Solubilização de fosfatos naturais por microrganismos isolados de cultivos de *Pinus* e *Eucalyptus* de Santa Catarina⁽¹⁾

Germano Nunes Silva Filho(2), Charles Narloch(2) e Rosana Scharf(2)

Resumo – A utilização de microrganismos solubilizadores tem sido sugerida como alternativa ao uso de fertilizantes fosfáticos. Para serem utilizados num programa de inoculação controlada, os microrganismos devem apresentar grande capacidade e potencial de solubilização. O objetivo deste trabalho foi avaliar a capacidade e o potencial de solubilização de 56 isolados inoculados em meio GES contendo fosfato (Anitápolis, Araxá ou Catalão), usando-se um fatorial 57x3 (56 isolados + testemunha e três fosfatos) conduzido em delineamento completamente casualizado com três repetições. Após 15 dias de incubação, determinaram-se as quantidades de P e o pH do meio. Foram verificados efeitos dos fosfatos, dos isolados e da interação. Baixos valores de pH foram obtidos por isolados que apresentaram médio a alto potencial. O teor médio de P foi superior no fosfato de Anitápolis, seguido do Araxá. Trinta e um isolados solubilizaram quantidades significativas. O 310 apresentou o mais alto potencial (média de 263 μg mL⁻¹ de P). Quatro isolados (177, 262, 251 e 269) apresentaram alto potencial (120 a 150 μg), e doze (201, 309, 199, 195, 249, 202, 198, 305, 253, 196, 203 e 307), mostraram valores médios (80 a 120 μg). O comportamento dos isolados foi diferente entre os fosfatos. Apenas quatro isolados solubilizaram os três fosfatos (310, 251, 199 e 249). As características apresentadas pelos isolados 310, 251, 199 e 249 os qualificam para um programa de seleção visando à inoculação controlada.

Termos para indexação: solubilizadores de fosfato, fósforo, biologia de solo.

Solubilization of natural phosphates by microorganisms isolated from *Pinus* and *Eucalyptus* plantations in Santa Catarina, Brazil

Abstract – The use of P-solubilizing microorganisms have been suggested as an alternative to replace the utilization of phosphate fertilizers. In order to be used in programs of controlled inoculation, microorganisms must display a high capacity and potential for solubilization. The aim of this study was to evaluate the potential and the capacity of 56 microbial isolates to solubilize different types of phosphates. The evaluation was performed in GES medium supplemented with one of the following phosphates: Anitápolis, Araxá and Catalão, through a factorial experiment [(56 isolates + control) x three phosphates] in a randomized complete design with three replications. After 15 days of inoculation, levels of phosphorus and pH of the media were determined. Effects of phosphates, isolates and the interaction were verified. Low values of pH were obtained by isolates with high and medium potential. The average level of P was superior in Anitápolis phosphate, followed by Araxá. Thirty-one isolates solubilized significant quantities. The isolate 310 showed the highest potential (average of 263 μg mL⁻¹ of P). Four isolates (177, 262, 252 and 269) showed high potential (120 to 150 μg), and twelve (201, 309, 199, 195, 249, 202, 198, 305, 253, 196, 203 and 307) showed medium values (80 to 120 µg). Isolates behavior was different among phosphates. Only four isolates solubilized all three phosphates (310, 251, 199 and 249). The characteristics displayed by isolates 310, 251, 199 and 249 qualified them for a screening program aiming controlled inoculation.

Index terms: phosphate-solubilizing microorganism, phosphorus, soil biology.

⁽¹⁾ Aceito para publicação em 14 de novembro de 2001.
Projeto financiado pela International Foundation for Science.

⁽²⁾ Universidade Federal de Santa Catarina, Dep. de Microbiologia e Parasitologia, Centro de Ciências Biológicas, Caixa Postal 476, CEP 88010-970 Florianópolis, SC. E-mail: germano@ccb.ufsc.br, charles@narloch.com

Introdução

O setor florestal constitui um importante segmento econômico do País, pois contribui com 3,3 bilhões de dólares em exportação (Hoeflich et al., 2000) e 4% do Produto Interno Bruto (Brasil, 2000). O Estado de Santa Catarina destaca-se no cenário nacional na produção de papel e celulose, e apresenta 5% de sua superfície coberta por reflorestamentos, especialmente com *Pinus* e *Eucalyptus* (Brandão, 1997). Em face das restrições espaciais e ecológicas ao aumento da produção por expansão da área cultivada, as atenções estão voltadas para o aumento da produtividade.

Um dos fatores que afetam o crescimento vegetal é a disponibilidade de nutrientes, notadamente, no caso dos solos brasileiros, a de fósforo (P). Para suprir essa carência, são utilizados fosfatos solúveis em dosagens superiores às necessidades das culturas, pois a maior parte do P aplicado ao solo não é prontamente disponível às plantas. Embora o Brasil apresente inúmeras reservas, o uso de fosfatos naturais é reduzido. O custo de produção é menor, mas a solubilidade é baixa, o que diminui sua eficiência (Braga et al., 1991), e restringe o seu uso a áreas próximas ao local de beneficiamento e a determinadas culturas.

No solo, o P é sujeito a inúmeros processos biogeoquímicos que alteram sua disponibilidade. Entre esses processos, destaca-se a dissolução de fosfatos, que os torna disponíveis para as plantas (Whitelaw, 2000). Diversos microrganismos do solo, incluindo bactérias e fungos, possuem capacidade para solubilizar fosfatos por meio de diferentes mecanismos, especialmente pela produção de ácidos (Sperber, 1958; Banik & Dey, 1982; Kucey, 1983; Nahas, 1999; Rodrígez & Fraga, 1999; Silva Filho & Vidor, 2000; Whitelaw, 2000). A inoculação de microrganismos solubilizadores de fosfatos ou o manejo de suas populações têm sido sugeridos como forma de substituir ou diminuir o uso de fertilizantes fosfáticos solúveis, mediante um melhor aproveitamento dos fosfatos naturais existentes ou adicionados ao solo e dos formados pela aplicação de fontes solúveis (Goldstein, 1986; Kim et al., 1998). Para serem utilizados num programa de inoculação controlada, os microrganismos devem apresentar, entre outras características, grande capacidade e alto potencial de solubilização de fosfatos, ou seja: devem solubilizar vários tipos de fosfatos, e a solubilização deve ser de alta intensidade.

