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Counting of shoots of 
Eucalyptus sp. clones with 
convolutional neural network
Abstract – The objective of this work was to investigate the use of the 
You Only Look Once (YOLO) convolutional neural network model for the 
detection and efficient counting of Eucalyptus sp. shoots in stands through 
aerial photographs captured by unmanned aerial vehicles. For this, the 
significance of data organization was evaluated during the system-training 
process. Two datasets were used to train the convolutional neural network: 
one consisting of images with a single shoot and another with at least ten 
shoots per image. The results showed high precision and recall rates for both 
datasets. The convolutional neural network trained with images containing 
ten shoots per image showed a superior performance when applied to data 
not used during training. Therefore, the YOLO convolutional neural network 
can be used for the detection and counting of shoots of Eucalyptus sp. clones 
from aerial images captured by unmanned aerial vehicles in forest stands. The 
use of images containing ten shoots is recommended to compose the training 
dataset for the object detector.

Index terms: artificial intelligence, forest management, machine learning, 
object detection, silviculture.

Contagem de brotações de clones de 
Eucalyptus sp. com rede neural convolucional
Resumo – O objetivo deste trabalho foi investigar o uso do modelo de rede 
neural convolucional You Only Look Once (YOLO) para detecção e contagem 
eficiente de brotos de Eucalyptus sp. em plantações, por meio de fotografias 
aéreas capturadas por veículos aéreos não tripulados. Para isso, avaliou-se 
a importância da organização dos dados durante o processo de treinamento 
do sistema. Foram utilizados dois conjunto de dados para treinar a rede 
neural convolucional: um consistindo em imagens com um único broto e 
o outro com pelo menos dez brotos por imagem. Os resultados mostraram 
altas taxas de precisão e recall para ambos os conjuntos de dados. A rede 
neural convolucional treinada com imagens contendo dez brotos por imagem 
apresentou desempenho superior quando aplicada a dados não utilizados 
durante o treinamento. Portanto, a rede neural convolucional YOLO pode ser 
usada para detecção e contagem de brotos de clones de Eucalyptus sp. a partir 
de imagens aéreas capturadas por veículos aéreos não tripulados em áreas 
florestais. Recomenda-se o uso de imagens contendo dez brotos para compor 
o conjunto de dados de treinamento para o detector de objetos.

Termos para indexação: inteligência artificial, manejo florestal, aprendizado 
de máquina, detecção de objetos, silvicultura. 
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Introduction

Plantations of eucalyptus species can be managed 
using coppicing, in which wood can be harvested for 
two or three rotations within the same cycle without 
the need to carry out stand reform due to the high 
capacity of shoot sprouting from the existing root 
structure after harvest (Ferraz Filho et al., 2014; Silva 
et al., 2020). In this scenario, shoot management 
becomes advantageous, requiring no costs related to 
the acquisition of seedlings or to planting after harvest 
(Rode et al., 2015), resulting in a profitable investment 
even if productivity is lower than that in high forest 
management (Ferraz Filho et al., 2014).

Several factors affect shoot quantity and quality, 
such as harvest time, occurrence of water deficit, 
soil moisture (Souza et al., 2012), stump damages, 
soil compaction (Silva et al., 2018), and stump height 
(Benedito & Freitas, 2022). Therefore, for the coppice 
regime to be economically viable, in addition to an 
adequate management throughout the stand, there 
should be a high rate of regeneration in the managed 
area, with an indication of shoot survival above 80% 
(Alvares et al., 2013).

Shoot survival rate is typically evaluated through 
a sampling process that includes counting live shoots 
three months after harvest. Sampling intensity and 
the walking methodology in the stands may vary 
according to the characteristics of the population. 
Almado (2015), for example, evaluated a sample stand 
with 100 stumps every 3.0 ha.

Currently, the use of aerial photographs has been 
suggested for assessing the survival of shoots (Medauar 
et al., 2018; Bonfatti Júnior et al., 2019) and seedlings 
(Oliveira Sobrinho et al., 2018; Oliveira et al., 2020) and 
for counting adult individuals in forest stands (Picos 
et al., 2020). This shift in methodology makes the 
evaluation process more efficient and accurate (Pearse 
et al., 2020), in addition to enabling other analyses for 
checking for the presence of weeds and the occurrence 
of pest attacks, estimating the canopy area of shoots, 
and evaluating the quality of the harvesting and wood-
extraction processes.

