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ABSTRACT: A large number of predictor variables can be used in digital soil mapping; 
however, the presence of irrelevant covariables may compromise the prediction of 
soil types. Thus, algorithms can be applied to select the most relevant predictors. This 
study aimed to compare three covariable selection systems (two filter algorithms and 
one wrapper algorithm) and assess their impacts on the predictive model. The study 
area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used 
forty predictor covariables, derived from a digital elevation model with 30 m resolution, 
in which the three selection models were applied and separated into subsets. These 
subsets were used to assess performance by applying four prediction algorithms. The 
wrapper method obtained the best performance values for the predictive model in all 
the algorithms evaluated. The three selection methods applied reduced the number 
of covariables in the predictive models by 70 % and enabled prediction of the 14 soil 
mapping units.
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INTRODUCTION
The primary predictor covariables used in digital soil mapping (DSM) are derived from 
digital elevation models (DEMs), which can be used to characterize the environment on a 
number of detailed scales (ten Caten et al., 2012). Digital elevation models can be used 
to obtain covariables that characterize the relief and have a direct or indirect relationship 
with other pedogenetic factors from the Scorpan model (McBratney et al., 2003). 

The level of agreement obtained on the maps predicted by DSM remain low even when 
a large number of predictor variables are used. Average overall accuracy values are 
around 65 %, and it is not always possible to predict all the soil classes that make up 
the reference maps (Behrens et al., 2010; Coelho and Giasson, 2010; ten Caten et al., 
2012). These accuracy values may be attributed to the low correlation between predictor 
covariables and soil classes, but there is still no consensus on which covariables should 
be used, as observed in the range of combinations used in DSM studies (Campos et al., 
2010; ten Caten et al., 2012; Höfig et al., 2014; Teske et al., 2015; Dias et al., 2016). 

An awareness lack of the relevance of predictor covariables in discriminating soil classes 
has led to the use of sets with an insufficient number of covariables to make a prediction 
or excessively large sets with redundant covariables. Large sets of covariables together 
with the presence of redundant variables increase the complexity of the predictive model 
and hinder prediction for some soil classes, reducing map accuracy and precluding 
understanding of the relationships between predictors and soil types (Guyon and Elisseeff, 
2003; Behrens et al., 2010; ten Caten et al., 2012; Brungard et al., 2015).

Selection algorithms can be applied to attenuate the complexity and low performance 
of predictive models and reduce the number of predictor covariables (Guyon and 
Elisseeff, 2003; Hall and Holmes, 2003; Coelho and Giasson, 2010; Giasson et al., 
2013). The main selection algorithms applied to data mining can be grouped into 
wrapper (envelope), filter, and embedded methods (integrated) (Guyon and Elisseeff, 
2003; Hall and Holmes, 2003).

Wrapper algorithms select the predictor variables by assessing their relevance via 
induction of a predictive model. These models select by subtracting or adding covariables 
to the set and estimating performance indices of the respective predictive model, until 
achieving the smallest subset of predictors with performance greater than or equal to 
the set composed of all the predictor covariables under study (Guyon and Elisseeff, 
2003; Hall and Holmes, 2003). This type of selection exhibits maximum performance in 
the classifier used to select the predictor covariables.

Filter-type algorithms are applied independently of the predictive model, and the selection 
criteria are parameters, such as correlation, distance, information gained, and covariable 
consistency (Hall, 1999; Dash et al., 2000; Guyon and Elisseeff, 2003). This type of 
selection is commonly used to select variables (Giasson et al., 2013; Paes et al., 2013; 
Subburayalu and Slater, 2013; Subburayalu et al., 2014; Taghizadeh-mehrjardi et al., 
2016; Vasu and Lee, 2016) and the results can be applied to any prediction algorithm 
(Dash et al., 2000; Guyon and Elisseeff, 2003; Hall and Holmes, 2003). Embedded 
methods are integrated with learning models and are specific to these classifiers (Guyon 
and Elisseeff, 2003; Paes et al., 2013).

