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This review has tried to collect and correlate all the various equations for the g matrix of
strong field d5 systems obtained from different basis sets using full electron and hole formal-
ism calculations. It has corrected mistakes found in the literature and shown how the failure
to properly take in symmetry boundary conditions has produced a variety of apparently incon-
sistent equations in the literature. The review has reexamined the problem of spin-orbit inter-
action with excited t4e  states and finds that the earlier reports that it is zero in octahedral
symmetry is not correct. It has shown how redefining what x, y, and z are in the principal
coordinate system simplifies, compared to previous methods, the analysis of  experimental g
values with the equations.
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REVISÃO

INTRODUCTION

This review of the theory of the g matrix for strong field d 5

systems was undertaken after an extended stay at the Instituto
de Química de São Carlos, Universidade de São Paulo where
extensive studies on Ru(III) and Os(III) complexes were being
done. On reviewing the literature, I found that although it was
done correctly in the beginning by Bleaney and O’Brien1 many
confusing and not always correct versions have been employed
since. This review is undertaken to correlate the various
approaches and to correct some errors and mistaken concepts
that have appeared in the past forty years.

Most treatments have been for a tetragonal distortion from
octahedral symmetry1-15,18,19, which is most appropriate for
monodentate ligands, but some treatments for trigonal a
distortion, appropriate for tris bidentate complexes, have
appeared1,16,17. Bleaney and O’Brien1 showed that the equations
for a trigonal distortion are formally identical to those for the
tetragonal distortion, but some of the parameters have a
somewhat different meaning. For this reason, several treatments
of trigonal complexes have been treated with the tetragonal
equations. It will be shown here that this formal similarity is
true only for systems close to true octahedral symmetry, which
is often not the case with the tris bidentate complexes.

For a tetragonal distortion, two different basis sets have been
used in the literature leading to different appearing equations. The
most common basis set is the use of  d±1 and dxy for the t2
orbitals1-9,12-15 but some authors have used dxz, dyz, and dxy as the
basis set11,12,18,19. Some interesting variations of these two sets
have been used to obtain real instead of complex matrices.

Many of the derivations1-4,6,8-14,16,19 have used the hole
formalism for d5 where the single electron problem is solved
with a change in sign for the ligand field and spin-orbit
parameters.  Others have, for a variety of reasons, used the d5

equations themselves5,7,15,17,18. It will be shown here that unless
care is exercised, the hole formalism often leads to equations
that appear different from those obtained by the full electron
approach. If done properly, they are not wrong but some of the
parameters will have opposite signs.

Finally, most treatments have ignored spin-orbit interaction with
the excited  states. Hill5, Griffiths4, and Thornley2 have examined the
effect of both this spin-orbit interaction and configuration interaction.
Their conclusion was that configuration interaction was significant
but spin-orbit interaction was not. Hill5 states that configuration

interaction does not change the basic nature of the equations but
produces small changes in the mixing parameters and the orbital
momentum reduction parameter k. These calculations assumed near
octahedral symmetry and may not apply to large distortions in the
ligand fields. The spin-orbit interaction with excited  states has been
required to explain why g|| is less than 2 in magnitude and g⊥ is
greater than 2 in the d5 [M(CN)5NO]n+ complexes20-22. It would
appear that one should reexamine this question of the spin-orbit
interaction with the t24e states, particularly as it applies to those metal
ions of the second and third transition series, which have very large
spin-orbit parameters (>1000 cm-1).

APPLICATION OF THE HOLE FORMALISM

We will treat this for each situation, but a general discussion
of the treatment will be useful at the beginning. As an illustration,
consider the case of  the d9 configuration. A general treatment
would use the ten Slater functions | ml , m s  where

+2,+ 1
2 = d2+d1+d1−d0+d0−d−1+ d−1− d−2+ d−2−

(1)

It is generally assumed in the hole formalism, that the appropri-
ate matrix elements of these functions can be represented by the
matrix elements of the ten single electron functions dm

±  as long as
you change the sign of all crystal field interactions and the spin-
orbit interaction parameter ξ. This is not completely correct unless
care is exercised in the choice of what dm

±  represents. Let us exa-
mine the relevant matrix elements for both sets of functions. In
Table 1 are listed non-zero matrix elements for the spin, orbital
momentum, and spin-orbit operators  assuming m ,±1/2  and dm

±

are equivalent. We note that an exact correspondence can be
achieved only when is designated as the replacement for m,±1/2 .
The correspondence is complete only when we use -1( )md−m+ as the
replacement. We now have a hole function that reproduces all matrix
element of d9 if we use - ξ for ξ and change the sign for all crystal
field parameters.

