SOLUBILIDADE DO STO EM NaCl-KCl FUNDIDO A 727°C

Richard Louis Combes

Institut Galilée - Université de Paris - Nord - F-93430 - Villetaneuse - França

Sérgio Luiz Koeller

Departamento de Química - ICE - Universidade Federal Rural do Rio de Janeiro - 23851-970 - Seropédica - RJ

Recebido em 19/10/98; aceito em 26/8/99

STRONTIUM OXIDE SOLUBILITY IN MOLTEN NaCl-KCl AT 727°C. The solubility product value of SrO has been found to be equal to $10^{-4,2}$ (molality scale) in molten equimolar mixture of NaCl and KCl at 727°C, using a potentiometric method involving a calcia stabilized zirconia membrane electrode. This value, which is in a logical agreement with other alkaline-earth oxide determined solubilities, is compared to those of $10^{-5,8}$, $10^{-3,0}$ and $10^{-3,08}$ (molality scale) found in the litterature 33, 22 and 5 years ago, respectively. Such discrepencies have called the attention of the authors, their possible reasons (methodology, titrating agent) are analyzed and a theoretical discussion, for considering the authors' value as more reliable, is given in this paper.

Keywords: strontium oxide; stabilized zirconia; molten salts.

INTRODUÇÃO

Vários cloretos alcalino terrosos são utilizados em processos eletrolíticos em sais fundidos, seja pela produção do próprio metal (Ba, Sr, Ca e Mg), ou como coadjuvante para ajustar a condutividade, a densidade ou a acidez do banho (BaCl₂, CaCl₂). Segundo o conceito de oxoacidez desenvolvido por Lux¹ e em seguida por Flood e Førland², os óxidos alcalino terrosos MO são a base conjugada dos cátions M²⁺ dos respectivos cloretos dissolvidos no sal fundido, e de acordo com as equações de dissociação:

$$MCl_2 (s\'olido) \rightarrow M^{2+} (solução) + 2Cl^- (solução),$$
 (1)

$$M^{2+}$$
 (solução) + O^{2-} (solução) \rightarrow MO (sólido), (2)

é natural que a solubilidade dos óxidos alcalino terrosos em cloretos fundidos, tenha chamado a atenção dos químicos nos últimos 40 anos^{3,4,5,6}.

Na década de 60, Naumann e Reinhard⁷, usando a técnica de saturação e coleta de amostra, fizeram a determinação do produto de solubilidade do BaO, CaO e SrO. Posteriormente, no final da década de 70, Combes e colaboradores^{8,9} determinaram os valores dos produtos de solubilidade do CaO, do BaO e do MgO na mistura equimolar fundida de NaCl e KCl a 727°C. Esses resultados foram obtidos por titulação potenciométrica com um eletrodo de zircônia estabilizada com óxido de cálcio, empregado como indicador da concentração dos íons O²⁻ no banho fundido, conforme demonstrado nos trabalhos anteriores de Combes e colaboradores^{10,11,12}.

Também no final da década de 70, Delimarsky e Shapoval¹³ determinaram o produto de solubilidade do CaO e MgO, e mais recentemente Cherginets e Khailova¹⁴, utilizando a mesma técnica potenciométrica, determinaram os valores do produto de solubilidade de uma série de óxidos alcalino terrosos no NaCl-KCl a 700°C.

PARTE EXPERIMENTAL

Equipamento experimental utilizado

1 - Forno elétrico tipo poço com sistema de controle de aquecimento.

- 2 Reator em aço inox (317 L) protegido internamente contra corrosão por uma camada de alumina, na parte superior possui um colar de circulação de água para manter a refrigeração.
- 3 Cadinho de alumina de alta pureza contendo o sal fundido dentro do reator.
- 4 Eletrodo referência de primeira espécie Ag/AgCl, composto de um fio de prata em contato com uma solução 0,75 mol/kg de AgCl em NaCl-KCl, contido num tubo de alumina porosa para manter o contato elétrico.
- 5 Eletrodo indicador de pO²- feito com um tubo de zircônia estabilizada, contendo em seu interior um fio de níquel em contato com uma mistura de níquel e óxido de níquel em pó. Os ítens 4 e 5 estão descritos no trabalho¹¹. 6 Termopar protegido do sal fundido por um tubo de alumina refratária.

Todos os produtos químicos usados foram "P.A." A mistura NaCl-KCl foi preparada conforme técnicas de trabalho descritos em artigo⁶. Os reagentes BaO e SrCl₂ foram previamente secos a vácuo a 120°C por 24 horas.