Although there are studies on tree identification 
using aerial imagery and segmentation (Hentz et al., 
2018) or classification algorithms (Ruza et al., 2017; 
Silva et al., 2018), the task of counting individuals 
faces challenges similar to those involved in the use 
of object detection algorithms in computer vision 

models, mainly convolutional neural networks. These 
models have been used for various purposes within 
forest sciences, such as studying the quality of forest 
roads, wood cracks (Ma et al., 2022), presence of knots 
in wooden boards (Fang et al., 2021), recognition 
of leaf diseases (Chen et al., 2022), identification of 
forest pests (Zhang et al., 2021; Yun et al., 2022), fire 
detection (Hossain et al., 2020; Lu et al., 2022; Mahdi & 
Mahmood, 2022; Zhao et al., 2022), and identification 
of dead trees (Li et al., 2022). All of these studies tested 
several versions of the You Only Look Once (YOLO) 
algorithm, originally proposed by Redmon et al. (2016) 
and considered one of the most powerful algorithms 
for object detection. 

However, inadequate datasets to train the algorithm 
have the potential to lead to missing detections (Dong 
& Liu, 2021) or result in lower-quality outcomes (Fang 
et al., 2021). Therefore, studying how to organize the 
dataset for training a convolutional neural network 
is crucial for researchers not to need to test various 
datasets when developing new algorithms.

The objective of this work was to investigate the use 
of the YOLO convolutional neural network model for 
the detection and efficient counting of Eucalyptus sp. 
shoots in stands through aerial photographs captured 
by unmanned aerial vehicles.

Materials and Methods

The data used in the study were obtained from a 
Eucalyptus urophylla S.T.Blake x Eucalyptus grandis 
W.Hill ex Maiden (Eucalyptus urograndis) clonal 
plantation situated in the municipality of Josenópolis, 
in the northern region of the state of Minas Gerais, 
Brazil. According to Köppen-Geiger’s classification, 
the climate of the region is AS, tropical with a dry 
winter (Arthur Junior et al., 2015). The predominant 
soil is classified as CXbd11, comprising Cambissolos 
Háplicos Tb distróficos (Cambisols), Latossolos 
Vermelhos distróficos (Ferralsols), and Neossolos 
Litólicos distróficos (Leptosols) (Santos et al., 2011).

The three following stands with E. urograndis 
clones in coppicing management, spaced at 
3.50x2.60 m, were analyzed: stand 225, with 18.21 ha 
(16°27'57.08"S, 42°31'14.26"W), stand 228 with 
28.67 ha (16°27'45.78"S, 42°31'30.15"W), and stand 
252 with 15.17 ha (16°27'09.57"S, 42°32'55.87"W). The 
harvest of the first rotation was carried out at 7.5 years 
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in June 2021, and data were collected in September of 
the same year.

The imagery of stand 225 was obtained using the 
Mavic Air 2 drone equipped with the FC3170 RGB 
camera (DJI, São Paulo, SP, Brazil), positioned at an 
altitude of approximately 100 m relative to the take-off 
point. The flight plan included a 60% frontal overlap, 
a 55% side overlap, and a camera tilt of 90º. Each of 
the 103 images collected had dimensions of 4,000 by 
3,000 pixels, a radiometric resolution of 8 bits, and an 
imaged area of approximately 1.92 ha. The survey took 
20 min to be completed and covered a total distance of 
4,500 m along eight flight lines from the first to the 
last photograph.

Stand 228 was imaged similarly to stand 225, but 
the flyover was performed at a height of 80 m from 
the take-off point. A total of 134 photographs were 
collected, each with dimensions of 4,000 by 3,000 
pixels, radiometric resolution of 8 bits, and an imaged 
area of approximately 1.23 ha. The survey took 19 min 
to be completed from the first to the last photograph.

The imagery of stand 252 was captured using a 
Mini 2 drone equipped with the RGB FC7303 camera 
(DJI, São Paulo, SP, Brazil), positioned at about 100 m 
above the take-off point. The overflight was manually 
piloted and tracked through the DJI Fly app, without 
an automated flight plan. Automatic photo capture 
was set for every 2 s. A total of 475 photographs were 
collected, each with dimensions of 4,000 by 2,250 
pixels, radiometric resolution of 8 bits, and an imaged 
area of approximately 1.92 ha. The time required to 
carry out the survey was approximately 16 min from 
the first to the last photograph.

Orthomosaics were generated using the Agisoft 
Metashape software (Agisoft, 2023), with spatial 
resolutions of 3.7 cm for stand 225, 2.75 cm for stand 
228, and 4.05 cm for stand 252.

