
Quim. Nova, Vol. 35, No. 5, 910-913, 2012
Ar

ti
go

*e-mail: nelson.lemes@unifal-mg.edu.br

PARAMETRIC SENSITIVITY ANALYSIS FOR THE HELIUM DIMERS ON A MODEL POTENTIAL

Nelson Henrique Teixeira Lemes*
Instituto de Química, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-000 Alfenas - MG, Brasil
Vitor D. Viterbo, Rita C. O. Sebastião e João P. Braga
Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-010 Belo Horizonte - MG, Brasil

Recebido em 8/6/11; aceito em 10/11/11; publicado na web em 31/1/12

Potential parameters sensitivity analysis for helium unlike molecules, HeNe, HeAr, HeKr and HeXe is the subject of this work. 
Number of bound states these rare gas dimers can support, for different angular momentum, will be presented and discussed. The 
variable phase method, together with the Levinson’s theorem, is used to explore the quantum scattering process at very low collision 
energy using the Tang and Toennies potential. These diatomic dimers can support a bound state even for relative angular momentum 
equal to five, as in HeXe. Vibrational excited states, with zero angular momentum, are also possible for HeKr and HeXe. Results 
from sensitive analysis will give acceptable order of magnitude on potentials parameters.
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INTRODUCTION

Theoretical and experimental informations are an important guide 
to infer about the quality of potentials, which should reproduce, within 
experimental error, a broad range of experimental data. Potentials 
can be obtained by a direct process,1 adjusting parameters to fit 
experimental data or in an inverse way,2 treating the data in a first 
place to retrieve the required potential. Fitting potential parameter 
to experimental data is not considered an inverse problem, but rather 
a direct problem.

Scattering matrix, S, calculation for a given potential provides 
the most sensitive test for the potential, for this will involves no 
average. Therefore small variations in the potential parameter can 
give measured effect in S, as will be discussed. Together with the 
variable phase method, application of Levinson’s theorem will be 
explored. This important theorem relates the number of bound state 
a molecule can support, using scattering matrix calculations at neg-
ligible collision energy.3,4

Sensitivity analysis on the rare gas dimers potential parameters 
and the effect on bound state structure are considered in this work. 
How the spectrum is affected by variation in the long range disper-
sion coefficients and short range parameters will be discussed. This 
analysis will set tolerable values for the property under consideration 
and therefore are limits appropriate to any potential. The potential to 
be used in the present study is the general potential proposed by Tang 
and Toennies,5 although other potential are available, in special for 
the helium-helium interaction.6 Nevertheless, the Tang and Toennies 
potential is tabulated for several molecules and appropriate for invert-
ing data in further studies on the subject.

The present study is also important as a preliminary study of 
rare gas clusters.7 Such clusters can be studied by using classical 
mechanics, in a procedure analogous to that used in atom-molecule 
clusters.8,9 For clusters composed of helium and neon quantum ef-
fects are important, although the classical approximation is feasible 
for clusters starting with argon.10 Information on the rare gas bound 
states structure will be provided and can be used as a motivation 
and as a previous analysis for further studies in the rare gas clusters 
quantum and classical dynamics.11 

THE VARIABLE PHASE METHOD

For atomic collisions, the scattering matrix can be substituted by 
the phase shift, δ. This phase shift carries information on how much 
a phase, for a wavefunction calculated for a real potential, is shifted 
compared with zero potential wavefunction. From this difference 
of phase, scattering quantities can be calculated. The main idea of 
the variable phase method (VPM) is to define a potential energy 
function,EP(R), which is the true one until a certain distance, r and 
zero afterwards. Boundary conditions are applied at r which is then 
moved forward. The phase shift, calculated for the parameter r, is 
constructed as this boundary is moved to large distance. Therefore, 
for the potential

	  	 (1)

with , µ the system reduced mass, one seeks the 

solution in the form, fr(R) = a(r)sin(kR + d(r)) with . 