O presente trabalho teve por objetivo avaliar a capacidade e o potencial de 56 isolados de microrganismos de solubilizar fosfatos naturais.

Material e Métodos

Cinquenta e seis isolados de microrganismos solubilizadores de fosfatos, bactérias e fungos, obtidos de substrato, solo ou rizosfera de cultivos em sementeiras ou florestas de Pinus ou Eucalyptus do Estado de Santa Catarina (Tabela 1) foram inoculados em frascos de 100 mL contendo 50 mL de meio Glicose Extrato de Solo (GES) (Sylvester-Bradley et al., 1982) e 0,25 g do fosfato natural de Anitápolis, Araxá ou Catalão, moído e peneirado em malha de 0,053 mm. Os teores P2O5 total e solúvel em ácido cítrico (2%) foram de 9,4% e 4,3%; 9,3% e 3,2%; 9,4% e 2,5%, respectivamente, no fosfato de Araxá, Anitápolis e Catalão, respectivamente. As análises foram realizadas pelo Laboratório Físico Químico e Biológico da Companhia Integrada de Desenvolvimento de Santa Catarina. Como inóculo foram utilizadas culturas com 48 horas de incubação. Para as bactérias utilizou-se l mL de cultura líquida, e para os fungos, um disco de 4 mm de diâmetro, retirado da borda da colônia crescida em meio sólido.

Após um período de 15 dias de incubação à temperatura de 30°C, o meio GES foi centrifugado a 3.000 rpm durante 15 minutos. Em seguida, o sobrenadante foi utilizado na determinação de P e pH. O P solúvel no extrato foi avaliado por espectrofotometria a 660 nm, segundo procedimento descrito por Tedesco et al. (1995).

O experimento constituiu-se de um fatorial [(56 isolados + testemunha) x três fosfatos] conduzido em delineamento completamente casualizado com três repetições, e as médias foram comparadas pelo teste de Tukey a 5%.

Resultados e Discussão

Os teores de P presentes no meio GES após a incubação foram superiores no fosfato de Anitápolis, seguidos do fosfato de Araxá, e, por último, do de Catalão (Tabela 2). Estas diferenças provavelmente estão relacionadas à composição do fosfato, como o teor de CO₂ (Alcarde & Ponchio, 1983), e, ou, à presença de nutrientes inorgânicos que acompanham o produto. Diferenças na disponibilização de fosfatos têm sido verificadas no solo e em meios de cultura (Oliveira et al., 1984; Silva Filho & Vidor, 2000).

Tabela 1. Procedência e classificação dos isolados de microrganismos solubilizadores de fosfatos obtidos de cultivos de *Pinus* e *Eucalyptus* de Santa Catarina.

Isolados	Local	Espécie vegetal	Condição	Amostra	Classificação
119	Mafra, SC	Eucalyptus sp.	Floresta	S ⁽¹⁾	Aspergillus
133	Mafra, SC	Pinus sp.	Floresta	S	Penicillium
138	Mafra, SC	Pinus sp.	Floresta	S	Penicillium
139	Mafra, SC	Eucalyptus sp.	Floresta	S	Penicillium
141	Mafra, SC	Pinus sp.	Floresta	S	Penicillium
142	Mafra, SC	Eucalyptus sp.	Floresta	S	Aspergillus
148	Massaranduba, SC	E. grandis	Viveiro - 120 dias	$R^{(2)}$	Pseudomonas
154	Três Barras, SC	E. dunnii	Viveiro - 15 dias	R	Enterobacteriacea
155	Barra do Sul, SC	P. elliotti	Floresta - 10 anos	S	_(3)
175	Três Barras, SC	E. dunnii	Viveiro - 90 dias	S	-
177	Três Barras, SC	E. dunnii	Viveiro - 75 dias	R	Penicillium
185	Massaranduba, SC	E. grandis	Floresta - 9 anos	R	Enterobacteriacea
189	Três Barras, SC	P. taeda	Viveiro - 50 dias	R	Enterobacteriacea
190	Três Barras, SC	E. dunnii	Viveiro - 60 dias	S	Penicillium
191	Três Barras, SC	E. dunnii	Viveiro - 60 dias	S	Rhizopus
192	Correia Pinto, SC	P. taeda	Viveiro - 60 dias	Š	Penicillium
195	Correia Pinto, SC	P. taeda	Floresta - 29 anos	Ř	Aspergillus
196	Massaranduba, SC	E. grandis	Floresta - 5 anos	R	Aspergillus
198	Correia Pinto, SC	P. taeda	Floresta - 20 anos	S	Aspergillus
199	Três Barras, SC	P. taeda	Floresta - 1 ano	S	Aspergillus
200	Três Barras, SC	P. taeda	Floresta - 10 anos	R	Aspergillus
201	Três Barras, SC	E. dunnii	Floresta - 3 anos	S	Aspergillus
202	Três Barras, SC	E. dunnii	Floresta - 5 anos	S	Bastonete Gram +
203	Três Barras, SC	E. dunnii	Floresta - 5 anos	S	-
205	Mafra, SC	E. dunnii	Floresta - 5 anos	S	Bastonete Gram +
215	Três Barras, SC	E. dunnii	Viveiro - 90 dias	S	-
221	Três Barras, SC	P. taeda	Floresta - 1 ano	R	Pseudomonas
222	Três Barras, SC	P. taeda	Floresta - 1 ano	R	Enterobacteriacea
233	Ilhota, SC	E. grandis	Floresta - 2 anos	S	Penicillium
238	Massaranduba, SC	E. grandis	Floresta - 9 anos	R	Penicillium
239	Correia Pinto, SC	P. taeda	Viveiro - 90 dias	R	Bacillus
240	Três Barras, SC	E. dunnii	Floresta - 9 anos	R	Pseudomonas
249	Três Barras, SC	E. aannti Eucalyptus sp.	Floresta - 2 anos	S	Aspergillus
250	Massaranduba, SC	Eucatypius sp. E. grandis	Viveiro	S	Aspergillus Aspergillus
251	Massaranduba, SC	P. elliotti	Floresta - 10 anos	S	Aspergillus Aspergillus
253	Três Barras, SC	Pinus sp.	Floresta - 2 anos	S	Aspergiiius
261	Três Barras, SC	P. taeda	Viveiro - Semeadura	R	- Penicillium
262	Massaranduba, SC	E. grandis	Viveiro - 45 dias	S	Penicillium
263	Três Barras, SC	E. granais P. taeda	Viveiro - 120 dias	S	Penicillium Penicillium
264		P. taeda	Viveiro - 120 dias Viveiro	-	Penicillium Penicillium
269	Três Barras, SC			S	Penicillium Penicillium
	Três Barras, SC	E. dunnii	Floresta - 9 anos		renicilium
282	Três Barras, SC	Pinus sp.	Viveiro - 150 dias	R	-
290	Correia Pinto, SC	E. viminalis	Floresta - 19 anos	R	-
291	Três Barras, SC	E. dunnii	Floresta - 9 anos	S	- Entarabastaria
295	Correia Pinto, SC	P. taeda	Floresta - 29 anos	S	Enterobacteriacea
297	Três Barras, SC	E. dunnii	Floresta - 9 anos	S	Enterobacteriacea
300	Barra do Sul, SC	P. elliotti	Floresta - 10 anos	S	Penicillium
301	Massaranduba, SC	E. grandis	Viveiro - 105 dias	S	Penicillium
302	Correia Pinto, SC	E. viminalis	Floresta - 19 anos	R	Penicillium