The orthomosaic of stand 225 was imported into the 
QGIS software (Qgis.org, 2023) and then cropped to 
the extent of the planting area, resulting in an image 
with dimensions of 16,983x12,896 pixels. The shoots 
were manually vectorized in the QGIS software (Qgis.
org, 2023), resulting in a vector dataset with a total of 
14,668 individual points representing the shoots.

Initially, 1,000 points were randomly selected to 
create rectangular polygons using the buffer function 
with a 2.0 m distance. The polygons were used to clip 
the orthomosaic, a process that generated 1,000 images 

with png extension and dimensions approximately 
equal to 98x98 pixels, representing examples of 
isolated shoots and composing a first dataset, termed 
DS01 (Figure 1).

Figure 1. Examples of images from the DS01 (A) and DS10 
(B) datasets used to train the convolutional neural network, 
displaying one Eucalyptus urograndis shoot per image 
and ten shoots per image, respectively. The red polygons 
indicate bounding boxes that highlight the presence of 
eucalyptus shoots in the images. 
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In sequence, another 100 irregular polygons were 
randomly created inside the orthomosaic, so that 
each of them included the visualization of ten shoots. 
From such polygons, the orthomosaic was cut, and 
the resulting images were considered as the second 
dataset, termed DS10 (Figure 1). The height of the 
images varied from 220 to 378 pixels, while their 
width varied from 221 to 588 pixels.

The shoots in each image were marked and labeled 
using the labelImg application (Tzutalin, 2015). This 
process generated 1,100 files with an xml extension, 
containing the labels and coordinates of the shoots 
in each image. The image files and xml files were 
uploaded to the Roboflow platform (Roboflow, 2023) 
and imported into each dataset, i.e., into DS01 and 
DS10. The standard pre-processing of the platform was 
applied, including self-orientation and image resizing 
to 416x416 pixels. Both datasets were separated into 
training and validation sets, with 70% of the images 
for training and 30% for validation.

Two customized object detection models, one for 
each dataset, were trained with YOLO, version 5 (Glenn, 
2020), maintaining the standard structure of the model, 
only changing the number of training epochs to 100.

The training and test results were evaluated through 
the statistical parameters of precision (P), recall (R), 
and accuracy (Ac) according to following equations: 
P = (TP) / (TP + FP), R = (TP) / (TP + FN), and Ac 
= (TP + TN) / (TP + TN + FP + FN), where TP is 
the number of true positives, TN is the number of true 
negatives, FP is the number of false positives, and 
FN is the number of false negatives. The behavior of 
precision and recall metrics was also evaluated over 
the iterations, as well as for the values of the loss of 
objects and loss of the bounding box functions.

In the three orthomosaics created from the imagery 
of the stands, 30 samples of varying sizes were created, 
each containing from 9 to 52 shoots for stand 225, 25 
to 48 shoots for stand 228, and 121 to 161 shoots for 
stand 252. These samples were randomly selected 
using the QGIS software (Qgis.org, 2023) from various 
locations within the orthomosaics. The number of 
shoots detected in each sample was compared with the 
actual number of shoots present in each sample. Only 
shoots that were completely visible in each image were 
considered valid, while the others were discarded. 
The results were evaluated using the aforementioned 
statistical parameters.

Results and Discussion

Both object detection models had 232 layers and 
7,246,518 parameters as found by Wang et al. (2022b) 
when using YOLO-v5s. The processing time required 
for the DS01 and DS10 datasets was 15.52 and 3.67 
min, respectively. Although, according to Mahdi 
& Mahmood (2022), smaller images contribute to 
a reduced processing time, the results of the present 
study may be related to the fact that, when only one 
shoot per image was considered (DS01), the number of 
files required was ten times higher than for sampling 
with ten shoots per image (DS10).

The processing time in both datasets was shorter than 
that reported in the literature, which may be attributed 
to the number of training epochs. For more than 200 
training epochs, Mahdi & Mahmood (2022) observed 
a processing time greater than 1 hour, whereas, for 
1,000 epochs, Fang et al. (2021) found a time of more 
than 7 hours for training when performing the process 
on a computer with 16 GB RAM and 6 GB graphic 
card. In the present study, 100 epochs were chosen 
due to preliminary tests, which showed stabilization 
of the recall and precision values in a lower number of 
iterations. The number of iterations or training epochs 
is often used as a stopping criterion in the training of 
computer vision models. 