The failure of many authors, including this author, to not
carefully note the proper relation between the hole functions and
the full electron functions they represent produces spin-orbit
interaction matrices in which the off diagonal terms are of opposite
sign from those obtained using the full electron wave functions.
This does not produce invalid equations for the g values since the
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change in sign of the off diagonal orbital momentum matrix
elements cancels out the change in sign of the spin-orbit elements,
but it can produce g matrix equations which appear different from
those obtained from the complete functions, particularly in the sign
of the mixing coefficients in the Kramer’s doublets. It was essential
in this review to examine the relation of the hole function to the
complete function when comparing different treatments of the same
problem.

TETRAGONAL DISTORTION IN d5

Full Electron Treatment using  d±1 and dxy Basis
Functions for t2.

Most of the treatments have followed Hill5 using basis
functions |l,s
−1,±

1
2

= d1
+d1

−dxy
+ dxy

− d-1
±

(2)

+1, ± 1
2 = d−1+ d−1− dxy+ dxy− d1± (3)

0, ±
1
2

= ± id1
+d1

− d−1
+ d−1

− dxy
±

(4)

in which the sign convention plus use of the imaginary number i in
eq. 4 were chosen to give two identical and real 3x3 spin-orbit
matrices. If  HC is the crystal or ligand field operator, Hill defined the
∆ and V parameters in terms of the one electron matrix elements

dxy Hc dxy = ∆ (5)

dxz Hc dxz =
V
2

= − dyz Hc dyz (6)

Eq. 6 is opposite in sign to what Hill5 and many others since
have used. This change in definition was necessary because
rather late in the preparation of this manuscript, I discovered
that his definition gave a negative sign to the off diagonal matrix
elements involving V in eq. 8 below, not the plus sign that
appears in his and many others papers. It was then decided to
use the definition above to keep the resulting equations as close
as possible to those appearing in the literature. Using these
definitions, and the spin-orbit interaction operator HLS

Table 1. Comparison of matrix elementsa for d 9 and d 1.

Matrix Element d9 d1

m , ± 1
2 Sz m, ± 1

2 ±
1
2

±
1
2

1
2

1
2

m , ± 1
2 Sy m,m 1

2 m
i
2 m

i
2

m , ± 1
2 Lz m,± 1

2 -m m

m + 1,± 1
2 Lx m,± 1

2 −
1
2

6 − m(m+1) 1
2

6 − m(m +1)

m + 1,± 1
2 Ly m,± 1

2 − i
1
2

6 −m(m+1) − i
1
2

6 −m(m+1)

m ,± 1
2 ξ zl sz m, ± 1

2∑ ±
1
2
mξ ±

1
2
mξ

m + 1,− 1
2

1
2 ξ(l+ s− + l − s+ )m,+ 1

2∑ 0
1
2

6 − m(m+1)ξ

m + 1,− 1
2

1
2 ξ(l+ s− + l − s+ )m,− 1

2∑ 1
2

6 − m(m+1)ξ 0

aSee text for definition of symbols.

m , ± 1
2 Sx m,m 1

2
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HLS = ξi∑ l i .si( ) (7)

we obtain the determinant

(8)

The wave-functions for the ground state are chosen to be

ψ + = a +1,− 1
2 +b0,12 +c −1,− 1

2
ψ − = a −1,12 + b 0,− 1

2 +c +1,12
(9)

Neglecting spin orbit admixtures with the excited states (t24e
etc.), the principal g-values can be calculated from the Zeeman
interaction, Hz=βB.(kL+2S), where k is the orbital reduction
factor and the wave functions are given by eq. 9.