Método experimental

A determinação da constante de solubilidade (Ks) do SrO foi realizada através da reação oxoacidobásica do cátion Sr²⁺ com o ánion O²⁻, na mistura equimolar NaCl-KCl fundida a 727°C, de acordo com a seguinte reação:

$$Sr^{2+}$$
 (solução) + O^{2-} (solução) \rightarrow SrO (precipitado), (3)

cuja expressão da constante de solubilidade é:

$$Ks_{(SrO)} = [Sr^{2+}][O^{2-}]$$
 (4)

Na determinação do Ks do SrO utilizou-se o método da titulação potenciométrica do íon óxido (O²-), usando um eletrodo de zircônia estabilizada 28,9,10,11,12, seletivo aos íons O²-. O potencial medido pelo eletrodo obedece a expressão (5) com a concentração do íon O²- expressa em molalidade. Blander¹5 mostrou que para frações molares menores que 0,01, pode-se descrever a atividadede dos íons O²- através da fração molar ou qualquer outra unidade de concentração. Neste trabalho adotou-se a escala molal:

34

$$E = E^{0} - 2,3RT/2F \log [O^{2}]$$
 (5)

$$-\log[O^{2-}] = pO^{2-}$$
 (6)

Inicialmente, preparou-se a mistura eutética NaCl-KCl com SrCl₂, previamente seco, que foi colocada em um cadinho de alumina 99,9% dentro do reator. A célula foi fechada e submetida a vácuo de 0,01 atm, durante o aquecimento, até a temperatura de 400°C. No processo de aquecimento foi utilizado um controlador de temperatura, cuja taxa foi de 120°C por hora, até alcançar a temperatura de 700°C, a partir da qual a temperatura do banho de sal fundido foi controlada com um Variac e mantida a 727±1°C.

A adição do íon O²- foi feita através de quantidades conhecidas de BaO (previamente seco em estufa a 120°C por 24 horas), que, em trabalho anterior realizado por Combes e colaboradores9, mostrou ser uma oxobase forte. Em seguida à titulação, foi adicionado BaO em excesso, até atingir o ponto de saturação do BaO, o que permitiu a calibração do eletrodo indicador, já que no ponto de saturação a constante de solubilidade é dada pela equação:

$$K_{S(BaO)} = [Ba^{2+}][O^{2-}]$$
 (7)

e pela estequiometria: $[Ba^{2+}]=[O^{2-}]$, então $pO^{2-}=(pKs)^{1/2}$.

Fez-se, novamente, a calibração do eletrodo para confirmar o ponto de saturação obtido e para verificar se o potencial obedeceu a expressão:

$$E = E^{o} - k \log [BaO]$$
 (8)

com E^{o} constante, $k = 2.3RT/2F \approx 0.099 V$ a 1000 K e [BaO] é a concentração expressa na unidade de molalidade.

RESULTADOS

Os valores do potencial obtidos durante a titulação do Sr^{2+} pelos íons O^{2-} estão na Tabela 1 e foram relacionados com grau de avanço (α). Por definição, α é a razão entre as concentrações de BaO adicionada e de $SrCl_2$ inicial e igual a 0,054 mol/kg.

Tabela 1. Resultados experimentais da titulação do Sr^{2+} e da padronização do eletrodo indicador

Titulação			F	Padronização			
-E (mV)	α	pO ²⁻	-E (mV)	-log [BaO] (mol/kg)	pO ²⁻		
636	0,30	2,9	612	2,95	2,9		
644	0,50	2,7	638	2,70	2,7		
648	0,60	2,6	678	2,30	2,3		
668	0,78	2,4	708	2,00	2,0		
683	0,88	2,2	730	1,79	1,8		
698	0,99	2,1	752	1,57	1,6		
716	1,10	1,9	776	1,31	1,3		
721	1,20	1,9	790	1,20	1,2		
736	1,30	1,7	794	1,15	1,15		
744	1,40	1,6	798	1,10	1,15		
771	1,50	1,5	796	1,05	1,15		
776	1,70	1,4	796	1,00	1,15		