Continua...

Tabela 1. Continuação.

Isolados	Local	Espécie vegetal	Condição	Amostra	Classificação
303	Correia Pinto, SC	P. taeda	Viveiro - 240 dias	S	Penicillium
305	Correia Pinto, SC	P. taeda	Viveiro - 240 dias	S	Aspergillus
306	Barra do Sul, SC	P. elliotti	Floresta - 10 anos	R	Rhizopus
307	Correia Pinto, SC	E. viminalis	Floresta - 19 anos	S	Aspergillus
308	Três Barras, SC	P. taeda	Floresta - 15 anos	R	Aspergillus
309	Três Barras, SC	E. dunnii	Floresta - 9 anos	R	Aspergillus
310	Três Barras, SC	E. dunnii	Floresta - 9 anos	S	Aspergillus

⁽¹⁾Solo. (2)Solo rizosférico. (3)Sem informação.

Dos 56 isolados testados, 31 solubilizaram quantidades significativas de fosfato (Tabela 2). Desses, o 310 apresentou o maior potencial de solubilização, com valor médio superior a 260 µg mL⁻¹ de P de meio GES. Quatro isolados (177, 262, 251 e 269) apresentaram alto potencial, com valores variando de 120 a 150 μg mL⁻¹ de P, doze (201, 309, 199, 195, 249, 202, 198, 305, 253, 196, 203 e 307) apresentaram valores considerados como médios (80 a 120 µg mL⁻¹ de P) e quatorze apresentaram valores baixos (40 a 80 µg mL⁻¹ de P). Vinte e cinco isolados, representando 45% do total, apresentaram teores de P no meio GES estatisticamente semelhantes aos da testemunha não-inoculada. Variação no potencial de solubilização de microrganismos tem sido observada por vários autores, e é utilizada como uma das principais características no processo de seleção (Illmer & Schinner, 1992; Mikanová & Kubát, 1994; Silva Filho & Vidor, 2000).

Entre os grupos de microrganismos, destacaramse os isolados fúngicos, com predomínio do gênero Aspergillus, seguido pelo gênero Penicillium. Esses gêneros estão entre os mais citados na literatura. No entanto, em relação a sua eficiência, existem controvérsias. Banik & Dey (1982) avaliando diversos isolados de microrganismos solubilizadores verificaram que dois fungos do gênero Aspergillus foram os mais eficientes. Nahas (1996), trabalhando com isolados de outras procedências, verificou que os mais eficientes foram os do gênero Penicillium. O meio de cultura é um fator decisivo dessa característica. Silva Filho & Vidor (2000), trabalhando em meio sólido, verificaram que o potencial de solubilização destes mesmos isolados era maior no gênero Penicillium.

Os isolados diferiram entre si, tanto na capacidade quanto na intensidade (potencial) de solubilização dos fosfatos. Vinte e seis isolados solubilizaram fosfato de Anitápolis, contra 24 de Araxá, e apenas seis de Catalão. Na maioria dos isolados, as quantidades de P solubilizadas no fosfato de Anitápolis foram superiores às do fosfato de Araxá e principalmente às do fosfato de Catalão. Em cerca de 10% dos isolados (201, 253, 309, 200 e 250), as quantidades solubilizadas no fosfato de Araxá foram superiores às apresentadas no fosfato de Anitápolis. Nenhum isolado solubilizou maior quantidade de P no fosfato de Catalão do que no de Anitápolis, e apenas um (305) solubilizou mais no fosfato de Catalão do que no de Araxá.

Alguns isolados solubilizaram somente um tipo de fosfato. Isto ocorreu com sete isolados no fosfato de Anitápolis (238, 240, 221, 264, 189, 306 e 262) e quatro no fosfato de Araxá (309, 190, 233 e 300). Outros solubilizaram dois tipos de fosfatos. Quatorze solubilizaram fosfato de Anitápolis e de Araxá (177, 269, 201, 195, 202, 198, 253, 196, 203, 307, 191, 308, 301 e 303); um, fosfato de Anitápolis e de Catalão (305); e um, fosfato de Araxá e de Catalão (250). Apenas quatro isolados solubilizaram os três fosfatos (310, 251, 199 e 249). Entre estes, apenas o isolado 249 solubilizou quantidades semelhantes em todos os fosfatos.