Applying each selection method results in different subsets of covariables and, consequently, 
affects the predictive ability of the model. Studies have demonstrated that the wrapper 
algorithm obtains the best result when the predictive model is hierarchical (Hall and 
Holmes, 2003; Brungard et al., 2015). Although hierarchical methods are mainly used 
in DSM as the classification method, the literature reports a predominance of filter-type 
algorithms for selecting predictor covariables since the procedures are faster and do 
not depend on the predictive model (Coelho and Giasson, 2010; Giasson et al., 2013; 
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Subburayalu and Slater, 2013; Subburayalu et al., 2014; Taghizadeh-mehrjardi et al., 
2016). Applying filter-type models may result in sets of covariables weakly correlated 
with soil types, explaining the low accuracy values observed in the literature. 

Thus, the wrapper algorithm is an alternative that could result in the selection of sets of 
covariables more associated with soil types, in turn, more accurate predictive models 
(Brungard et al., 2015). The present study aimed to compare three systems for selection 
of predictor covariables (two filter-type algorithms and one wrapper selection system) 
and assess their impacts on the predictive model.

MATERIALS AND METHODS
The study area was the Lajeado Grande River Watershed (Figure 1). The watershed 
encompasses an area of approximately 532 km2 in the extreme northwest of the state of 
Rio Grande do Sul - Brazil, in the Alto Uruguai Hydrographic Region (Freitas et al., 2012).

The climate of the region is humid subtropical (Cfa according to the Köppen climate 
classification system), with average annual rainfall of 1,778 mm and temperature of 
18.5 °C. The geology corresponds to the Parana Province, characterized primarily by 
basalt flows from the Serra Geral formation (Bagatini et al., 2015). The soil map of the 
area (Figure 1) has a scale of 1:50,000 (Kämpf et al., 2004), composed of 14 soil map 
units (MUs) (Table 1).

Figure 1. Location and soil map of Lajeado Grande River Watershed. MU = soil map units. G = Gleissolos Melânico eutrófico típico; 
LV1 = Latossolo Vermelho distroférrico típico; LV2 = Latossolo Vermelho distroférrico típico + Neossolo Regolítico eutrófico típico; M1 
= Chernossolo Argilúvico férrico típico; NV1 = Nitossolo Vermelho distroférrico típico; NV2 = Nitossolo Vermelho distroférrico típic 
+ Neossolo Regolítico eutrófico típico; RL = Neossolo Litólico eutrófico típico + Neossolo Regolítico eutrófico típico; RR1 = Neossolo 
Regolítico eutrófico típico; RR2 = Neossolo Regolítico eutrófico típico + Neossolo Litólico eutrófico típico; RR3 = Neossolo Regolítico 
eutrófico típico + Latossolo Vermelho distroférrico típico; RR4 = Neossolo Regolítico eutrófico típic + Chernossolo Argilúvico férrico 
típico; RR5 = Neossolo Regolítico eutrófico típico + Cambissolo Háplico Ta eutrófico típico + Nitossolo Vermelho distroférrico típico; 
RR6 = Neossolo Regolítico eutrófico típico + rock beds.
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Forty predictor covariables (Table 2) were derived from a digital elevation model (DEM) 
that was produced based on ASTER/GDEM v2 sensor data (Global Digital Elevation 
Models), with spatial resolution of 30 m, dated October 17, 2011, and obtained from 
the American Geological Service (Tachikawa et al., 2011). The geoform covariable was 
derived from the LandMapR tool package (MacMillan, 2003). The drainage density index 
(km km-2) was obtained with the Raster Calculator extension of ArcGIS 9.2, following the 
methodology proposed by Cardoso et al. (2006). The other covariables were derived using 
RSAGA v 2.2.2 (Brenning et al., 2018), integrated into R 3.3.1 software (R Development 
Core Team, 2018).