The method used to calculate the g values must be explained
in detail, because failure to understand the process has led to
considerable confusion in the literature with a plethora of
apparently inconsistent equations and a variety of signs for the g
values. The process is to match up equivalent elements in the 2x2
matrix of the Zeeman operator Hz of eq. 9 with those in a spin
only Hamiltonian. This results in the following equations:

gz = 2 ψ + kLz +2Sz ψ +

gx = 2 ψ + kLx + 2Sx ψ −

gy = 2i ψ + kLy + 2Sy ψ −

(10)

where ψ± are the two Kramer’s functions, eq. 9. Unfortunately the
choice of which function we label as plus and minus, is arbitrary.
Also, the magnitudes of the coefficients a, b, and c in ψ+ and ψ-
must be the same but the signs can be the same or opposite. We
thus end up with four possible sets of solutions, which are set out
in Table 2. In the table Case 1a is for the plus and minus labels to
be assigned as shown in eqs. 9 and for the two sets of mixing
coefficients a, b, c having the same sign. Case 2a is the solution for
interchanging the plus and minus labels but having both sets of
coefficients with the same sign. Cases 1b and 2b are for the
solutions in which the signs of the two set of coefficients are
opposite. When there is more than one solution to a mathematical
problem, it is customary to use boundary conditions to select the
more physically reasonable solution. In this case we use symmetry.
For axial symmetry (V = 0), the coefficient c = 0 and we expect gx

= gy. This rules out Cases 2a and 2b because they give gx = - gy.
In octahedral symmetry, where a = 2/3;b= 1/ 3  one would
expect all three g values to be identical and this can only happen
for Case 1a. In this case, all three g values are -2. Experiments23

have shown in a few instances, that the g is indeed negative for
octahedral strong field d 5 systems. Equations for Case 1a in Table
2 are not original, several authors1,6,13,15 have used the same set of
equations, but many authors3-5,9 have chosen to use Case 2a,
probably to get a positive gz and ended up with gx and gy of
opposite sign. In two cases5,7 x and y were interchanged somehow.

Hole Treatment using  d±1 and dxy Basis Functions for t2.

The hole formalism will give the determinants of eq. 8, if we
represent the |l,s  functions by the one electron functions

+1, ± 1
2 = d−1± ; −1,± 1

2 = d1± ; 0,± 1
2 = ±idxy± (11)

and replace ξ, ∆, and V by their negative values. It is also necessary
to change the zero of energy to ε = E - 2∆ to accommodate going
from five electrons to one electron. Using these basis functions will
give the equations in Table 2 for the g values.

Full Electron Treatment using dxz, dyz, and dxy Basis
Functions for t2.

I have found one full electron treatment18 for the basis
set of dxz, dyz, and dxy but they chose to rotate the coordinate
system 45° so that the set became dx 2−y2 , dyz, dxy. There are
two hole treatments11,12 using dxz, dyz, dxy and one19 using
d
x 2−y2 , dyz, dxy. I will present the full treatment using dxz,

dyz, dxy here. The five electron functions will be defined as

xy,± 1
2 = dxz+ dxz− dyz+ dyz− dxy± (12)

xz,± 1
2 = idyz+ dyz− dxy+ dxy− dxz± (13)

yz ,± 1
2 = dxz+ dxz− dxy+ dxy− dyz± (14)

where the i in xy,1 / 2  is put in to give real determinants for
the spin-orbit interaction. For consistency and ease of
comparison, we will use the same crystal field parameters of
eq. 5, 6.

xy,
1
2

yz,− 1
2 xz,− 1

2
xy,− 1

2 yz,12 xz,12
∆ − E( ) m

ξ
2 −

ξ
2

m
ξ
2 2∆ + 1

2V − E 
 

 
 m

ξ
2

−
ξ
2 m

ξ
2 2∆ − 1

2V − E 
 

 
 

= 0 (15)

The wave-functions for the ground state are chosen to be
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ψ + = A+ xy,12 + B+ yz,− 1
2 +C+ xz,− 1

2
ψ − = A− xy,− 1

2 + B− yz,12 + C− xz, 1
2

(16)

Using eqs. 10 we find that the only consistent solution is for
A+ = -A- = A, B+ = B- = B. and C+ = - C- = C, which gives
the following equations for the g values.

gx = 2 B2 − A2 − C2 − 2kAC[ ]
gy = 2 C2 − B2 − A2 − 2kAB[ ]
gz = 2 A2 −C2 − B2 − 2kBC[ ]

(17)

In octahedral symmetry A = B = C = 1/ 3 and the above
equations give - 2 for all three g values. These equations have a
nice cyclic symmetry that is not present in other treatments11,12,18,19

due to their inversion of the choice for ψ+ and ψ- .
The conversion that converts the equations in Table 2 to eqs.