Resultados semelhantes foram obtidos por Lapeyrie et al. (1991), que verificaram que o potencial de solubilização variou com os isolados de *Paxillus involutus*, e Storkánová et al. (1999) e Mikanová & Kubát (1994), com espécies de *Rhizobium* e *Bradyrhizobium*. Diferenças entre as fontes de fosfato com o mesmo microrganismo foram verifica-

Tabela 2. Teor de P (µg mL-1 de P) e pH do meio Glicose Extrato de Solo (GES) suplementado com fosfatos naturais (Anitápolis, Araxá, Catalão) e submetido à inoculação de microrganismos solubilizadores de fosfatos isolados de florestas de Pinus e Eucalyptus em Santa Catarina, após 15 dias de incubação (1).

Isolados	Anitápolis	polis	1	Araxá		Catalão	M	Média
	Ь	Hd	P	Hd	Ь	Hd	Ь	Hd
0	480 a A	2,26 vwxyz B	180 abc B	3,41 lmnopq A	129 a C	3,20 nopqrstuvw A	263 a	2,96 vwxyz
177	319 b A	2,08 z B	90 defgh B	3,64 ijklmno A	24 efg C	3,49 ijklmnop A	144 b	3,07 stuvwxy
262	305 b A	2,23 wxyz C	61 efghijklmn B	3,68 ijklmn A	18 efg C	3,05 tuvwxyz B	128 bc	2,99 uvwxyz
251	188 cd A	2,64 opgrstuv B	86 defgh B	3,42 Imnopq A	106 abc B	3,33 klmnopqrstuv A	127 bc	3,13 pqrstuvw
569	206 c A	2,68 opqrstu B	119 cde B	2,74 s B	39 cdefg C	3,45 ijklmnopqrs A	122 bcd	2,96 vwxyz
201	90 efghijklm B	2,81 nopqrs B	202 ab A	3,30 nopq A	46 bcdefg C	2,95 vwxyz B	113 bcde	3,02 uvwxy
309	36 klmnopqrs B	3,69 ghi A	238 a A	3,32 mnopq B	44 cdefg B	3,59 ghijklm A	106 bcdef	3,54 ijk
199	133 defgh A	3,28 jklm B	91 defg AB	3,49 pq AB	80 abcde B	3,55 ghijklmno A	102 cdef	3,44 ijklm
195	143 cdef A	2,80 nopqrs C	111 cde A	3,34 mnopq A	48 bcdefg B	3,07 stuvwxy B	101 cdef	3,07 stuvwxy
249	100 efghijkl A	2,86 nopqr B	83 efghi A	3,38 efghijklmnopq A	102 abcd A	3,03 uz B	95 cdefg	3,09 rstuvwx
202	146 cde A	2,15 yz C	106 def B	3,70 ijklm A	32 efg C	2,69 yz B	95 cdefg	2,85 yz
198	118 efghi A	2,95 Imnop B	153 bcd A	3,34 mnopq A	7 fg B	3,09 rstuvwx B	93 cdefgh	3,13 pqrstuvw
305	109 efghij A	2,79 nopqrs C	54 efghijklmn B	4,17 efgh A	115 ab A	3,14 pqrstuvw B	93 cdefgh	3,37 jklmno
253	99 efghijkl B	2,40 tuvwxyz C	155 bcd A	3,64 ijklmno A	19 efg C	3,23 mnopqrstuvw B	91 cdefgh	3,09 rstuvwx
196	116 efghi A	2,91 mnopq B	102 def A	3,45 klmnopq A	40 cdefg B	3,05 tuvwxyz B	86 defghi	3,14 pqrstuvw
13	138 cdefg A	2,47 stuvwxy C	82 efghi B	3,64 ijklmno A	31 efg C	2,70 yz B	84 defghij	2,94 wxyz
7	99 efghijkl A	2,18 yz B	100 def A	3,17 pqr A	44 cdefg B	3,35 klmnopqrstu A	81 efghij	2,90 xyz
191	89 efghijklm A	2,61 pqrstuvw B	90 defgh A	3,16 pqr A	46 bcdefg B	3,36 klmnopqrstu A	75 efghijk	3,04 tuvwxy
306	123 defghi A	2,87 nopqr B	64 efghijklmn B	3,33 mnopq A	36 defg B	3,27 Imnopqrstuvw A	74 efghijk	3,16 opqrstuvw
<u>&</u>	99 efghijkl A	2,66 opqrstu B	72 efghijkl AB	3,25 pq A	51 bcdefg B	3,30 klmnopqrstuv A	74 efghijk	3,07 stuvwxy
250	45 jklmnopqrs B	3,44 hijk B	92 defg A	3,81 hijk A	72 abcdef AB	2,73 xyz C	70 fghijkl	3,33 klmnop
190	61 ijklmnopqrs AB	3,04 lmn A	101def A	3,25 pq A	47 bcdefg B	3,22 mnopqrstuvw A	70 fghijkl	3,17 opqrstuv
301	103 efghijk A	2,74 nopqrst B	80 efghij A	3,54 jklmnop A	17 efg B	3,50 hijklmnop A	67 fghijklm	3,26 mnopqrst
303	111 efghij A	2,35 uvwxyz B	62 efghijklmn B	3,47 jklmnopq A	26 efg B	3,48 ijklmnop A	66 fghijklm	3,10 rstuvwxy
200	35 klmnopqrs B	ഹ	88 defgh A	3,42 Imnopq A	49 bcdefg AB	3,35 klmnopqrstu A	58 ghijklmn	3,42 ijklmn
189	82 efghijklmn A	2,31 uvwxyz C	69 efghijklmn A	3,69 ijklm A	17 efg B	3,27 Innopqrstuvw B	56 ghijklmn	3,09 rstuvwx
233	62 ijklmnopqrs AB	3,43 hijk A	70 efghijklm A	2,80 rs C	$30 \mathrm{efg} \mathrm{B}$	3,17 opqrstuvw B	54 hijklmno	3,14 pqrstuvw
300	55 ijklmnopqrs AB	2,52 rstuvwxy B	78 efghijk A	3,73 ijkl A	16 efg B	3,57 ghijklmn A	50 ijklmno	3,27 mnopqrs
264	76 fghijklmnop A	2,55 qrstuvw B	58 efghijklmn AB	3,15 pqr A	10 fg B	3,36 klmnopqrstu A	48 ijklmno	3,02 uvwxy
221	78 efghijklmno A	2,14 yz C	42 fghijklmn AB	3,32 mnopq A	23 efg B	2,91 wxyz B	48 ijklmno	2,79 z
240	98 efghijkl A	2,83 nopqrs B	23 ghijklmn B	4,13 fgh A	13 efg B	2,67 z B	44 jklmnopq	3,21 nopqrstu
261	66 hijklmnopqrs A	3,01 lmno B	36 fghijklmn AB	3,50 jklmnop A	16 efg B	3,28 Imnopqrstuvw A	39 klmnopqr	3,26 mnopqrst
238	69 ghijklmnopqr A	3,08 lmn B	37 fghijklmn AB	3,18 pqr B	10 fg B	3,64 ghijkl A	39 klmnopqr	3,30 lmnopqr
142	66 hijklmnopqrs A	2,88 nopqr C	26 ghijklmn AB	4,17 efgh A	14 efg B	3,68 ghijk B	35 klmnopqr	3,58 ij
133	64 hijklmnopqrs A	2,67 opqrstu C	21 hijklmn B	3,26 opq B	10 fg B	3,67 ghijkl A	32 Imnopqr	3,20 nopqrstu
138	31 Imnopqrs A	2,67 opqrstu C	8 klmn A	4,52 de A	42 cdefg A	3,43 jklmnopqrst B	27 mnopqr	3,54 ijk
141	43 jklmnopqrs A	2,66 opqrstu C	26 ghijklmn A	3,84 hij A	9 fg A	3,46 ijklmnopqr B	26 nopqr	3,32 klmnopq
263	33 Imnopars A	2.87 m B	30 ghijklmn A	3,81 hijk A	9 fg A	3,82 fghi A	24 nopgr	3,50 ijkl

