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When laboratory intercomparison exercises are conducted, there is no a priori dependence of the concentration of a certain
compound determined in one laboratory to that determined by another(s). The same applies when comparing different
methodologies. A existing data set of total mercury readings in fish muscle samples involved in a Brazilian intercomparison
exercise was used to show that correlation analysis is the most effective statistical tool in this kind of experiments. Problems
associated with alternative analytical tools such as mean or paired ‘t’-test comparison and regression analysis are discussed.

Keywords: laboratory intercomparison; mercury; fish.

INTRODUCTION

There is a clear need for intercomparison exercises when studies
involving more than one laboratory are conducted1,2. When several
species and compounds are analyzed, such as mercury3-5 and
cholinesterase activity6, this provides confidence results as verifies
the accuracy of the measurements.

However, it must be recognize that there is no a priori dependence
of the concentration of a certain compound determined in one
laboratory to that determined by others. A mercury concentration
datum, for example, is dependent only on the mercury content of a
tissue or blood or whatever the sample matrix is. On the other hand,
the readings data supplied by one or more laboratories could be related
or not, depending on the degree of intercalibration.

Regression analysis, correlation tests and the t-test, are commonly
used to evaluate the degree of likelihood between two data sets, as in
intercomparison exercises.

REGRESSION ANALYSIS

Whenever there are two data sets, in which one is dependent (Y
variable) on the other (X variable), regression analysis is used to
estimate the percentage variability of Y explained by its relationship
with X. This quantity is expressed by the r2 value (the closer to 1, the
better the estimation). If there are two data sets from two laboratories
to be intercalibrated, the regression model is not suitable, since it is
impossible to say a priori which set of data is the response variable
and which independent one. In this way, none of the equations can
represent better the relation between the readings (Figure 1).

As an example, an existing data set of total mercury readings in
fish muscle samples (Table 1) analyzed by the Laboratory of
Radioisotopes from Rio de Janeiro Federal University (LREPF) and
the Analytical Chemistry Laboratory from Rondonia University
(UNIR), has been used.

Figure 1. Estimated regression functions using UNIR or LREPF as response
variables. Since is not possible to establishes which is the independent and

the response variable, either equation could be chosen to represent the

relationship. But there is no right criteria to do so, showing that this model
is not suitable
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MEAN COMPARISONS TEST

The method most commonly used to evaluate the differences in
the means of two groups is the t-test. However, it is clear that two
means can be statistically similar despite there being no correspondence
between the two data sets. Therefore this approach does not apply.

Alternatively, if each laboratory analyzed n samples, there will
be n pairs coming from the same sample. In this case, it is common
practice to analyze these data by the means of paired t-test7,8. Still,
this is not the appropriate tool. It must be pointed out that, if this
analysis is conducted over the original data set (Table 1), no significant
difference is detected between the readings that came from UNIR
and those from the LREPF (p= 0.567). However, this result must be
considered as proof of absence of a consistent higher (or lower)
reading from one laboratory, with respect to the other. It is not possible
to imply that there is a linear relationship between the readings of
the two laboratories, which would be the expected result if the two
laboratories were intercalibrated.

CORRELATION COEFFICIENT

When the objective is to show a linear relationship between two
data sets, correlation coefficients are the correct tool. Note that this
kind of relationship is what we would expect if the two laboratories
were equally calibrated. The Pearson’s correlation coefficient, r, (or
a non parametric equivalent) will quantify how similar the laboratories
readings are. The parametric correlation coefficient assumes that the
two data sets belong to a bivariate normal population and, if this is
true, the distribution of each variable must be normal, although the
converse does not apply7.

As can be seen in Figure 2, the distribution for both UNIR and
LREPF variables are not normal. Formal statistical test like Shapiro-
Wilk’s W test5 rejected the null hypothesis of normality for both
variables (p< 0.0001). So, the non-parametric Kendall Tau coefficient
was calculated9 and estimated as 0.931.

Table 1. Readings of total mercury (mmol.Kg-1) on fish muscle
samples used for the intercalibration laboratory exercise. UNIR:
Analytical Chemistry Laboratory from Rondonia University. LREPF:
Laboratory of Radioisotopes from Rio de Janeiro Federal University

Reading UNIR LREPF Reading UNIR LREPF

1 3.744 4.252 20 0.204 0.199
2 3.470 3.540 21 0.259 0.249
3 0.279 0.299 22 0.429 0.399
4 0.110 0.100 23 1.939 1.810
5 3.535 3.789 24 0.563 0.698
6 0.224 0.199 25 0.244 0.274
7 0.813 0.748 26 0.219 0.229
8 0.484 0.499 27 0.548 0.648
9 6.620 5.992 28 0.518 0.499
10 2.562 3.041 29 1.012 0.882
11 0.508 0.499 30 0.249 0.214
12 4.990 5.603 31 3.644 3.425
13 3.041 2.602 32 3.480 3.485
14 0.384 0.349 33 0.389 0.379
15 0.937 0.818 34 0.523 0.513
16 5.195 5.090 35 2.602 2.692
17 0.204 0.249 36 0.449 0.399
18 0.254 0.249 37 2.373 2.891
19 0.992 1.147 38 3.530 3.440

Figure 2. Distribution of (a) UNIR and (b) LREPF mercury readings. The

expected normal distribution is also shown

 The null hypothesis of absence of correlation between the two
variables was tested using the normal approximation (Z= 8.22; p<
0.0001) and rejected. As shown in Figure 3, the conclusion is that
the mercury readings from the two laboratories are linearly related.

Although our data exhibits linearity, this is not the only criterion
need to demonstrate that the laboratories are intercalibrated. Is also
necessary to prove that the slope (β) of the line is not significantly
different from 1 and that the intercept (α) is not significantly different
from 0. Note that if these conditions are fulfilled, the same regression
line will be obtained, whatever which variable (UNIR or LREPF)
was used as response variable. The hypothesis mentioned above can
be tested using a t-test7,8. The two hypotheses (β = 1 and α = 0) were
not rejected when using the data shown in Table 1, suggesting that
the two laboratories are, in fact, intercalibrated.

CONCLUDING REMARKS

Using a real data set, it has been shown that mistaken conclusions
can be drawn if intercomparison data are analyzed by means of paired
test comparisons, and also when regression analysis is used to estimate
functions. Correlation analysis and tests of hypotheses about slope
and intercept are more desirable statistical tools in the analysis of
laboratory intercomparison data, since it is possible to test if the
laboratories involved are intercarlibrated (ie: if a correlation
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coefficient is statistically different from zero). This would imply a
linear relationship between the readings of different samples.
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Figure 3. Relationships between UNIR and LREPF mercury readings, using

the original data set showed in Table 1. The Kendall Tau coefficient was
estimated as 0.931


