subaqueous soils, with a view to motivate studies on their properties 
and local/regional variations; to contribute to the Brazilian Soil Classification System 
(SiBCS), and to promote the protection and management of these ecosystems.

Seagrass meadows and subaqueous soils in Brazil 

For the Soil Taxonomy system, the water can be considered as a possible upper limit 
of the soil, if it allows the growth of rooted plants (Soil Survey Staff, 2014). Thus, the 
recognition of the substrates of seagrass meadows as soils by the Soil Taxonomy system 
led to the creation of the taxa “Wassents” and “Wassists” to better suit Entisols and 
Histosols, with positive water potential (Soil Survey Staff, 2014), since these soils differ 
significantly from the subaerial soils classified as Aquents or other Histosol (Rabenhorst 
and Stolt, 2012). 

Similarly, for the World Reference Base for Soil Resources, the water column can also be 
considered as possible upper soil limit, however, restricted to sites with water columns 
lower than two meters (WRB, 2015). The principal qualifiers “tidalic” and “subaquatic” 
were created to discriminate some soil orders (e.g., Histosols, Technosols, Cryosols, 
Leptosols, Solonchaks, Gleysols, Arenosols, and Fluvisols) which are permanently flooded 
(subaquatic) or only flooded by tidewater at mean high tide, but not flooded at mean 
low tide (tidalic) (WRB, 2015). However, the characterization of subaquatic soils is still 
poorly defined by the WRB-FAO system, since the definition of the qualifier explicitly 
determines a maximum water column height of two meters during low tide and it is 
known that seagrasses can commonly be found in deeper water areas (Duarte, 1991). 

On the other hand, for the Brazilian Soil Classification System (Santos et al., 2013a), only 
the atmosphere can be considered the upper limit of soils. Except for the definition of the 
upper limit, the seagrass meadow soils fit perfectly in the soil definition used by the SiBCS 
(Santos et al., 2013a). In fact, all pedogenetic processes (addition, loss, translocation, and 
transformation) were identified in seagrass meadows worldwide, including in Brazil, for 
example: the addition of organic matter and biogenic calcium carbonate; loss of metals 
and organic matter; translocation of soil particles due to bioturbation; and transformation 
of organic substances, Fe, and S forms (Table 1) (Demas and Rabenhorst, 1999; Osher 
and Flannagan, 2007; Rabenhorst and Stolt, 2012; Serrano et al., 2012; Ferronato et al., 
2016; Vittori Antisari et al., 2016; Nóbrega, 2017). 

To our knowledge, only one study was published about Brazilian seagrass meadows soils. 
The occurrence of subaqueous soils along the Abrolhos archipelago was mentioned in a 
paper on soil phosphatization and landscape evolution (Schaefer et al., 2010). However, 
no pedological study, providing the morphological description, properties, and classification 
of seagrass soils of the Brazilian coast was published so far. Thus, to fill this gap of basic 
information and to stimulate the update of the SiBCS, two soil profiles from different 
coast compartments were studied to contribute with a first approach addressing the 
variability of seagrass soils of Brazil. Soil profiles were sampled on the semiarid coast 
in the Northeast (state of Ceará; predominantly vegetated with Halodule spp.) and 
the quaternary coast in the South (Lagoa dos Patos - RS; mostly vegetated by Ruppia 
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maritima; Figure 1), and described according to Santos et al. (2013b). On the semiarid 
coast of northeastern Brazil, seagrass soil was collected at a water depth of 1.8 m [water 
depth corrected to a mean water level 1.71 m; Marinha do Brasil (2017)], whereas on 
the quaternary coast in the South, soil under seagrass was collected at a water depth 
of 1.3 m [corrected to a mean water level of 0.68 m; Marinha do Brasil (2017)].

Figure 1. Subaqueous soil sampling locations.