Tabela 2. Continuação

P pH P pH 24 mnopqrs A 2,90 mnopqr C 37 fghijklmn A 3,42 lmnopq B 34 klmnopqrs A 2,79 nopqrs C 12 jklmn A 4,40 def A 13 nopqrs A 3,30 jkl C 10 klmn A 3,54 jklmnop B 7 pqrs A 3,33 jkl C 8 klmn A 4,33 def A 11 opqrs A 3,71 ghi B 5 lmn A 4,30 defg A 2 rs A 3,28 jklm C 15 jklmn A 4,30 defg A 1 rs A 3,94 efg B 11 klmn A 4,24 defg A 1 rs A 3,94 efg B 11 klmn A 4,24 defg A 1 rs A 3,94 efg B 11 klmn A 3,26 opq C 1 rs A 3,61 bA 8 lmn A 3,26 opq C 1 rs A 4,46 cd C 9 klmn A 3,43 bA 1 rs A 4,27 cde C 5 lmn A 3,56 bA 1 rs A 4,51 cde C 5 lmn A 5,36 bA 1 rs A 3,80 fgh C 3 lmn A 5,36 bA 0 s A 3,77 fgh C 3 lmn A 5,90 bc A 0 s A	Isolados	Anit	Anitápolis		Araxá		Catalão	I	Média
24 mnopqrs A 2,90 mnopqr C 37 fghijklmn A 3,42 lmnopq B 34 klmnopqrs A 2,79 nopqrs C 12 jklmn A 4,40 def A 11 opqrs A 3,30 jkl C 10 klmn A 3,54 jklmnop B 7 pqrs A 3,33 ijkl C 8 klmn A 4,33 def A 11 opqrs A 3,71 ghi B 5 lmn A 4,30 defg A 1 rs A 3,94 efg B 11 klmn A 4,57 dA 1 rs A 3,94 efg B 11 klmn A 4,24 defg A 1 rs A 3,94 efg B 11 klmn A 4,24 defg A 1 rs A 4,46 cd C 9 klmn A 5,15 bc A 1 rs A 4,46 cd C 10 klmn A 5,43 b A 1 rs A 4,57 cde C 5 lmn A 5,60 bc A 1 rs A 4,51 bA 3 lmn A 5,60 bc A 1 rs A 4,53 cB 3 lmn A 5,30 bc A 0 s A 5,74 b A 3 lmn A 5,00 bc A 0 s A 6,78 a A 3 lmn A 6,92 a A	•	Ь	Hd	Ь	Hd	Ь	Hd	Ь	Hd
34 klmnopqrs A 2,79 nopqrs C 12 jklmn A 4,40 def A 13 nopqrs A 4,11 def A 29 ghijklmn A 4,13 fgh A 11 opqrs A 3,30 jkl C 10 klmn A 3,54 jklmnop B 7 pqrs A 3,33 jkl C 8 klmn A 4,33 def A 11 opqrs A 3,28 jklm C 15 jiklmn A 4,88 c A 15 rs A 3,28 jklm C 15 jiklmn A 4,88 c A 16 nopqrs A 2,81 nopqrs C 0 n A 4,57 d A 17 rs A 3,94 efg B 11 klmn A 4,24 defg A 17 rs A 3,94 efg B 11 klmn A 3,26 opq C 17 rs A 3,94 efg B 11 klmn A 5,15 bc A 17 rs A 4,66 cd C 9 klmn A 5,15 bc A 17 rs A 4,66 cd C 10 klmn A 5,43 b A 17 rs A 4,57 cd C 5 lmn A 5,26 bc A 17 rs A 4,53 c B 3 lmn A 5,09 bc A 18 A 4,53 c B 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	119	24 mnopqrs A	2,90 mnopqr C	37 fghijklmn A	3,42 Imnopq B	3 g A	3,92 defg A	22 nopqr	3,41 jklmn
13 nopqrs A 4,11 def A 29 ghijklmn A 4,13 fgh A 11 opqrs A 3,30 jkl C 10 klmn A 3,54 jklmnop B 7 pqrs A 3,33 jkl C 8 klmn A 4,33 def A 11 opqrs A 3,71 ghi B 5 lmn A 4,30 defg A 2 rs A 3,28 jklm C 15 jklmn A 4,88 c A 16 nopqrs A 2,81 nopqrs C 0 n A 4,57 d A 1 rs A 3,94 efg B 11 klmn A 4,24 defg A 3 rs A 4,25 cde C 9 klmn A 5,15 bc A 1 rs A 5,61 b A 8 lmn A 3,56 opq C 1 rs A 5,61 b A 2 lmn A 5,26 bc A 2 rs A 4,27 cde C 5 lmn A 5,26 bc A 1 rs A 3,80 fgh C 3 lmn A 5,30 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	139	34 klmnopqrs A	2,79 nopqrs C	12 jklmn A	4,40 def A	15 efg A	3,44 ijklmnopqrs B	20 nopqr	3,54 ijk
11 opqrs A 3,30 jkl C 10 klmn A 3,54 jklmnop B 7 pqrs A 3,33 jkl C 8 klmn A 4,33 def A 11 opqrs A 3,71 ghi B 5 lmn A 4,33 def A 2 rs A 3,28 jklm C 15 ijklmn A 4,88 c A 16 nopqrs A 2,81 nopqrs C 0 n A 4,57 d A 1 rs A 3,94 efg B 11 klmn A 4,24 defg A 1 rs A 4,46 cd C 9 klmn A 5,15 bc A 1 rs A 4,46 cd C 9 klmn A 5,43 b A 1 rs A 4,46 cd C 10 klmn A 5,26 bc A 1 rs A 4,27 cde C 5 lmn A 5,26 bc A 1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 4,53 c B 3 lmn A 5,90 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	192	13 nopqrs A	4,11 def A	29 ghijklmn A	4,13 fgh A	1gA	4,28 d A	14 opgr	4,17 ef
7 pqrs A 3,33 ijklC 8 klmn A 4,33 def A 11 opqrs A 3,71 ghi B 5 lmn A 4,30 defg A 2 rs A 3,28 jklm C 15 ijklmn A 4,88 c A 16 nopqrs A 2,81 nopqrs C 0 n A 4,57 d A 1 rs A 3,94 efg B 11 klmn A 4,24 defg A 1 rs A 3,94 efg B 11 klmn A 5,15 bc A 1 rs A 5,61 b A 8 lmn A 3,26 opq C 1 rs A 4,46 cd C 10 klmn A 5,43 b A 2 rs A 4,27 cde C 5 lmn A 5,56 b A 1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 3,80 fgh C 3 lmn A 5,09 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 6,78 a A 3 lmn A 6,92 a A	205	11 opqrs A	3,30 jkl C	10 klmn A	3,54 jklmnop B	5 fg A	4,07 def A	8 pqr	3,64 hi