Next, all the predictor covariables were sampled together with the response variable 
(soil map units), following a stratified sampling scheme, with approximately 30,000 
points (ten Caten et al., 2013; Bagatini et al., 2015). The samples were stratified based 
on the number and size of the polygons of each soil map unit. To that end, simulations 
were made with different numbers of points in each MU, and a minimum of 300 samples 
was established for the smaller MUs. Thus, 3,000 points were randomly distributed in 
the nine units with an area of less than 10 km2 (Table 1), and the remaining points were 
randomly stratified, obtaining approximately 300 samples in the smaller area and 6,000 
in the larger.

Three selection methods were applied to the dataset containing 40 predictor covariables 
(CJ40), and the soil map units and the following four subsets were separated: 

Subset 1 = selected to apply the Correlation-based Feature Selection (CFS) algorithm (Hall 
and Smith, 1999); this algorithm performs a heuristic assessment based on a correlation 
in order to find subsets containing covariables highly correlated with the class and not 
correlated with one another, while covariables with strong intercorrelation are considered 
redundant and excluded; 

Table 1. Soil map units (MUs) in the Lajeado Grande River Watershed

MU Composition of soil map units Area Area 

km2 %

G Gleissolos Melânico eutrófico típico(1) 8.57 1.61

LV1 Latossolo Vermelho distroférrico típico(2) 144.85 27.21

LV2* Latossolo Vermelho distroférrico típico(2) + Neossolo Regolítico eutrófico típico(4) 31.09 5.84

M1 Chernossolo Argilúvico férrico típico(3) 3.57 0.67

M2* Chernossolo Argilúvico férrico típico(3) + Neossolo Regolítico eutrófico típico(4) 3.89 0.73

NV1 Nitossolo Vermelho distroférrico típico(2) 2.40 0.45

NV2* Nitossolo Vermelho distroférrico típico(2) + Neossolo Regolítico eutrófico típico(4) 8.94 1.68

RL* Neossolo Litólico eutrófico típico(4) + Neossolo Regolítico eutrófico típico(4) 2.18 0.41

RR1 Neossolo Regolítico eutrófico típico(4) 161.19 30.28

RR2* Neossolo Regolítico eutrófico típico(4) + Neossolo Litólico eutrófico típico(5) 127.28 23.91

RR3* Neossolo Regolítico eutrófico típico(4) + Latossolo Vermelho distroférrico típico(2) 28.00 5.26

RR4* Neossolo Regolítico eutrófico típico(4) + Chernossolo Argilúvico férrico típico(3) 4.58 0.86

RR5* Neossolo Regolítico eutrófico típico(4) + Cambissolo Háplico Ta eutrófico típico(5) + Nitossolo 
Vermelho distroférrico típico(2) 2.77 0.52

RR6* Neossolo Regolítico eutrófico típico(4) + rock beds 2.61 0.49
*Associations of soil. (1) Endoaquent, (2) Hapludox, (3) Hapludol, (4) Udorthents, (5) Dystrudept (Soil Survey Staff, 2014).
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Subset 2 = selected to apply the Consistency Subset Eval (CSE) (Liu and Setiono, 
1996). The CSE uses the class consistency rate to select the properties that divide the 
original dataset into subsets containing most of the classes, and uses the consistency 
assessor proposed by Liu and Setiono (1996). The CFS and CSE aimed to compare 
filter selection by correlation and consistency of the data. To that end, the Best First 
internal method (D1-N5) was applied in the respective algorithms, using Weka 3.8.0 
software (Hall et al., 2009); 

Subset 3 = this subset was selected following the wrapper selection principles (Hall and 
Smith, 1999). An R programming language script composed of predictive models with 
the J48 algorithm (J48 -C 0.25 -M 2) was written and cross validated by five blocks. The 
recursive command “while” was used, whereby the predictive model was repeated and 
covariables eliminated one by one until reaching a minimum number of covariables in 
the model that exhibited overall accuracy greater than or equal to the set with all the 
covariables (CJ40); 

Subset 4 = composed of covariables selected simultaneously in subsets 1, 2, and 3.