Amplitude and phase in this case depend on the parameter r. In the 
limit r→∞ the obtained phase will correspond to the true potential 
Ep(R). Wavefunction continuity at the boundary gives,

	  	 (2)

a first order differential equation for the phase. The initial condition, 
d(R0) = –kR0 in which R0 is some cutoff initial radius, together with 

the end condition , taking way the possible centrifugal 

contribution, complete determine the phase shift and the scattering 
matrix. Equation 2 is the basic variable phase equation.

The full potentiality of the method has been emphasized by F. 
Calogero in a series of paper that derived the VPM for the general 
case.12 An equation for the scattering matrix, instead of the phase 
itself is also established. Nevertheless, the equation for the phase is 
more attractive since it assumes a real form and it is simple to inter-
pret. Numerical examples are given by Calogero for exponential and 
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constant potentials.13 The phase equation method was also popular-
ized by F. Calogero, mainly because of his book,14 written in 1967.

The variable phase method has not been appropriate explored, 
even for the one dimension case. Number of bound states can be 
easily obtained in the limit of zero collision energy using the phase 
equation. This will require integrating a first order differential 
equation up to short distance. On the other hand one can integrate 
Schrodinger equation itself, and this will involve very large distance 
if the bound state has a small energy value. This is the case for the 
dimers studied here, as will be discussed. The method can also be 
formulated in several dimensions,15 although a comparison between 
this method and the well established close coupled equations16 has 
not been carried out.

 
RARE GAS DIMERS POTENTIAL

Establishing the global potential energy function is the first and 
most crucial step when analyzing classical or quantum dynamics. 
The required potential energy function is usually approximated by a 
model potential with parameters obtained from available experimental 
data combined with quantum electronic calculation.17 Within another 
approach the potential can be obtained by inverting data directly. This 
will produce potentials for the experimental property under investi-
gation. Using the inverse problem approach a high quality potential 
was obtained to reproduce second virial data18 and differential cross 
section.2 In the last case the potential was inverted using the first 
Born approximation. Nevertheless, to increase the accuracy of the 
inverted potential one has to use a more accurate theory, such as a 
full quantum calculation.

Model potentials have to be flexible to accommodate a broad 
range of molecules. That is the case for the potential described in 
ref. 17 which uses a hyperbolic tangent to damp the long range 
terms although this term has contribution to the short range as well. 
Another potential described by Slawomir and Toczylowski,27 is also 
used to discuss bound state energies in rare gas dimers, limited from 
helium to argon species. This potential is restricted to these species 
and cannot be used for other rare gas molecules.

A more recent and general potential with a damping function 
with zero contribution at short distance was developed by Tang and 
Toennies5 in the form,

	  	 (3)

with  Parameters for the 21 diatomic rare gas mole

cules are given in literature.5 The parameters A and b, together with 
dispersion coefficients are tabulated. The damping function depends 
only on the b parameter. These five parameters, therefore, completely 
define the potential. Among the 21 molecules available, the present 
work will concentrate on the molecules, HeHe, HeNe, HeAr, HeKr 
and HeXe. This set of molecules will be sufficient to give confidence 
for further studies on the subject. Data for this set of molecule,5 are 
as in Table 1.

Other potentials for the rare gas dimers are available, in special 
for the helium diatomic system, which has been studied in more de-
tails. For example, Varandas6 presented a potential for helium-helium 
interaction, which has accuracy of one centikelvin at the minimum. 
Helium diatomic has also been studied by perturbation theory.19 
Relativistic effects were also incorporated in this sort of molecule.20 
Although these are very accurate potentials, they are limited to one 
molecule. The objective of the paper is to study the helium dimers 
in a comparative phase shift analysis. A critical analysis of available 
helium dimers potentials deserves a separate study. 

The number of bound states the rare gas dimers can support, 
for different angular momentum, will be presented and discussed. 
The limit of the phase shift energy for different angular momentum 
is an integer multiple of p. Levinson's theorem state this integer is 
equal to the number of bound states a molecule can support for this 
angular momentum,3 

	 	 (4)

From this theorem it is, therefore, possible to use information from 
the continuum to predict properties about the discrete states.