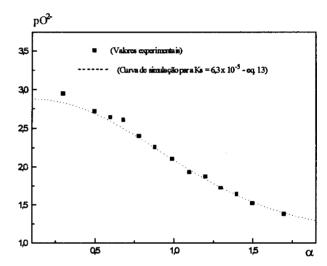
A relação entre pO^{2-} e α está representada na equação (13) e foi obtida a partir do balanço de massa da reação oxoacido-básica descrita na equação 3, onde:

$$[Sr^{2+}] = [Sr^{2+}]_0 - [SrO],$$
 (9)

$$[O^{2-}] = [BaO] - [SrO],$$
 (10)

$$\alpha = [BaO] / [Sr^{2+}]_0, \qquad (11)$$

e substituindo as equações 9, 10 e 11 na equação 4, chegandose à seguinte expressão:


$$Ks = [O^{2-}] (1-\alpha) [Sr^{2+}]_0 + [O^{2-}]^2$$
 (12)

Resolvendo-se a equação (12) e aplicando a definição de pO^{2-} , tem-se:

$$pO^{2-} = -\log \frac{[SrCl_2]_o(\alpha - 1) + \sqrt{([SrCl_2]_o(\alpha - 1))^2 + 4Ks}}{2}$$
 (13)

Para representar a equação (13) no diagrama de pO $^{2-}$ versus α atribui-se valores para Ks na equação, e desta forma obtemse a curva que melhor descreve os pontos experimentais, conforme metodologia de trabalhos anteriores 9,10 .

O valor de Ks = 6.3×10^{-5} representa a curva pontilhada, o que possibilitou a determinação do pKs do SrO, cujo valor encontrado foi 4.2 ± 0.1 , na escala de molalidade. A representação da curva e os valores experimentais estão na Figura 1.

Figura 1. Curva de simulação e valores experimentais da titulação do Sr^{2+} pelo BaO.

O eletrodo foi padronizado com BaO, repetindo o trabalho realizado por Combes e Andrade⁹. Os valores do potencial do eletrodo indicador de pO²⁻ em função do BaO adicionado (escala de molalidade), estão descritos na Tabela 1 e ilustrados na Figura 2. A reta, cujo coeficiente angular é igual a -0,1 V, representa a solubilidade do BaO e a linha horizontal corresponde à precipitação. Estes resultados confirmam os valores obtidos e demonstram a padronização do eletrodo indicador.

DISCUSSÃO

O valor do produto de solubilidade obtido neste trabalho é de $4,2\pm0,1$, na escala de molalidade, a $727\,^{\circ}\text{C}$ (1000K). Como mostrado na Tabela 2, este valor é bastante menor que 5,8, pKs obtido por Naumann e Reinhard⁷, os primeiros que fizeram a determinação. Os resultados obtidos por Combes e colaboradores e o encontrado neste trabalho, se comparados aos de Naumann, são menores, na mesma ordem de grandeza. Porém, tanto o resultado deste trabalho quanto o de Combes são mais confiáveis, por terem sido determinados pelo método de titulação potenciométrica no próprio sal fundido^{8,9}.

Ao contrário, os valores encontrados por Delimarsky e Shapoval¹³ e mais recentemente, por Cherginets e Khailova¹⁴, são menores, apesar de determinados pela mesma técnica

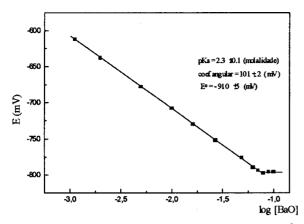


Figura 2. Curva de padronização do eletrodo indicador de pO^{2-} .

Tabela 2. Relação dos produtos de solubilidades dos alcalinos terrosos (escala de molalidade) no NaCl-KCl fundido a 727°C.

Autores	BaO	SrO	CaO	MgO
Combes ^{8,9}	2,31	-	5,0	9,0
Naumann ⁷	4,1	5,8	6,5	-
Delismarsky ¹³ (*)	-	3,0	-	8,46
Cherginets ¹⁴ (*)	2,30	3,08	4,36	9,27
Este trabalho	-	4,2	-	-

(*) 700°C

potenciométrica. Uma explicação para a diferença é o fato desses autores terem usado o NaOH como oxobase para a titulação, e terem considerado a mesma, como totalmente dissociada (oxobase forte).

Combes e colaboradores¹² demonstraram que o íons HO estão envolvidos no seguinte equilíbrio:

$$2HO^{-}$$
 (solução) $\rightarrow H_{2}O$ (vapor) + O^{2-} (solução),

que necessariamente impõe o controle de uma nova variável, a pressão de vapor da água. O valor da constante da reação acima é $10^{-2.6}$ a 727° C, na escala de molalidade 12 .