The set of predictor covariables (subsets 1, 2, 3, 4, and CJ40) was used to assess 
performance by applying four prediction algorithms (J48, REPTree, BFTree, and the 
Multilayer Perceptron) used in earlier studies (Coelho and Giasson, 2010; Giasson et al., 
2011; Sarmento et al., 2012; Arruda et al., 2013; Giasson et al., 2013; ten Caten et al., 
2013; Calderano Filho et al., 2014; Dias et al., 2016). These algorithms were selected to 
compare covariable performance in classifiers with different architecture, the first three 
with decision tree architecture and the last one with artificial neural networks (ANNs). 

Table 2. Covariables extracted from the digital elevation model

Predictor covariables

Negative Openness (NEGOP) Analytical Hillshading (HILLSAHD) 

Positive Openness (POSOP) Convergence Index (CONVINDEX) 

Total Catchment Area (CATAREA) Drainage Density Index (DDI) 

Catchment Slope (CATSLOPE) Stream Power Index (SPI) 

Convexity (CONVEXITY) Topographic Position Index (TPI) 

Curvature (CURVATURE) Topographic Wetness Index (TWI) 

Profile Curvature (PROCURV) Terrain Ruggedness Index (TRI) 

Longitudinal Curvature (LOGCURV) Diffuse Insolation (DIFINSOL) 

Maximum Curvature (CURVMAX) Direct Insolation (DIRINSOL) 

Minimum Curvature (MINCURV) Total Insolation (TOTINSOL) 

Slope (DECL) Generalized Surface (MDEGENER) 

Slope Height (SLHEIGHT) Multiresolution Ridge Top Flatness Index (MRRTF)

Channel Network Distance (CND) Multiresolution Index of Valley Bottom Flatness (MRVBF)

Euclidean distance of the rivers (DISTRIVERS) Channel network base level (CNBL) 

Elevation (MDE) Aspect (ASPECT) 

Standardized Height (MDEHEIGTH) Mid-Slope Position (MSP) 

Normalized Height (NORHEIGTH) Relative Slope Position (RSP) 

Flow Accumulation (FLOWACU) Valley Depth (VALLEYDEP) 

Morphometric Features (MORFFEAT) Direct to Diffuse Ratio (DDR) 

Landforms (LANDFORMS) Cross-Sectional Curvature (CSC)
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For the decision trees, a minimum of five instances per leaf were used. All the algorithms 
were cross-validated by five blocks, applying Weka 3.8.0 software (Hall et al., 2009).

The results were assessed by an error matrix using Kappa’s coefficient, mapping accuracy 
(MA), overall accuracy (OA) (Congalton, 1991), and the following evaluators: area under 
the precision-recall curve (PRC), Matthews correlation coefficient (MCC) (Saito and 
Rehmsmeier, 2015), mean absolute error (MAE), and root mean square error (RMSE), 
the last two calculated based on the likelihood of the occurrence of the data observed 
and estimated for each class (Shi, 2007).

RESULTS AND DISCUSSION
Of the 40 covariables extracted from the DEM, only 20 were able to predict soil type, 
having been selected to make up some of the subsets (Table 3). It means that half the 
covariables under study exhibited a weak correlation with the spatial distribution of soils 
or were redundant, therefore they were discarded.

Subset 3, selected by applying the wrapper algorithm, resulted in a predictive model 
with higher overall accuracy and Kappa coefficient than the values obtained in subsets 
1 and 2, selected by CFS and CSE filters (Figure 2). This behavior was observed for the 
four algorithms, indicating no interaction between the selection methods and respective 
prediction algorithms. 