11 opqrs A 3,71 ghi B 5 lmn A 4,30 defg A 2 rs A 3,28 jklm C 15 jklmn A 4,88 c A 16 nopqrs A 2,81 nopqrs C 0 n A 4,57 d A 1 rs A 3,94 efg B 11 klmn A 4,24 defg A 3 rs A 4,25 cde C 9 klmn A 5,15 bc A 1 rs A 5,61 b A 8 lmn A 3,26 opq C 1 rs A 5,61 b A 2 lmn A 5,43 b A 2 rs A 4,27 cde C 5 lmn A 5,26 bc A 1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 4,53 c B 3 lmn A 5,90 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	154	7 pqrs A	3,33 ijkl C	8 klmn A	4,33 def A	6 fg A	3,77 ghi B	7 qr	3,81 gh
2 rs A 3,28 jklm C 15 ijklmn A 4,88 c A 16 nopqrs A 2,81 nopqrs C 0 n A 4,57 d A 1 rs A 3,94 efg B 11 klmn A 4,24 defg A 1 rs A 4,25 cde C 9 klmn A 5,15 bc A 1 rs A 4,46 cd C 10 klmn A 5,43 b A 1 rs A 5,61 b A 2 lmn A 5,26 bc A 1 rs A 4,27 cde C 5 lmn A 5,26 bc A 1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 4,53 c B 3 lmn A 5,90 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	215	11 opqrs A	3,71 ghi B	5 lmn A	4,30 defg A	5 fg A	3,88 efgh B	7 qr	3,97 fg
16 nopqrs A 2,81 nopqrs C 0 n A 4,57 d A 1 rs A 3,94 efg B 11 klmn A 4,24 defg A 3 rs A 4,25 cde C 9 klmn A 5,15 bc A 1 rs A 5,61 b A 8 lmn A 3,26 opq C 1 rs A 4,46 cd C 10 klmn A 5,43 b A 1 rs A 5,61 b A 2 lmn A 3,67 ijklmn B 2 rs A 4,27 cde C 5 lmn A 5,26 bc A 1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 3,77 fgh C 3 lmn A 5,09 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	239	2 rs A	3,28 jklm C	15 ijklmn A	4,88 c A	2 g A	4,24 de B	6 qr	4,13 ef
1 rs A 3,94 efg B 11 klmn A 4,24 defg A 3 rs A 4,25 cde C 9 klmn A 5,15 bc A 1 rs A 5,61 b A 8 lmn A 3,26 opq C 1 rs A 4,46 cd C 10 klmn A 5,43 b A 2 rs A 4,27 cde C 5 lmn A 3,67 ijklmn B 2 rs A 4,27 cde C 5 lmn A 5,26 bc A 1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 4,53 c B 3 lmn A 5,09 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	302	16 nopqrs A	2,81 nopqrs C	0 n A	4,57 d A	1gA	4,26 de B	6 qr	3,88 g
3 rs A 4,25 cde C 9 klmn A 5,15 bc A 1 rs A 5,61 b A 1 lmn A 3,26 opq C 1 rs A 4,46 cd C 10 klmn A 5,43 b A 1 rs A 4,27 cde C 5 lmn A 3,67 ijklmn B 2 rs A 4,27 cde C 5 lmn A 5,26 bc A 1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 4,53 c B 3 lmn A 5,99 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	175	1 rs A	3,94 efg B	11 klmn A	4,24 defg A	2 g A	4,25 de A	4 qr	4,14 ef
1 rs A 5,61 b A 8 lmn A 3,26 opq C 1 rs A 4,46 cd C 10 klmn A 5,43 b A 1 rs A 5,61 b A 2 lmn A 3,67 ijklmn B 2 rs A 4,27 cde C 5 lmn A 5,26 bc A 1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 4,53 c B 3 lmn A 5,09 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	290	3 rs A	4,25 cde C	9 klmn A	5,15 bc A	1gA	4,71 c B	4 qr	4,70 bcd
1 rs A 4,46 cd C 10 klmn A 5,43 b A 1 rs A 5,61 b A 2 lmn A 3,67 ijklmn B 2 rs A 4,27 cde C 5 lmn A 5,26 bc A 1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 4,53 c B 3 lmn A 5,09 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	222	1 rs A		8 Imn A	3,26 opq C	3 fg A	3,89 efg B	4 qr	4,25 e
1 rs A 5,61 b A 2 lmn A 3,67 ijklmn B 2 rs A 4,27 cde C 5 lmn A 5,26 bc A 1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 4,53 c B 3 lmn A 5,09 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	295	1 rs A	4,46 cd C	10 klmn A	5,43 b A	1gA	4,86 c B	4 qr	4,91 b
2 rs A 4,27 cde C 5 lmn A 5,26 bc A 1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 4,53 c B 3 lmn A 5,09 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	185	1 rs A	5,61 b A	2 lmn A	3,67 ijklmn B	6 fg A	3,28 Imnopqrstuvw C	3 r	4,19 ef
1 rs A 3,80 fgh C 3 lmn A 5,36 b A 1 rs A 4,53 c B 3 lmn A 5,09 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	291	2 rs A		5 lmn A	5,26 bc A	1gA	4,87 c B	3 r	4,80 bcd
1 rs A 4,53 c B 3 lmn A 5,09 bc A 0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	148	1 rs A	3,80 fgh C	3 Imn A	5,36 b A	0 g A	4,87 c B	2 r	4,68 d
0 s A 3,77 fgh C 3 lmn A 5,10 bc B 0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	297	1 rs A	4,53 cB	3 Imn A	5,09 bc A	1gA	5,05 c A	2 r	4,89 bc
0 s A 5,74 b A 2 lmn A 3,94 ghi C 0 s A 6,78 a A 3 lmn A 6,92 a A	282	0 s A	3,77 fgh C	3 Inn A	5,10 bc B	1gA	5,68 b A	1 r	4,85 bc
0sA 6,78aA 3 lmn A 6,92aA	155	0 s A	5,74 b A	2 lmn A	3,94 ghi C	1gA	4,68 c B	1 r	4,74 bcd
	Test.	0 s A	6,78 a A	3 lmn A	6,92 a A	0 g A	6,91 a A	1 r	6,87 a
/8 A 5,21 C 59 B 5,86 A	Média	78 A	3,21 C	59 B	3,86 A	27 C	3,67 B	55	3,58