17 is:

A= b; B=
a + c( )
2
; B=

a −c( )
2

which allows us to relate the two sets of coefficients in the two
approaches.

Hole Treatment using dxz, dyz, and dxy Basis Functions for t2.

The hole formalism will give the determinants of eq. 15, if
we represent the functions by the one electron functions

xy,±
1
2

= d xy
± ; xz;±

1
2

= idxz
± ; yz,±

1
2

= dxz
±

(18)

and replace ξ, ∆, and V by their negative. It is also necessary to
change the zero of energy to ε = E - 2∆ to accommodate going
from five electrons to one electron. Using these basis functions
gives eqs. 17 for the g values.

TRIGONAL DISTORTION IN d 5

This occurs, primarily, in the tris-bidentate metal complexes
which have C3 or D3d symmetry in which the distortion is along
the three-fold rotation axis of the octahedron. Symmetry arguments
tell us that the t2 orbitals split into an A and E irreducible
representation in which the orbitals can be written as:

t2 0( )= d0
t2 ±( )= ±αd±2 −βdm1 (19)

where in octahedral symmetry α = 2 / 3 ; β = 1/ 3 . Most
treatments in the literature1,16,17 have used the octahedral values
but this may be unwise for bidentate ligands with bite angles
considerably different than 90o. Please note that the dm orbitsls
in eq. 19 are quantized along the C3 axis and are not the same
as those used in the tetragonal distortion problem. For the full
electron treatment we will define the following basis set.

+ ,±
1
2

= t2
± +( )t2+ −( )t2− −( )t2+ 0( )t2− 0( )

− ,±
1
2

= t2
+ +( )t2− +( )t2± −( )t2+ 0( )t2− 0( )

0,±
1
2

= t2
+ +( )t2− +( )t2+ −( )t2− −( )t2± 0( )

(20)

If we define ∆ = t2 (0 )|Hc |t2 (0) for the one electron energy,
the spin-orbit interaction plus the crystal field yield the following
determinants

+,− 1
2 0,12 −,− 1

2
−,+ 1

2 0,− 1
2 +, 1

2
2∆− 1

2 2α2 − β2( )ξ − E 
 

 
 

− 6
2 βξ 0

6
2 βξ ∆− E( ) 0
0 0 2∆+ 1

2 2α2 −β2( )ξ − E 
 

 
 

= 0 (21)

If we use the octahedral values of α and β, the above determinants

Table 2. Equations for the g matrix for the four possible cases using the d±1 and dxy basis functions for t2.

Case1 gx gy gz

1a −2 −2ac+b2+ k 2b(a−c)[ ] −2 2ac + b2 + k 2b(a +c)[ ] −2 a 2 − b2 +c2+ k(a2− c2)[ ]

2a −2 −2ac+b2+ k 2b(a−c)[ ] 2 2ac +b2 + k 2b(a + c)[ ] 2 a 2 − b2 + c2 + k(a 2 − c2)[ ]

1b 2 −2ac+b2+ k 2b(a −c)[ ] 2 2ac +b2 + k 2b(a + c)[ ] −2 a 2 − b2 +c2+ k(a2− c2)[ ]

2b 2 −2ac+b2+ k 2b(a −c)[ ] −2 2ac + b2 + k 2b(a +c)[ ] 2 a 2 − b2 + c2 + k(a 2 − c2)[ ]
1Defined in main text of article.
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are formally identical to eq. 8 when V = 0. The identity remains
the same if we add an off diagonal crystal field term to split the
E orbitals by V. Bleaney and O’Brien1 pointed this out very early,
which has resulted in many authors using, for the trigonal
systems, the tetragonal equations for the d±1 and dxy basis
functions. The difficulty they have encountered fitting some of
the trigonal systems with these equations may be due the
assumption that α and β have the octahedral values.

If we use the following functions for the ground state
Kramer’s doublet

ψ + = at +,12 + bt 0,12
ψ − = −a − ,+ 1

2 −bt 0,− 1
2

(22)

we get for the two g values

g|| = 2 bt2− at2− 2α 2 −β2( )kat2[ ]
g⊥ = 2 −bt2− 6katbtβ[ ] (23)

The same equations can be obtained in the hole formalism if
we represent the above functions by the one electron functions

+,±1
2 = α d−2± +β d1±

−,±1
2 = −α d2± +β d-1±

0.±1
2 =d0±

(24)

and replace ξ and ∆ by their negative values. The hole treatment
of DeSimone and Drago16 gave equations identical to eqs. 23
except they used the octahedral values of α and β. The full
electron treatment Merrithew, et al17 followed Hill5 and made
the same mistake of using Case 2a.