The smallest predictive model, containing 21 layers, was obtained by the neural network 
algorithm and the largest (2142 leaves) by J48 (Table 4). This difference is largely due 
to the architecture adopted by these classifiers. Neural networks are composed of 
neurons stacked in layers that make the connection between the layers and the neurons 
themselves, whereas the other algorithms display decision tree architecture consisting of 
nodes that, when combined, give rise to the leaves, which leads to a larger model than 
that obtained by the neural networks (Witten et al., 2011). The architecture and size 
of the predictive models are directly linked to their complexity, ideal models exhibiting 
high predictive power and complexity that allows them to be interpreted (Ruiz et al., 
2014). The apparently smaller ANNs show greater complexity and prevent complete 
understanding of the nature of the data under analysis (ten Caten et al., 2012).

None of the selection methods assessed showed a significant decrease in the size of 
the predictive model compared to the model obtained with all the covariables. For the 
BFTree and J48 algorithms, the smallest predictive models were obtained from subset 3, 
selected by the wrapper method, whereas for the REPTree, the smallest model was 

Table 3. Predictor covariables selected to make up the respective subsets

Sets Predictor variables selected

Subset 1
Drainage density index (DDI); Channel Network Base Level (CNBL); Aspect 

(ASPECT); Channel Network Distance (CND); Multiresolution Index of Valley Bottom 
Flatness (MRVBF); Slope Catchment (CATAREA); Diffuse Insolation (DIFINSOL); 

Generalized Surface (MDEGENER)

Subset 2

Drainage Density Index (DDI); Channel Network Base Level (CNBL); Aspect 
(ASPECT); Channel Network Distance (CND); Multiresolution Index of Valley 

Bottom Flatness (MRVBF); Slope Catchment slope (CATAREA); Curvature (CURV); 
Longitudinal Curvature (LOGCURV); Elevation (MDE); Topographic Wetness Index 

(TWI); Valley Depth (VALLEYDEP); Direct to Diffuse Ratio (DDR)

Subset 3
Drainage density index (DDI); Channel Network Base Level (CNBL); Aspect (ASPECT); 
Diffuse Insolation (DIFINSOL); Generalized Surface (MDEGENER); Positive Openness 
(POSOP); Convexity (CONVEXITY); Slope (Slope); Euclidean Distance of the Rivers 

(DISTRIVERS); Convergence Index (INDCONER); Mid-Slope Positon (MSP)
Subset 4 Drainage Density Index (DDI); Channel Network Base Level (CNBL); Aspect (ASPECT)
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obtained from subset 1, selected by application of the CFS filter. However, it is important 
to underscore that only in J48 did a decline in the size of the predictive model not result 
in lower overall accuracy and Kappa coefficient values.
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Figure 2. Performance of covariable sets using four prediction algorithms (ANNs = Artificial neural networks).

Table 4. Size of predictive models for the sets of predictor variables

Set Number of variables
Algorithm

BFTree(1) J48(1) REPTree(1) RNA(2)

CJ40 40 1048 1969 1579 40
Subset 1 7 1376 1979 1487 23
Subset 2 12 1243 2142 1647 26
Subset 3 11 1162 1923 1601 25
Subset 4 3 1269 1891 1693 21

(1) Number of leaves. (2) Number of layers.
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Of the predictor covariables tested, only slope orientations (ASPECT), channel network 
base level (CNBL), and drainage density index (DDI) were selected simultaneously by the 
three selection algorithms (subset 4). The simultaneous selection of these covariables 
is due to their strong association with the spatial distribution of soils. Slope orientation 
(Figure 3a) shows a direct effect on the microclimate, changing water availability and 
biological activity in pedogenesis, thereby correlating with the spatial distribution of soils 
in the landscape (Schaetzl and Anderson, 2005).