(1) Médias seguidas de mesma letra, minúscula na coluna e maiúscula na linha (quanto a P ou pH), não diferem entre si a 5% de probabilidade pelo teste de Tukey.

das por Nahas & Assis (1992), Whitelaw et al. (1999), e Silva Filho & Vidor (2000), e interações entre fontes e microrganismos foram encontradas por Lapeyrie et al. (1991), Nahas (1996) e Silva Filho & Vidor (2000).

Não houve relação entre as procedências dos isolados e sua eficiência (Tabelas 1 e 2). Assim, não se observou predomínio de isolados mais eficientes entre os obtidos de rizosfera, como foi sugerido por Sperber (1958). Com relação à planta, embora entre os isolados com maior potencial de solubilização (310, 177, 262, 251 e 269) haja um predomínio dos obtidos de *Eucalyptus*, particularmente de *E. dunnii*, isto não indica relação direta da fonte de isolamento e o potencial, uma vez que da mesma procedência ocorrem isolados com baixa capacidade de solubilização (297, 291, 215 e 154).

Todos os isolados diminuíram o pH do meio durante o cultivo (Tabela 2). As menores alterações ocorreram com os isolados 295, 297, 282, 291, 155 e 290. Os menores valores de pH foram obtidos nos meios submetidos à inoculação dos isolados 221, 202, 307, 203, 310, 269 e 262. Nenhum dos primeiros solubilizou quantidades significativas de P, e entre os últimos, estão os de médio a alto potencial de solubilização. Isto sugere um efeito da produção de ácidos na solubilização dos fosfatos (Sperber, 1958; Illmer et al., 1995; Nahas, 1996; Whitelaw et al., 1999), o que é confirmado pela análise de correlação entre o pH e o teor de P no meio (r = -0.54**). No entanto, este não deve ser o único mecanismo utilizado, uma vez que o coeficiente de determinação linear (R²) foi de 0,294, indicando, assim, que a diminuição do pH do meio de cultura foi responsável por 29,4% do aumento linear do P solubilizado (Illmer & Schinner, 1992; Mikanová & Kubát, 1994; Illmer et al., 1995). Vários fatores podem ter afetado esta relação; entre eles, as quantidades de P imobilizadas pelos microrganismos durante o crescimento. Outros fatores, como o tipo de fosfato e a interação deste com os isolados, também podem contribuir na relação. Embora a média de P no meio com fosfato de Araxá tenha sido superior à média no meio com fosfato de Catalão, a acidez foi menor. Os efeitos da interação ficam claros quando se comparam, por exemplo, os isolados 269, 309, 199 e 191 com os isolados 201, 202, 198 e 253.