S-quaternary coast

NE-semiarid
coast

248000

UTM ZONE
22 H

UTM ZONE
24 M

250000 252000

384000 386000 388000

96
74

00
0

96
75

00
0

64
55

00
0

64
56

00
0

Table 1. Morphological properties and grain size composition of subaqueous soils of Brazilian seagrass meadows

Horizon Depth Matriz(1) Mottle(3) Struc(4) Plast(5) Stick(6) Sand Silt Clay Text (7) Bound(8)

m %
NE - Gleissolo Tiomórfico Órtico sálico solódico neofluvissólico* (SiBCS) / Fluventic Sulfiwassent (Soil Taxonomy) / Fluvic 

Subaquatic Solonchak (Hypersalic, Protosodic, Hypersulfidic, Loamic) (WRB-FAO)
Agjz 0.00-0.10 5GY 3/1, 10YR 3/1(2) MA PL SST 66 14 20 SCL/SL GS
CAgjz 0.10-0.26 5G 4/1 MA PL SST 60 15 25 SCL CS
Cgjz1 0.26-0.37 5GY 4/1 MA SPL NST 78 6 16 SL AS
Cgjz2 0.37-0.56 10Y 4/1 MA NPL NST 82 6 12 SL DS
2Cgjz3 0.56-0.84 5GY 4/1 SG SPL SST 80 2 18 SL CS
3Cgjnz 0.84-1.14+ 10B 4/1 MA VPL ST 48 12 40 SC

S - Gleissolo Tiomórfico Órtico sódico salino* (SiBCS) / Fluventic Sulfiwassent (Soil Taxonomy) / and Fluvic Subaquatic Gleysol 
(Protosalic, Sodic, Hypersulfidic, Loamic) (WRB-FAO)

Agj 0.00-0.6 N 2.5, 10Y 3/1 (2) MA SPL SST 85 5 10 LS CW

ACgj 0.06-0.13 2.5Y 5/1 7,5YR 4/4 CVD
N 2,5/ VVD MA NPL NST 91 4 5 S CW

CAgjn1 0.13-0.30 2.5Y 4/1 MA SPL SST 69 11 20 SCL/SL GS
CAgjn2 0.30-0.44 N 4 MA SPL SST 80 4 16 SL GS
Cgjz 0.44-0.70 N 5 MA SPL SST 81 4 15 SL GS
2Cgjnz 0.70-0.93 N 3 MA PL ST 50 20 30 SCL CB
2Cgjnz/ 
2Cgjn 0.93-1.06 5B 3/1, N 3(2) MA PL ST 80 5 15 SL CS

2Cgjn 1.06-1.11 5B 3/1 MA VPL VST 26 4 70 C
(1) Matriz colour. (2) Variegated. (3) CVD: common, very fine, distinct; VVD: very few, very fine, distinct. (4) Structure: MA = massive; SG = single grain. 
(5) Plasticity: NPL = non-plastic; SPL = slightly plastic; PL = plastic; and VPL = very plastic. (6) Stickness: NST = non-sticky; SST = slightly sticky; ST = sticky; 
and VST = very sticky. (7) Texture: SCL = sandy clay loam; SL = Sandy loam; SC = Sandy clay; LS = Loamy sand; S = Sand; and C = Clay. (8) Boundary: 
GS = gradual smooth; CS = clear smooth; AS = abrupt smooth; DS = diffuse smooth; CW = clear wavy; and CB = clear broken (discontinuous). * the 
terms neofluvissólico and salino were included to better classify the soils of the NE and S coast, respectively.
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These subaqueous soils were sampled using samplers attached to transparent tubes 
for sampling and visual confirmation of the partially disturbed samples (Figure 2). 
The tubes were pushed into the soil with a remote hammering system and a watertight 
valve prevented sample loss when pulling the sample out of the soil/water (Figure 2). 
After sampling, the tubes were sealed with rubber caps, transported in vertical position to 
the laboratory, where the samples were removed from the tubes. According to Erich et al. 
(2010), the two sampling techniques - vibracoring for deeper waters and sealed rigid 
tubes for shallower areas - can also be used for soil profile collection and description. 