The covariable channel network base level (Figure 3b) is an intermediate variable used to 
calculate the vertical distance from the drainage network. This covariable is obtained by 
relating the vertical distance to the channel network base level, and is used to indicate 
the depth of soils influenced by underground waters (Bock and Köthe, 2008). The CNBL 
exhibits the lowest values in enclosed valleys, indicating that in these areas the soil 
surface occurs closer to the base level of the drainage network, helping to separate soils 
that occur in the enclosed valleys of the soils that occur in the upland areas (Bock and 
Köthe, 2008). The study area contains MUs formed by associations with predominant 
Latossolos (Hapludox) in upland areas and Neossolos Regolíticos (Udorthents) on valley 
slopes. These two groups of soils account for approximately 70 % of the total study area, 
making the CNBL covariable important in differentiating these soils.

The drainage density index (Figure 3c) shows the relationship with the properties that 
influence water infiltration into the soil, such as depth, texture, and drainage, and is used 
to differentiate soils in terms of drainage. In areas with a high DDI, there is theoretically 
less infiltration and, consequently, shallower soils or soils with limited percolation in the 
B horizon (Demattê and Demétrio, 1998; Dobos et al., 2000). 

The three selection methods resulted in different combinations of predictor covariables. 
This occurred due to the criteria used by each method for selecting the covariables most 
important for predicting soil type. Application of the CFS filter eliminated the largest 
number of covariables. Of the 40 covariables under study, only seven were selected 
to form subset 1; thus, CFS led to an 80 % decline in the number of variables. The 
correlation matrix of subset 1 (Figure 4) shows that fewer than 30 % of correlations exhibit 
a magnitude greater than 0.4, which are classified as moderate or strong (Dancey and 
Reidy, 2006). The selection criterion of the CFS filter is the weak correlation between 
covariables and high correlation with the response variables, which contributes to the 
selection of poorly intercorrelated covariables (Hall and Holmes, 2003).

Figure 3. Covariables selected in the three methods tested. Slope orientation (a); channel network base level (b); drainage density 
index (c).
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The CFS was highly efficient in reducing the number of predictors; however, it decreased 
the performance of the predictive model. The highest correlation (0.96) occurred between 
the CNBL and MDEGENER covariables, due to the way the former is calculated, using the 
horizontal distance from the drainage network and the vertical distance (elevation) from 
the base of the drainage network, resulting in a strong correlation between them (Figure 4).

Applying the CSE filter resulted in subset 2, with 12 covariables selected, which represented 
a 70 % decline in the number of covariables. In this subset, fewer than 20 % of the 
correlations are greater than 0.4 (Figure 5a). The VALLEYDEP and MDEPAD covariables, 
collinearity of 0.63, and CND and MDEPAD covariables, collinearity of -0.71, were the 
strongest correlation values observed in subset 2. The selection criterion of the CSE 
algorithm is the consistency of the subsets in relation to the response variable, which 
allowed higher correlation values between the selected covariables. Nevertheless, applying 
these filters eliminated the highest number of covariables with strong intercorrelation 
(Hall and Holmes, 2003). However, as in the CFS, the CSE also reduced the performance 
of the predictive model.

Subset 3, selected by applying the wrapper approach, consisted of 11 covariables. In this 
subset, 35 % of the correlations are greater than 0.4 (Figure 5b), this method being the 
least efficient in eliminating strongly correlated covariables. The highest collinearities 
occur between covariables CNBL and MDEGENER (0.95) and PRDECL and CONVINDEX 
(0.85). Only the wrapper selection did not decrease the performance of the predictive 
model in relation to the set with all 40 covariables. Moreover, a slight decline in the size 
of the predictive model was also observed in algorithms BFTree, REPTree, and J48. This 
result corroborates the study by Hall and Holmes (2003), who also obtained a better 
prediction result when the wrapper method was applied to select the predictor variables.

The presence of strongly intercorrelated covariables in all the subsets indicates that they 
may exhibit different degrees of importance for the soil classes, justifying maintaining 
them in the subsets. This result shows that the correlation between covariables alone is 
insufficient to select the predictors most relevant for predicting soil types.