The relatively short training time was also attributed 
to the use of Google Colaboratory, which provided 
graphic processing units (GPUs) for free in its virtual 
machine in the cloud (Mirhaji et al., 2021), eliminating 
the need for a high-cost local machine and leading 
to a significant difference in artificial intelligence 
applications (Mahdi & Mahmood, 2022). For the 
present work, a Tesla T4 GPU with 15GB of RAM 
and 40 processing cores was made available. Dong & 
Liu (2021) were able to train an object detection model 
with an average time of 40 min using the platform.

The DS01 dataset resulted in a rapid evolution 
of precision and recall metrics to a level close to 1, 
requiring less than 20 iterations for convergence 
(Figure 2 A and B). However, the DS10 dataset 
required at least 70 iterations for the algorithm to 
stabilize metrics close to 1 (Figure 2 A and B). Wang 
et al. (2022a) also observed a rapid convergence during 
the training of a modified version of YOLO v5 for 
invasive plant identification. Other studies showed the 
increasing trend of precision and recall metrics before 
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reaching 100 iterations (Yan et al., 2021; Starke & 
Geiger, 2022; Wang et al., 2022b).

Since the box loss function indicates the loss of the 
object’s bounding box coordinates, the lower its value, 
the better the object identification result (Wang et al., 
2022b). A tendency for the values to converge when 
considering the two datasets was observed, with a 
quick stabilization in the case of DS01 (Figure 2 C).

Regarding the information “object loss”, which 
represents the loss of confidence in the recognized 
object (Wang et al., 2022b), the lower the value of this 
function, the higher the accuracy of the model (Chen 
et al., 2022). Therefore, the degree of certainty in 
identification tends to increase with each training epoch. 
The loss function quickly stabilized in the case of the 

model trained with the DS01 dataset, but only stabilized 
from the sixtieth training epoch, with a slightly higher 
level, for DS10 (Figure 2 D). This reinforces the need 
for more processing time when there are many objects 
in each image in the training dataset.

Although the models presented similar final results, 
they differed in their application to the datasets used 
for testing (Figure 3). The model trained with DS10 
showed better results for all considered metrics, except 
precision (Table 1). In stand 225, from which the 
training images were sampled to indicate the presence 
of shoots, there was an increase of 0.42 and 0.46 in the 
mean values of accuracy and recall, respectively. These 
results are superior to those found in the literature. 
Chen et al. (2022), for instance, observed that YOLO 

Figure 2. Results of the You Only Look Once (YOLO) convolutional neural network trained with two different datasets 
(DS01 and DS10) for: precision, indicating the proportion of shoots correctly detected (A); recall, showing the number of 
existing shoots correctly detected (B); box loss metric, presenting the accuracy of the model in centering the shoot in the 
predicted bounding box (C); and objectness loss, measuring the probability that a shoot exists in a region of interest (D). 
Black lines represent training with one Eucalyptus urograndis shoot per image (DS01), and red lines represent training with 
ten shoots per image (DS10).
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was able to detect diseases in tree leaves with precision 
and recall values above 0.79 and 0.66, respectively. Yan 
et al. (2021) found precision and recall values above 
0.82 and 0.89, respectively, when applying YOLO to 

apple fruit detection. In their study, Wang et al. (2022a) 
obtained precision and recall values of 0.90 using a 
modified version of YOLO v5. Therefore, it can be 
concluded that the use of the DS10 trained model is 

Figure 3. Shoot detection results using two training methods, i.e., the DS01 and DS10 datasets, applied to image samples 
from three stands of Eucalyptus urograndis clones, in 2023, in the municipality of Josenópolis, in the state of Minas Gerais, 
Brazil. DS01, one shoot per image; and DS10, ten shoots per image.

Table 1. Precision, recall, and accuracy of two training methods (datasets) applied to 30 samples from three stands of 
Eucalyptus urograndis clones for shoot detection, in 2023, in the municipality of Josenópolis, in the state of Minas Gerais, 
Brazil(1).

Stand Dataset(2) Precision Recall Accuracy
Min. Aver. Max. Min. Aver. Max. Min. Aver. Max.

225
DS01 0.80 0.97 1.00 0.31 0.51 0.89 0.31 0.50 0.73
DS10 0.50 0.92 1.00 0.95 0.99 1.00 0.50 0.92 1.00

228
DS01 1.00 1.00 1.00 0.63 0.78 0.88 0.63 0.78 0.88
DS10 0.69 0.95 1.00 1.00 1.00 1.00 0.69 0.95 1.00

252
DS01 0.00 0.40 1.00 0.00 0.03 0.14 0.00 0.03 0.13
DS10 0.97 0.99 1.00 0.97 0.99 1.00 0.96 0.99 1.00

All
DS01 0.00 0.79 1.00 0.00 0.44 0.89 0.00 0.44 0.88
DS10 0.50 0.96 1.00 0.95 1.00 1.00 0.50 0.95 1.00

(1)Min, minimum; Aver, average; and Max, maximum. (2)DS01, one shoot per image; and DS10, ten shoots per image.
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recommended for shoot detection, as it showed good 
results not only for the stand used in training, but also 
for the stands used for model validation.