SPIN-ORBIT INTERACTION WITH t2
4e STATES

Most of the literature ignores this as unimportant or uses
equations from the work of Hill5. Interestingly, his equations
for this interaction predict a zero contribution for octahedral
symmetry and therefore a small contribution for systems that
have small distortions from this symmetry. The interaction has,
however, been found important for the nitrosyl d 5 systems20-22

to explain the fact that g|| is found to be less than 2 in magni-
tude, while g⊥ is greater than 2 in magnitude in these systems.
Only the g⊥ values are explained by the equations discussed
above where only the spin-orbit interaction within the ground
state d5 configuration is considered. In view of the rather large
spin-orbit parameters for Ru(III) and Os(III) atoms, it was
considered important to reexamine this interaction.

Hill5 used an approach more appropriate to weak ligand field
problems, so it was decided to use a strong field approach using
eqs. 12-14 for the full electron problem. The hole formalism
cannot be used here. There are, in fact, a large number of states
that fall under the loose classification of t2

4e. The ones that first
come to mind are the doublet states that result from the
promotion of the unpaired electron in d 5 to one of the two e
states. These 12 states can be designated as

dxz
+ dxz− dyz+ dyz− dx2−y2± ;  dxz+ dxz− dyz+ dyz− dz2

±
(25)

dyz
+ dyz− dxy+ dxy− d x2− y2± ;  dyz+ dyz− dxy+ dxy− dz2± (26)

dxz
+ dxz− dxy+ dxy− dx2−y2 ;  dxz+ dxz− dxy+ dxy− dz2

±
(27)

In addition, there are the following states:

dxy
2 d xzd yz d x2 −y2 ;  dxy2 dxzdyzdz2 (28)

dxz
2 d xy d yz d x2 −y2 ;  dxz2 dxydyzdz2 (29)

dyz
2 dxz dxydx2 −y2± ;  dyz2 dxzdxydz2 (30)

which exist as a quartet state and two doublet states.
Application of perturbation theory to the doublet states

represented in eqs. 25-27 gives for ∆g:

∆ g x = −2ξ B2/∆ E dxz2dxy2 dx2− y2( )− 6ξ B2/∆E dxz2dxy2 dz2( ) (31)

∆ g y = −2ξ C2/∆E dyz2dxy2dx2− y2( )− 6ξC 2/∆E dyz2 dxy2 dz2( ) (32)

∆ g z = −8ξA2/∆ E dxz2 dyz2 dx2 −y2( ) (33)

In octahedral symmetry this reduces to ∆g = − 8ξ
3∆E  which makes

g = −2− 8ξ
3∆E (34)

which is not what Hill5 found. No contribution to g came from the
states represented by eqs. 28-30 but this conclusion depends upon
an assumption made as to the form of the two doublet states. To
get the form of these equations 31-33 for the d±1 and dxy basis
functions you can use the conversion formulas given earlier.

In the case of large and positive ∆ for the d 5 nitrosyls, the
parameter A approaches unity and gz from eq. 17 becomes
positive. Thus the correction term proposed20-22 for g|| in these
systems, that makes g|| less than 2 in magnitude, is predicted by
these equations.

PROPER USE OF THE EQUATIONS

Most of the problems encountered in the literature with using
the g matrix equations is due to not knowing what the signs are
for the various g values and which g values to assign to x, y,
and z. Since most compounds have been measured in powders
or frozen liquids, the three principal g values cannot even be
related to any molecular coordinate system. The sign problem
has been compounded by the different selections of the four
possible solutions listed in Table 2. Therefore researchers have
opted to solve the equations they are using for all 48 possible
combinations of signs and coordinate assignments. They then
reject solutions that give unreasonable values of the parameters
∆/ξ, V/ξ, and k which often narrows the choice to about two
sets of the parameters. My aim in this section is to show that
this shotgun technique is not necessary, if you use the equations
proposed here and carefully define x, y, and z in the principal
coordinate system.