Figure 4. Correlation matrix of covariables that form subset 1.
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In all the subsets of variables and algorithms tested, it was possible to predict the 14 map 
units. Mapping Accuracy (MA) behaved identically to that of overall accuracy (OA), with the 
highest values observed in subset 3 associated with algorithm J48 (Table 5). The lowest MA 
values (<0.3) occurred in the BFTree and ANN algorithms associated with subsets 1 and 
2. The greatest variation between the minimum and maximum MA value was observed in 
these two subsets. The greater variation between minimum and maximum MA in subsets 
1 and 2 indicates that the prediction error was concentrated in only a few map units.

The opposite behavior can be observed for algorithm J48, which displayed the lowest 
variation between minimum (0.50) and maximum (0.90) MA values in CJ40 and subset 
3, suggesting greater error distribution among the MUs and, in turn, better prediction 
of the 14 soil map units. Only map units LV2, NV2, and RL did not reach maximum MA 
in J48 associated with subset 3; however, the MA values observed for this combination 
between the prediction algorithm and subset were higher than 0.67, indicating good 
prediction for these three soil map units also.

The map units with the greatest difficulty for prediction were NV2, LV2, RR1, RR2, RR3, 
and RR6, which showed the lowest MA values. These map units (NV2, LV2, RR1, RR2, 
RR3, and RR6) consist of Typic Udorthents (Neossolos Regolíticos) or these classes in 
association with other classes, such as Lithic Udorthents (Neossolos Litólicos) and Typic 
Haplustox (Latossolos Vermelhos). Thus, these MUs may occur adjacently or in similar 
environments, hindering their prediction by classifiers. Map units occupying very similar 
positions in the landscape may cause more discrimination difficulties for predictive 
models (Höfig et al., 2014).

The performance of the subsets and algorithms is also supported by the values obtained 
in the other indices evaluated (Table 6). Except for the ANN algorithm, the values of the 
area under the PRC curve, Kappa coefficient, and OA exhibit a variation of less than 5 % in 
the predictive models, indicating low randomness in the classifications obtained by these 
models, showing good consistency in the covariables used to predict the occurrence of 
the MUs. The results for subset 4 demonstrate that only the three covariables selected 
simultaneously in the three methods tested account for more than 56 % of the agreement 

Figure 5. Correlation matrix for subsets 2 (a) and 3 (b).
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obtained in the decision tree models and 43 % in the ANN model, reinforcing the relevance 
of these covariables in predicting soil type.

The mean absolute error (MAE) and root mean square error (RMSE) values were relatively 
low, the highest being 0.10 and 0.22, respectively, confirming the good performance of 
the predictive models (Witten et al., 2011). The observed values of MCC indicate good 
correlation between the predicted data and the reference map, with the highest value 
(0.67) in algorithm J48 associated with subset 3. For the MCC, only the ANN algorithm 
obtained values below 0.5; however, it is important to underscore that the MCC is better 
used when working with a balanced number of samples from the response variable. In the 
present study, since the number of samples per class range from 300 to 6,000 between 
the smaller and larger soil classes (RL and RR1), the values observed may have been 
underestimated (Saito and Rehmsmeier, 2015).

The three selection methods resulted in different combinations of the predictor variables 
and, in turn, different validation performances; the wrapper type exhibited slightly better 
performance than that of the other methods in all the algorithms tested, corroborating the 
studies by Hall and Smith (1999) and Brungard et al. (2015). All the selection methods led 
to fewer covariables, reinforcing the need for data pre-processing in order to maximize 
the performance of the classifiers used in digital soil maps, which is in agreement with 

Table 5. Mapping Accuracy for predictive models fit to the five sets of predictor covariables.