After soil description, subsamples of each soil horizon were taken and washed with ethanol 
(60 %) to remove soluble salts, until a silver nitrate test indicated absence of the chloride 
ion (Sumner and Miller, 1996; Claessen, 1997). Then the soil samples were dried, ground, 
and sieved to determine exchangeable cations, calcium carbonate equivalent (CCE), and 
grain size composition, using the soil classification methods proposed for SiBCS (Claessen, 
1997; Santos et al., 2013a,b). Additionally, subsamples of soil horizons were taken and 
frozen until posterior analysis of total organic carbon (TOC), total nitrogen (TN), and Fe 
fractionation. Total organic C was quantified using an elemental analyzer, after removal 
of inorganic C with HCl 1 mol L-1 (Howard et al., 2014), whereas TN was quantified in 
untreated samples using an elemental analyzer. Iron was fractionated using the method 
proposed by Lord III (1982), obtaining two operationally distinct fractions: Fe-oxyhydroxides 
(Oxy-Fe) and pyrite (Py-Fe), which allowed the determination of the degree of pyritization 
[DOP = (Py-Fe × 100)/(Py-Fe + Oxy-Fe)] (Berner, 1970). The total potential acidity (pHOXI) 
was determined measuring the pH after sample oxidation by H2O2 (Konsten et al. 1988). 

The collected soils differed significantly regarding the morphological, chemical, and 
physical properties (Table 1 and 2). For both profiles, as a consequence of the characteristic 
waterlogging, the most significant processes were gleyzation and sulfidization, resulting in 
soils with low chromas (or neutral colors), but also dark and very dark gray colors, indicating 
sulfide accumulation (Table 2 and Figure 3). As a result of the intense sulfidization, a high 
percentage of the iron was incorporated into sulfides [degree of pyritization >50 %; e.g., 
percentage of Fe incorporated into pyrite; for further details, please see Berner (1970)]. 
However, due to oxidation promoted by the plant rhizosphere, brown Fe mottles can 
occur, evidencing oxidation of Fe sulfides and thus, the onset of sulfurization (Figure 3). 

Figure 2. Subaqueous soil sampling procedure. Overall view of the soil sampler used (a) and onboard launch (b). Close view of the 
remote hammering system (c) and collected soil samples (d).

(a) (b) (c) (d)
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The accumulation of oxidizable Fe and S material induced strongly acidic conditions when 
the soil material was oxidized (Table 1), characterizing the presence of hypersulfidic material 
(WRB, 2015). This acidification due to oxidation was less significant in soil horizons with 
higher amounts of seashells, and higher amount of calcium carbonate equivalent (CCE), 
which can buffer the acidification process (hyposulfidic material) (WRB, 2015) (Figure 3 and 
Table 1). Attention should be paid to the CCE and seashells since they are not considered in 
definition of a “Horizonte Cálcico”, used by the SiBCS (Santos et al., 2013a), conditioning 
the presence of secondary calcium carbonates. Moreover, the presence of biogenic calcium 
carbonate does not match the definition of subordinate properties for the presence of 
carbonates (k) or accumulation of secondary calcium carbonate (k̅) in the Brazilian System 
of Soils Classification (Santos et al., 2013b). Thus, the presence of biogenic carbonate 
should be considered in future modifications of SiBCS, since it strongly affects the acidity 
neutralizing potential and reflects the influence of biota on soil formation.

Soil textures with predominance of sand (Table 2) usually indicate a higher hydrodynamic 
in these ecosystems. Additionally, the variation in particle-size distribution within the 
soil profiles (presence of fluvic material) (WRB, 2015) may also result from changes in 
hydrodynamics through the evolution of the soil profiles. 