I propose that we define the z axis as the axis associated
with the major distortion ∆. Further we also assume that V is
always the same sign as ∆ and this will define x relative to y.
These assumptions require that |V| ≤ 2|∆|/3. These restrictions
give a new meaning to the sign of ∆. A positive sign is for a
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elongation along the tetragonal axis in which two of the three
one electron states for t2 are close together and below the third
state, while a negative sign is for the compression distortion
which produces two upper energy levels close together and one
lower energy state. In fact our definition has dxy as the upper
orbital and dyz as the lowest orbital when ∆ is positive and the
reverse for ∆ negative. The dxz orbital is always the intermediate
one with the definitions used here. When V = 2∆/3 we have the
situation in which one of the three energy levels is halfway
between the upper and lower level. A similar treatment to this
has been proposed by LaChance-Galang, etc.18 in which they
label the three states as 1, 2, 3 with one for the highest one electron
energy. They then use the two positive parameters δ13 and R = δ12/
δ13. For positive ∆, they have R > 0.5 and for negative ∆, R < 0.5.

Using eq. 8, 9, and those for Case 1a in Table 2, we have
plotted in Figure 1 the three g values versus ∆/ξ for the range of
-10 ≤ ∆/ξ ≤ 10 for k = 1. In these plots V = Fx∆ and values of
F used were F = 0, 1/6, 1/3, and 2/3. In this plot the special case
of F = 0 is represented by filled and open circles while the other
special case of F = 2/3 is represented by thicker lines. Since we
measure only the absolute values of g, Figure 2 shows a similar
plot to Figure 1 for the absolute values. It is clear from these
plots that |gz| < |gy| ≤ gx| for ∆ > 0 and  |gz| > |gy| • gx| for ∆ <
0. Note the mirror plane symmetry, for the three g values, about
zero for F = 2/3. For ∆ > 0 gz goes from negative to positive at
∆/ξ = 1, and for ∆ < 0 gx eventually goes from negative to positive
as ∆ becomes increasingly negative, when F > 0. Thus in solving
the equations we have only four possible cases to consider; (1) ∆
> 0, gz < 0, (2) ∆ > 0, gz > 0, (3) ∆ < 0, gx < 0, and (4) ∆ < 0,
gx > 0. In practice the solutions for one sign of  ∆ will violate the
condition that (V/∆) < 2/3, so there will only be two solutions
from which one must choose.

To see how to solve the equations, we shall examine the case of
Os[Cl3(PEt2Ph)3] that was reported by Hill5. The absolute
g values reported for a single crystal of Rh[Cl3(PEt2Ph)3] contai-
ning some Os(III) were g1 = 3.32, g2 = 1.44, and g3 = 0.32. From
Figures 1 and 2 we see that if ∆/ξ < 0, then gz = - 3.32,
gx = ± 0.32, and gy  = - 1.44 and if ∆/ξ > 0, then gz = ± 0.32,
gx = - 3.32, and gy = - 1.44. Since the gy value in the second set
cannot be realized in Figure 1 where k = 1 and F is between 0 and
2/3, it is that this second set will give k values much different than
one or F values much larger than 2/3.

The method of solving the three equations in Table 2 plus
the normalization equation of (a2 + b2 + c2) = 1, which make up
four non-linear simultaneous equations, is rarely indicated. There
can be various approaches but let me give one of the simplest,
which involves a cyclic successive approximation method that is
easy to program in BASIC.   The three equations for Case 1a in
Table 2 can be rewritten into the following three equations:

a 2 =
2− gz( )

2 2+ k( ) −
2− k( )
2− k( )c2

(35)

k =
2b2 + 1

2 gx + gy( ) 
 

 
 

2 2ab (36)

c =
gx + gy( )

42a+ 2kb( ) (37)

We now do a cyclic four step calculation in which we assume to
start with that k = 1 and c = 0 and use eq. 35 to estimate a. From a
and c we calculate b from the normalization condition and then use eq.
36 to estimate k. The fourth step is to use eq. 37 to estimate c. We
then return to Eq. 35 and repeat the process until we get the same
value of k, to a specified precision, as was used in the previous

cycle. Since k tends to oscillate in this calculation, conversion is
more rapid if you use for k in the next cycle, the average of the k
from eq. 36 and the k value from the previous cycle. When c is small
this method converges in a few cycles to give a k good to 0.0001.
For larger values, twenty or more cycles could be required. For a PC
the calculation is nearly instantaneous. At this point we have only a,
b, c, and k. Values of ∆/ξ, V/ξ, and E0/ξ (the ground state energy)
can then be obtained from the equations;