Para certificar a consistência do resultado deste trabalho e compará-lo ao determinado por Cherginets¹⁴, correlacionou-se os valores do produto de solubilidade obtidos pelo mesmo método contra a densidade de carga (j) de cada cátion, que pode ser calculada conhecendo-se o raio iônico dos respectivos cátions e admitindo a aproximação de Born (íon como esfera rígida), resultando:

$$j = \frac{Z_i e_o}{4\pi r_i^2} \tag{14}$$

com j = densidade de carga superficial; z_i = valência do íon; e_o = carga do electron (1,6 x 10^{-19}) e r_i = raio do íon.

A Figura 3 mostra a linearidade entre os cátions Mg²⁺, Ca²⁺ e Sr²⁺, e o mesmo não se observa no trabalho de Cherginets¹⁴. A dependência linear, isto é, a constante de proporcionalidade entre o produto de solubilidade e a densidade superficial de carga indica que as interações entre soluto e solvente são do tipo eletrostáticas. Quanto ao desvio apresentado pelo íon Ba²⁺, a possível explicação é o surgimento de interações não coulômbicas, possivelmente há formação de cloro-complexos¹⁶⁻²¹.

CONCLUSÃO

Quando se compara o resultado encontrado neste trabalho e os existentes na literatura^{7,8,9,13,14}, observa-se que a técnica experimental e a substância usada como oxobase determinam a confiabilidade das medidas.

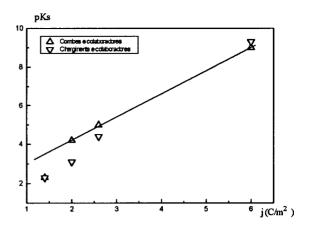


Figura 3. Curva do produto de solubilidade dos alcalino terrosos contra densidade superficial de carga

AGRADECIMENTOS

Os autores agradecem à Petromisa pelo financiamento deste trabalho.

REFERÊNCIAS

- 1. Lux, H.; Z. Elektrochem. 1939, 45, 303. Lux, H.; Naturwiss 1940, 29, 92.
- 2. Flood, H.; Førland, T.; Acta Chem. Scand. 1947, 1, 592.
- 3. Harrison, J.; C. R. Acad. Sc. 1955, 241, 298 and 402.
- 4. Delarue, G.; J. Electroanal. Chem. 1960, 1, 285.
- Charlot, G.; Tremillon, B.; Les réactions chimiques dans les solvants et les sels fondus, Gauthers-Villars ed., Paris, 1963.
- Janz, G.; Molten Salts Handbook, Academic Press, New-York, 1967.
- Naumann, D.; Reinhard, G.; Z. Anorg. Chem. 1966, 343, 165.
- 8. Combes, R.; Andrade, F.; C. R. Acad. Sc. 1975, 280, 945, and J. Electroanal. Chem. 1977, 83, 297.
- 9. Combes, R.; Andrade, F.; Ferreira, H.; *Electrochim. Acta* **1980**, *25*, 371.
- 10. Combes, R.; Vedel, J.; Tremillon, B.; *Anal. Letters* **1970**, 3, 523.
- 11. Combes, R.; Vedel, J.; Tremillon, B. C. R. Acad. Sc. Paris, 1971, 273, 1740,; 1972, 275, 199.
- Combes, R.; Vedel, J.; Tremillon, B.; *Electrochim. Acta* 1975, 20, 191.
- 13. Delimarsky, V.; Shapoval, K.; Ukr. Khim. Zh. 1977, 43, 115.
- 14. Cherginets, V. L.; Khailova, E. G.; *Electrochim. Acta* **1994**, *39*, 823.
- 15. Blander, M.; *Thermodynamic Properties of Molten Salts Solutions*, Molten Salts Chemistry, 1964.
- 16. Druem, D. M.; Espectroscopy of Transition of Metals in Fused Salts, dans le livre de Sundheim: Fused Salts, Mc. Graw-Hill ed. New-York, 1964.
- 17. Bard, A.; Fused salts systems, in Encyclopedia of electrochemistry of the elements, Marcel Dekker, New-York, 1976.
- 18. Tremillon, B.; Proceeding of the first international symposium on molten salts chemistry, Kyoto, Japan, 1983.
- 19. Bredig, M.; *The experimental evidence for complex ions in molten salts*, em Molten Salts. G. Mamantov editor, Marcel Dekker, New-York, 1969.
- Enderby, J.; Biggin, S.; Structural investigations of molten salts by diffraction methods em Advances in molten salts chemistry, G. Mamantov editor, Elsevier, Amsterdam, 1983.
- 21. Wood, N.; Howe, R.; J. Phys. C. Solid State Physics 1988, 21, 3177.