Figure 3. Subaqueous soil profile of the semiarid coast in the Northeast (a) and the Quaternary coast in the South of Brazil (b). 
In details, the variegated colors of the Agjz horizon (0.00-0.10 m) (c); broken seashells within a sandy texture matrix (2Cgjz 
horizon; 0.56-0.84 m) (d); whole seashells within a clayey matrix (horizon 3Cgjnz, 0.84-1.14+ m) (e), from the NE semiarid coast; 
surface soil horizon Agj (0.00-0.06 m) (f); mottles from sulfide production (black) and iron oxidation (brown) (ACgj horizon, 
0.06-0.13 m) (g), and rhizospheric oxidation resulting in Fe oxyhydroxide precipitation (ACgj horizon, 0.06-0.13 m) (h) from 
the Quaternary coast in the South.

(a) (b)(c)

(d)
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The soils also differed considerably with regard to the salinization process, with much 
higher electrical conductivity in the soils of the semiarid coast (≈ 45 dS m-1) compared to 
the Quaternary soils on the southern coast (≈ 3 dS m-1) evidencing that the salinization 
processes may occur at very contrasting intensities, regardless of the constant tidal 
influence on these soils. Additionally, the effects of seawater conditioned the occurrence 
of solonization/solodization processes, especially in the deeper layers of the S coast soils 
(Table 2). Besides, due to the significant seasonal variations in the water properties (e.g., 
salinity, temperature, nitrogen, and phosphorous) of the Lagoa dos Patos (Lanari and 
Copertino, 2016), it is expected that the salinization and solonization processes at this 
site also vary throughout the year. Thus, further studies are required to comprehend 
how relevant seasonal variations are for subaqueous soils.

Another difference between the two soil types is related to the intensity of paludization, 
i.e., the accumulation of organic C under anaerobic conditions. For the seagrass soil on 
the semiarid coast, C accumulation was significantly higher than that of the lagoon Lagoa 
dos Patos. These preliminary results evidenced paludization, since the climatic conditions 
may have been predominated by the local biogeochemical conditions. Additionally, the 
higher plant biomass on the NE coast (Figure 1), which resulted in a higher C input, should 
be emphasized. Paludization is probably the most studied pedogenic process in seagrass 
soils, due to the important role these ecosystems play for atmospheric CO2 sequestration 
(Fourqurean et al., 2012). In fact, seagrass meadows and other coastal wetlands have 
been highlighted as the most important ecosystems for C sequestration, particularly into 
the soils, which inspired the designation Blue Carbon sinks (Nellemann et al., 2009) and 
stimulated studies regarding C accumulation in these ecosystems.

The soils were classified as Fluventic Sulfiwassent, according to the Soil Taxonomy; Fluvic 
Subaquatic Solonchak (Hypersalic, Protosodic, Hypersulfidic, Loamic) and Fluvic Subaquatic 
Gleysol (Protosalic, Sodic, Hypersulfidic, Loamic) according to the FAO-WRB system. 

Table 2. Chemical properties of seagrass meadow soils of Brazilian Coast

Horizon Depth
pH

Eh EC TOC TN CCE Na+ K+ Ca2+ Mg2+ Al3+ H+Al SB CEC V ESP P Oxy-Fe(2) Py-Fe(3) DOP
Field Oxi(1)

m mV dS m-1 % cmolc kg-1 % mg kg-1 μmol g-1 %

NE - Gleissolo Tiomórfico Órtico sálico solódico neofluvissólico* (SiBCS) / Fluventic Sulfiwassent (Soil Taxonomy) / 
Fluvic Subaquatic Solonchak (Hypersalic, Protosodic, Hypersulfidic, Loamic) (WRB-FAO)

Agjz 0.00-0.10 6.78 4.92 -36 42 3.5 0.3 2.9 0.3 0.6 8.3 1.7 <0.01 3.4 10.9 14.3 76 2 16 47.8 126.7 71

CAgjz 0.10-0.26 7.14 2.89 +34 42 1.8 0.1 2.0 0.1 0.3 1.8 2.6 <0.01 2.8 4.8 7.6 63 1 15 23.6 52.6 67