Conclusões

- 1. A produção de ácidos é um dos mecanismos utilizados pelos microrganismos na solubilização de fosfatos naturais.
- Não há relação entre a solubilização e a procedência dos isolados.
- 3. Fungos dos gêneros *Aspergillus* e *Penicillium* têm maior capacidade e potencial para a solubilização de fosfatos naturais.
- 4. A capacidade e o potencial de solubilização dos isolados 310, 251, 199 e 249 os tornam aptos a participarem de um programa de seleção visando à inoculação controlada.

Referências

ALCARDE, J. C.; PONCHIO, C. O. Conteúdo de "carbonato ligado" em fosfatos naturais brasileiros. **Revista Brasileira de Ciência do Solo**, Campinas, v. 7, p. 341-343, 1983.

BANIK, S.; DEY, B. K. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing microorganisms. **Plant and Soil**, The Hague, v. 69, n. 3, p. 353-364, 1982.

BRAGA, N. R.; MASCARENHAS, H. A. A.; BULISANI, E. A.; RAIJ, B. van; FEITOSA, C. T.; HIROCE, R. Eficiência agronômica de nove fosfatos em quatro cultivos consecutivos de soja. **Revista Brasileira de Ciência do Solo**, Campinas, v. 15, n. 3, p. 315-319, 1991.

BRANDÃO, L. G. Desafío florestal brasileiro. **Silvicultura**, São Paulo, v. 73, p. 23-29, 1997.

BRASIL. Ministério do Meio Ambiente. **Programa nacional de florestas**. Brasília, 2000. Disponível em: http://www.mma.gov.br/port/sbf/pnf/politica.html. Acesso em: set. 2000.

GOLDSTEIN, A. H. Bacterial solubilization of mineral phosphates: historical perspective and future prospects. **American Journal of Alternative Agriculture**, Greenbelt, v. 1, n. 2, p. 51-57, 1986.

HOEFLICH, V. A.; SCHAITZA, E. G.; MATTOS, P. P. **Pesquisa florestal no Brasil**: uma visão preliminar. Brasília: Instituto de Pesquisas Florestais, 2000. Disponível em: http://www. ipef.br. Acesso em: set. 2000.

ILLMER, P.; BARBATO, A.; SCHINNER, F. Solubilization of hardly-soluble AlPO₄ with P-solubilizing microorganisms. **Soil Biology and Biochemistry**, Oxford, v. 27, n. 3, p. 265-270, 1995.

ILLMER, P.; SCHINNER, F. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. **Soil Biology and Biochemistry**, Oxford, v. 24, n. 4, p. 389-395, 1992.

KIM, K. Y.; JORDAN, D.; McDONALD, G. A. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. **Biology and Fertility of Soils**, Berlin, v. 26, p. 79-87, 1998.

KUCEY, R. M. N. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. **Canadian Journal of Soil Science**, Ottawa, v. 63, n. 4, p. 671-678, 1983.

LAPEYRIE, F.; RANGER, J.; VAIRELLES, D. Phosphate solubilizing activity of ectomycorrhizal fungi *in vitro*. **Canadian Journal of Botany**, Ottawa, v. 69, n. 2, p. 342-346, 1991.

MIKANOVÁ, O.; KUBÁT, J. Phosphorus solubilization from hardly soluble phosphates by soil microflora. **Rostlinná Výroba**, Prague, v. 40, n. 9, p. 833-840, 1994.

NAHAS, E. Factors determining rock phosphate solubilization by microrganisms isolated from soil. **World Journal of Microbiology and Biotechnology**, Oxford, v. 12, n. 6, p. 567-572, 1996.

NAHAS, E. Solubilização microbiana de fosfatos e de outros elementos. In: SIQUEIRA, J. O.; MOREIRA, F. M. S.; LOPES, A. S.; GUILHERME, L. R. G.; FAQUIN, U.; FURTINI NETO, A. E.; CARVALHO, J. G. (Ed.). Inter-relação fertilidade, biologia do solo e nutrição de plantas. Viçosa, MG: Sociedade Brasileira de Ciência do Solo/Ufla, 1999. p. 467-486.

NAHAS, E.; ASSIS, L. C. Efeito da concentração de fosfato na solubilização de fluorapatita por *Aspergillus niger*. **Revista de Microbiologia**, São Paulo, v. 23, n. 1, p. 37-42, 1992.

OLIVEIRA, E. L. de; MUZILLI, O.; IGUE, K.; TORNERO, M. T. T. Avaliação da eficiência agronômica de fosfatos naturais. **Revista Brasileira de Ciência do Solo**, Campinas, v. 8, n. 1, p. 63-67, 1984.

RODRÍGEZ, H.; FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. **Biotechnology Advances**, New York, v. 17, p. 319-339, 1999.

SILVA FILHO, G. N.; VIDOR, C. Solubilização de fosfatos por microrganismos na presença de fontes de carbono. **Revista Brasileira de Ciência do Solo**, Viçosa, MG, v. 24, n. 2, p. 311-329, 2000.

SPERBER, J. I. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. **Australian Journal of Agricultural Research**, Melbourne, v. 9, n. 6, p. 778-781, 1958.

STORKÁNOVÁ, G.; VORÍSEK, K.; MIKANOVÁ, O.; RANDOVÁ, D. P-solubilization activity of *Rhizobium* species strains. **Rostlinná Výroba**, Prague, v. 45, n. 9, p. 403-406, 1999.

SYLVESTER-BRADLEY, R.; ASAKAWA, N.; LA TORRACA, S.; MAGALHÃES, F. M. M.; OLIVEIRA, L. A.; PEREIRA, R. M. Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. **Acta Amazonica**, Manaus, v. 12, n. 1, p. 15-22, 1982.

TEDESCO, M. J.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEIS, S. J. Análise do solo, plantas e outros materiais. Porto Alegre: UFRGS, 1995. 174 p.

WHITELAW, M. A. Growth promotion of plant inoculated with phosphate-solubilizing fungi. **Advances in Agronomy**, New York, v. 69, p. 99-151, 2000.

WHITELAW, M. A.; HARDEN, T. J.; HELYAR, K. R. Phosphate solubilization in solution culture by the soil fungus *Penicillium radicum*. **Soil Biology and Biochemistry**, Oxford, v. 31, p. 655-665, 1999.