Algorithm
Soil map unit

G LV1 LV2 M1 M2 NV1 NV2 RL RR1 RR2 RR3 RR4 RR5 RR6
CJ40

BFTree 0.75 0.72 0.74 0.70 0.69 0.73 0.32 0.65 0.45 0.59 0.45 0.65 0.76 0.31
J48 0.79 0.79 0.64 0.79 0.82 0.83 0.65 0.89 0.50 0.55 0.65 0.75 0.85 0.79
REPTree 0.79 0.77 0.61 0.75 0.76 0.84 0.56 0.89 0.42 0.56 0.63 0.73 0.80 0.77
RNA 0.80 0.71 0.51 0.57 0.56 0.69 0.49 0.91 0.45 0.55 0.55 0.71 0.84 0.68

Subset 1 (CFS filter)
BFTree 0.69 0.74 0.79 0.73 0.66 0.78 0.43 0.64 0.24 0.56 0.25 0.63 0.67 0.51
J48 0.79 0.76 0.56 0.78 0.79 0.82 0.64 0.86 0.43 0.55 0.57 0.68 0.81 0.77
REPTree 0.80 0.75 0.56 0.68 0.78 0.83 0.59 0.85 0.34 0.55 0.53 0.68 0.79 0.72
RNA 0.63 0.65 0.39 0.21 0.44 0.70 0.20 0.59 0.38 0.56 0.40 0.46 0.44 0.20

Subset 2 (CSE filter)
BFTree 0.68 0.76 0.72 0.67 0.63 0.76 0.47 0.65 0.33 0.50 0.18 0.64 0.55 0.51
J48 0.77 0.76 0.54 0.77 0.77 0.80 0.59 0.83 0.43 0.53 0.56 0.69 0.77 0.78
REPTree 0.82 0.75 0.55 0.67 0.79 0.80 0.56 0.85 0.36 0.53 0.51 0.69 0.76 0.72
RNA 0.70 0.66 0.40 0.29 0.46 0.63 0.28 0.64 0.38 0.59 0.43 0.54 0.51 0.22

Subset 3 (wrapper selection)
BFTree 0.79 0.74 0.73 0.73 0.67 0.72 0.29 0.68 0.46 0.58 0.46 0.67 0.75 0.34
J48 0.83 0.80 0.68 0.84 0.84 0.83 0.69 0.90 0.52 0.59 0.67 0.75 0.88 0.84
REPTree 0.81 0.78 0.64 0.76 0.80 0.84 0.64 0.90 0.43 0.56 0.65 0.74 0.80 0.82
RNA 0.75 0.69 0.48 0.33 0.41 0.62 0.34 0.77 0.40 0.59 0.40 0.57 0.71 0.43

Subset 4 (1∩2∩3)
BFTree 0.71 0.72 0.48 0.76 0.67 0.75 0.52 0.85 0.36 0.43 0.58 0.66 0.72 0.68
J48 0.65 0.73 0.47 0.75 0.75 0.73 0.62 0.82 0.38 0.41 0.51 0.67 0.73 0.76
REPTree 0.71 0.74 0.47 0.77 0.73 0.74 0.51 0.86 0.37 0.35 0.54 0.68 0.70 0.69
RNA 0.46 0.68 0.31 0.22 0.43 0.56 0.26 0.62 0.37 0.25 0.32 0.51 0.63 0.31
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other studies (Giasson et al., 2013; Paes et al., 2013; Subburayalu and Slater, 2013; 
Subburayalu et al., 2014; Taghizadeh-mehrjardi et al., 2016; Vasu and Lee, 2016). Wrapper 
selection assesses a model that predicts the relevance of each covariable independently, 
which made it possible to select variables highly correlated with the response variable 
and achieve maximum performance in the algorithms used for classification.

CONCLUSIONS 
The wrapper selection method produced the best performance for the predictive model 
in all the algorithms.

Applying the three selection methods reduced the number of covariables by approximately 
70 % in the predictive models and made it possible to predict the 14 map units.

Applying the Correlation-based Feature Selection (CFS) and Consistency Subset Eval 
(CSE) filter algorithms decreased accuracy and Kappa coefficient values in relation to 
the set of all the covariables.

Only the covariables of slope orientation, channel network base level, and drainage 
density index were selected simultaneously by the three methods tested.
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