Cgjz1 0.26-0.37 7.06 2.76 +4 45 1.2 0.1 2.3 0.1 0.1 2.0 1.0 <0.01 1.6 3.1 4.7 66 1 8 14.3 44.7 66

Cgjz2 0.37-0.56 6.85 6.14 +32 45 3.2 0.1 13.8 0.1 0.2 7.2 2.4 <0.01 0.4 9.9 10.3 96 1 18 23.8 14.4 48

2Cgjz3 0.56-0.84 6.88 6.96 +222 45 2.9 0.1 14.6 0.1 0.2 9.8 3.0 <0.01 0.3 13.1 13.4 98 1 16 31.3 152.0 75

3Cgjnz 0.84-1.14+ 6.80 2.90 +169 52 2.5 0.1 42. 3.2 2.1 9.7 7.5 <0.01 1.5 22.5 24.0 94 13 27 31.5 176.9 83

S - Gleissolo Tiomórfico Órtico sódico salino* (SiBCS) / Fluventic Sulfiwassent (Soil Taxonomy) / 
and Fluvic Subaquatic Gleysol (Protosalic, Sodic, Hypersulfidic, Loamic) (WRB-FAO)

Agj 0.00-0.06 7.72 2.99 +269 3 0.6 0.2 1.9 0.1 0.2 0.9 1.2 <0.01 1.3 2.3 3.6 64 <1 27 13.2 0.7 5

ACgj 0.06-0.13 7.14 2.45 +294 3 0.5 0.2 1.7 0.1 0.1 0.4 0.9 <0.01 0.9 1.4 2.3 61 1 18 10.8 19.2 55

CAgjn1 0.13-0.30 6.98 2.28 +366 2 0.6 0.2 1.7 0.8 0.4 1.3 4.7 2.8 5 7.2 12.2 59 7 27 16.1 53.1 76

CAgjn2 0.30-0.44 7.93 2.47 +94 3 0.6 0.2 1.8 0.5 0.4 0.9 2.8 1.7 3.9 4.6 8.5 54 6 33 13.5 26.8 63

Cgjz 0.44-0.70 7.84 2.65 -36 4 0.6 0.2 1.7 0.1 0.3 0.5 1.7 1.1 2.2 2.6 4.8 54 2 24 10.5 16.5 60

2Cgjnz 0.70-0.93 7.84 2.87 +38 5 0.4 0.2 1.7 4.6 2.4 5.4 8.6 <0.01 0.4 21.0 21.4 98 22 101 15.1 22.1 59

2Cgjnz/ 2Cgjn 0.93-1.06 7.73 3.30 +39 4 0.5 0.2 1.8 4.5 2.7 6.2 8.4 <0.01 0.1 21.8 21.9 99 22 78 15.2 16.9 45

2Cgjn 1.06-1.11 7.58 2.83 +40 2 0.8 0.2 1.8 4.4 2.7 9.3 10.1 <0.01 0.2 26.5 26.7 99 16 93 49.0 24.2 66
(1) pH values recorded after sample oxidation with H2O2. (2) Iron associated to oxyhydroxides. (3) Iron associated to pyrite. Eh = redox potential; EC 
= electrical conductivity; TOC = total organic carbon; TN = total nitrogen; CCE = calcium carbonate equivalent; SB = sum of bases; CEC = cation 
exchange capacity; V = base saturation; ESP = exchangeable sodium percentage; DOP = degree of pyritization. * The terms neofluvissólico and 
salino were included to better classify the soils of the NE and S coast, respectively. Soil samples (after the removal of soluble salts) were analyzed 
according to the methods proposed by Claessen (1997) and Santos et al. (2013a,b). Total organic carbon was obtained by elemental analyzer after 
samples acidification; total nitrogen was obtained by elemental analyzer using untreated samples (Howard et al., 2014). Iron fractions (i.e., Oxy-Fe 
and Py-Fe) were obtained according to Lord III (1982). 
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In general, the soils had a moderately adequate classification according to the SiBCS, 
being classified as Gleissolo Tiomórfico Órtico sálico solódico (NE-Semiarid coast) and 
Gleissolo Tiomórfico Órtico sódico (S-Quaternary Coast). For a better fitting of subaqueous 
soils in the SiBCS, a suborder for the Gleissolos soil order should be created, similar to the 
tidalic and subaquatic classifiers used by WRB-FAO, as well as criteria for the definition of 
a property analogous to hyposulfidic material. Additionally, new subgroups consisting of 
Gleissolos Tiomórficos Órtico sálico solódico neofluvissólico and Gleissolos Tiomórficos 
Órtico sódico salino could be created to detail the classification of seagrass soils of Brazil. 