∆
ξ =

b(1−b2)+ 2a(1− 2a2)[ ]2b(a2 − c2) (38)

V
ξ = c(2a+ 2b)(c2 − a2) (39)

E0
ξ = ∆ − a2b (40)

In Table 3 are given the various solutions for Os[Cl3(PEt2Ph)3].
Only three of the four possibilities considered, yield a solution
and the two assuming ∆ > 0 have, as expected, a value of V/ξ too
large relative to ∆/ξ to be acceptable. Thus there are only two
possible solutions! Other factors are needed to choose the best
solution. Both k values are acceptable but one ∆/ξ is

Figure 1. Plot of g values versus ∆/ξ for strong field d 5 system using
equations in paper. In the calculation k = 1 and V = F∞∆ for F = 0,
1/6, 1/3, and 2/3. The filled open circles are for gz = g|| for F = 0 and
the open circles are for g⊥ The thick lines are for the other extreme of
F = 2/3. The thin lines are for F = 1/6 and 1/3.

Figure 2. Plot of the absolute values of |g| versus ∆/ξ for strong field d 5

system using equations in paper. In the calculation k = 1 and V = F∞∆ for
F = 0, 1/6, 1/3, and 2/3. The symbols are the same as those given in the
caption for Figure 1.
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considerably larger than the other. Hill did get the same values
for a, b, c, k, ∆/ξ, and V/ξ for the first solution in Table 3, but
x and y were interchanged and only one g was negative, because
his equations were for Case 2b with the labels of x and y
interchanged. He did not report the second acceptable solution
in the table. He also had no good reasons for rejecting some
solutions, such as those for ∆/ξ > 0 in Table 3. The appropriate
A, B, C parameters for the dxz, dyz, and dxy basis set are A =
0.287, B = 0.759, C = 0.585 for the first acceptable solution in
Table 3 and are A = 0.206, B = 0.821, C = 0.533 for the
second acceptable solution.

It is worth examining a trigonal example to see the affect of
configuration interaction. We will take the example of
[M(phen)3](PF6)3 as reported by DeSimone and Drago16. In
this system we know that ∆ is positive since g⊥ is greater than
2 in magnitude and g|| is less than 2 in magnitude. A positive
∆ means an elongated trigonal distortion in which the X-M-X
angle is greater than 90o. Thus g⊥ is negative but in principle
g|| could be plus or minus. We chose positive for M = Fe and
Ru because we expect ∆ to decrease as we go from Fe to Os
due to the increasing size of the central metal ion. The value of
g|| could be plus or minus for the Os complex. In eq. 23 we
have two equations and three variables, bt, β, k. In Table 4 are
given possible solutions for bt and β along with ∆/ξ for
different values of k. The octahedral value of β, which has
been used by everyone up to now, is 0.58 and is included in
Table 4. There is a lower limit of k below which there is no
solution. For increasing elongation or increasing ∆, we would
expect the d±2 orbitals to become more stable and therefore β to
decrease from the 0.58 for octahedral symmetry. In Table 4 we
see that k must increase if β is to decrease. Thus the k we get
from assuming octahedral orbitals is the lower limit and would
be higher if there is any configuration interaction. This is
consistent with Hill’s5 calculations for tetragonal systems in
which he found that configuration interaction increases the
effective value of k in these d5 equations.

It is worth examining further here the question of which of
the four cases tabulated in Table 2 are the appropriate ones to
choose. I have chosen the boundary conditions of octahedral
symmetry to make the choice and this, I maintain is the proper
choice for systems with small distortions from octahedral
symmetry but is it the proper choice for strong distortions, such
as those found in the M(CN)5NOn+ complexes? These were
treated by simple second order perturbation theory which gave
all g values as positive. In this case of large positive ∆, it would
probably be better to use as the boundary conditions, that gx =
gy in axial symmetry and all g’s be positive. This is true for
Case 1b and these equations would be more appropriate in this
case. For the case of  a large rhombic distortion with large
negative ∆, perturbation theory would also yield three positive g
values, and Case 2a would appear to be the better choice as it
would give all positive g values in this case. It might be
mentioned that the case of large negative ∆ with no rhombic
distortion is not worth considering since the Jahn-Teller theorem
would predict its non-existence.
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