As to the number of true positives and false positives 
related to precision values, in the case of the model 
trained with DS01, there was a greater tendency to 
avoid false positives, which, in part, may result in a 
lower chance of considering an object as a shoot.

For a successful management of forestry activities, 
optimizing silvicultural practices and using accurate 
sampling methods are essential. The average error in 
relation to the number of shoots per hectare was 54.58% 
for the model with DS01 and 3.33% for that with DS10 
(Table 2). The lowest error is comparable to those 
found in other studies. Hentz et al. (2018), for example, 
observed an average error of 2.75% when detecting 
young trees using watershed-based segmentation, Picos 
et al. (2020) found an error of 3.7% for tree counting 
with a light detection and ranging sensor, and Pearse 
et al. (2020) obtained an underestimate of 2.4% for 

pine seedling counting. In image classification using 
artificial neural networks, the error was 1.6% after post-
processing (Ruza et al., 2017). 

The model trained with DS01 showed a lower count 
of shoots than the values observed in almost all samples 
from all stands (Figure 4). The worst result was found 

Figure 4. Number of shoots per hectare detected by the You Only Look Once (YOLO) convolutional neural network 
(ordinate), trained with two datasets (DS01 and DS10), compared with the true number of shoots per hectare (abscissa) in 
three stands of Eucalyptus urograndis clones, in 2023, in the municipality of Josenópolis, in the state of Minas Gerais, 
Brazil. DS01, one shoot per image; and DS10, ten shoots per image.
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Table 2. Comparison between the number of shoots of 
Eucalyptus urograndis clones per hectare observed in each 
stand and number of shoots per hectare detected by the You 
Only Look Once (YOLO) convolutional neural network 
trained with two different datasets (DS01 and DS10), in 
2023, in the municipality of Josenópolis, in the state of 
Minas Gerais, Brazil(1).

Stand Number 
of shoots 

observed per 
hectare 

Number of shoots per 
hectare detected by 
YOLO trained with 

dataset DS01

Number of shoots per 
hectare detected by 
YOLO trained with 

dataset DS10
225 836 426 875
228 998 776 1049
252 926 70 928

(1)DS01, one shoot per image; and DS10, ten shoots per image.
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for stand 252, where the samples had a greater number 
of identifiable objects, leading to noise in the detection 
process. A possible explanation for this is that the soil 
color in this stand is different from the stand used for 
training YOLO. The samples in dataset DS01 have 
a smaller area covered by soil pixels, which can be 
crucial in this case. In contrast, the model with DS10 
tended to overestimate the number of shoots in the 
samples with a lower number of observed individuals, 
especially in stands 225 and 228, which occurred 
because the model detected weeds and less vigorous 
shoots as the reference standard shoots.

The differences obtained with the use of the two 
datasets for training may be related to a possible 
overfitting of the model with DS01. This occurs when 
the network “learns too much” and fails to generalize 
(Hossain et al., 2020). Although the training of the 
network with the DS01 dataset showed good results for 
the precision and accuracy metrics, its precision was 
low when applied to images of stands 228 and 252, 
indicating that overfitting occurred.

The use of images with more information can 
improve the generalization of the model, avoiding the 
occurrence of overfitting (Wang et al., 2022b). Fang et 
al. (2021) suggested that data augmentation techniques 
can be effective in preventing overfitting and proposed 
the use of training image mosaics to create new 
examples for the network. In fact, the DS01 dataset 
primarily consists of images with shoot covering 
most of the area, and creating mosaics could generate 
examples similar to those in DS10, which includes 
other objects such as weeds, wood, and anthills that 
are not mapped by bounding boxes.

Conclusions

1. The You Only Look Once (YOLO) convolutional 
neural network can be used for the detection and 
counting of shoots of Eucalyptus urograndis clones 
using aerial images captured by unmanned aerial 
vehicles in forest stands.

2. The use of images containing ten shoots is 
recommended, in contrast to those with only one shoot 
per image, for composing the training dataset for the 
object detector.
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