The pedological approach to these soils makes, among other aspects, their description and 
consistent mapping based on the pedogenetic similarities possible. In fact, many studies 
have been conducted to map subaqueous soils, mostly in estuarine environments (Demas 
and Rabenhorst, 1999; Bradley and Stolt, 2003, 2006; Erich and Drohan, 2012; Vittori 
Antisari et al., 2016). The study of subaqueous soils from the viewpoint of pedology paves 
the way for the management of these areas based on measurable physical and chemical 
soil processes, in the future, similarly to that used in subaerial soils. Research along this line 
will contribute to the establishment of thresholds to define subaqueous soil quality classes, 
which will in turn provide guidance for management practices (Demas and Rabenhorst, 
1999, 2001; Erich and Drohan, 2012). Subaqueous soil maps could guide the identification 
of areas most indicated for dredging, for mollusk, and shellfish cultivation, but could also 
provide new insights on the main factors controlling the genesis of seagrass soils (Grech 
et al., 2012; Gladstone and Courtenay, 2014; York et al., 2016). Therefore, the use of the 
methods and procedures commonly used in soil genesis studies can significantly contribute 
to a more detailed and precise knowledge about processes and properties of seagrass soils 
and increase the chances of success of initiatives for restoration and protection. 

For the Brazilian soil science community, including subaqueous soils as a potential study 
object would not only help to develop the soil classification system and the theoretical 
models used for soil genesis, but would also open new study fields of nitrogen-fixing 
and phosphate-solubilizing bacteria for soil microbiologists (Vazquez et al., 2000; Welsh, 
2000), for soil chemistry and organic matter analyses (York et al., 2016), as well as other 
co-related soil science disciplines. 

The comprehension of the pedogenetic processes may help to understand the ecological 
functions of seagrass meadows. Moreover, the studies of seagrass soils may be considered 
a future frontline of Brazilian soil science, as a new study object for soil chemistry, 
microbiology, and organic matter scientists, but also a useful tool for the conservation, 
restoration, and comprehension of ecological services provided by these ecosystems. 
Thus, it is fundamental that soil scientists increase their knowledge on subaqueous soils 
and their variations, not only to update and contribute to Soil Classification Systems 
(e.g., SiBCS, WRB-FAO, and Soil Taxonomy) but more importantly, to contribute to the 
protection of these endangered ecosystems. 

CONCLUSIONS
According to the Brazilian Soil Classification Systems, the natural body formed by 
pedogenetic processes (mainly: gleyzation, sulfidization, salinization, paludization, and 
solonization and classified as Gleissolos tiomórficos) and that supports the life of rooted 
seagrass plants is not considered a soil, since the present soil definition a water column 
cannot be considered an upper limit of a soil. 

The criteria related to the presence of calcium carbonate in the SiBCS (e.g., Horizonte 
Cálcico; and the subordinate characteristics k and k̅), should be re-defined, since the 
presence of seashells is not taken into account, which are important to control the 
acidification generated by the oxidation of sulfidic material; and properties should be 
created that describe the frequency of flooding and the occurrence of hyposulfidic material. 
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