RESULTS AND DISCUSSION

Potential for helium molecule, as in Equation 3, predict a energy 
minimum with 10.99 K at 5.62 bohrs. In fact the theoretical aspects 
of the He2 molecule interaction go back to 1928 with a calculation 
made by Slater.21 This 1928 calculation gives dissociation energy 
and equilibrium distance as 8.9K and 5.60 bohrs. Nevertheless, the 
question of a stable vibrating He2 diatomic molecule was treated in 
a consistent form only recently.

The existence of helium diatomic molecule is a question of spe-
cial interest, for it will be the weakest van der Waals molecule. This 
question was analyzed from a theoretical aspect, using effective range 
theory,22 in which integration of Schrodinger equation is necessary. 
Since the bound state of such a molecule is reported to be at 10-8 eV, 
integration is necessary until 10000 au. Therefore, dealing with this 
energy to detect a bound state can be a source of error. The present 
method to detect bound states, using the limit of the scattering phase 
shift, does not have this problem, maximum integration being at 7 au.

Convergence of the phase shift for small collision energy has 
to be investigated to make the Levinson’s theorem applicable. This 
convergence was tested for the HeXe molecule, in which collision 
energy of about 10-10 atomic units was obtained. This analysis for a 
heavy diatomic will guarantee the energy will also be appropriate for 
the other dimers. Numbers of bound states for the helium dimers are 
as in Table 2. For angular momentum greater than 5, none of these 
molecules can support a bound state. 

Integrating phase shift for low collision energy has to be carried 
out with a very precise numerical algorithm. The problem arises as a 
consequence of the Levinson’s theorem. In this collision energy limit, 
phase shift behaves likes a step function, as exemplified for He-Kr at 
zero angular moment and E = 10- 8 meV, in Figure 1. Variable stepsize 

Table 1. Potential parameters (atomic units) for the helium rare gas dimers 
systems

System A b C6 C8 C10

HeHe 41.96 2.523 1.461 14.11 183.6

HeNe 98.02 2.496 3.029 36.18 545.1

HeAr 124.3 2.153 9.538 167.5 3701

HeKr 118.9 2.025 13.40 280.0 7257

HeXe 95.90 1.853 19.54 525.0 16670

Table 2. Bound state for the helium rare gas dimers systems

System l=0 l=1 l=2 l=3 L=4 l=5

HeHe 0 0 0 0 0 0

HeNe 1 1 1 0 0 0

HeAr 1 1 1 1 1 0

HeKr 2 1 1 1 1 1

HeXe 2 1 1 1 1 1
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Runge-Kutta of fifth and sixth order as described by Forsythe23 were 
adequate to make relation (4) applicable. For this collision energy 
a limit for results were to be valid within four significant figures.

A preliminary consideration for the number of bound state can be 
carried out considering the dissociation energy, which increases by a 
factor of about 3.0 × 10-5 from helium to argon, but increases by 1/10 
of this value from Ar to Xe. Different behavior is, therefore, expected 
from helium to argon and not an appreciable change from argon to 
xenon, as shown in Table 1. Nevertheless, correlation of dissociation 
energy with bound states is a crude analysis, for other factor, such as 
concavity of the potential (force constant) can also play an important 
role. How the number of bound states will change, for example by a 
10% change in the dispersion coefficient? Sensitivity analysis (SA) 
provides the answer for this important question.

The sensitivity analysis can be used in two ways: in a direct 
or inverted procedure. Direct sensitivity analysis was important to 
discuss the formation of cluster with respect to perturbation in the 
potential parameter.10 Sensitivity analysis was also used to invert and 
analyze data in quantum scattering, under Born approximation2 and in 
thermodynamic analysis of the second virial data.24-26 In the present 
work SA will be applied to system parameters variation with respect 
to the formation of the diatomic molecules.

Importance of the sensitivity analysis can be appreciated by 
considering the radial dependence of phase shift and its derivative, 
i.e. Equation 2, superimposed by the potential energy itself. These 
three variables are considered together in Figure 2, for HeXe with 
l = 0 and E = 0.1 meV.

There is no accumulation of phase in the classical forbidden 
region. Before R = 4 au the potential will have small importance on 
bound states and collision property. The collision energy to detected 
bound states is negligible and the turning point is in fact about 6.7 

au. This is reflected also in the variable phase equation, showing  

has small contribution to be added to the phase.
On the other hand, Equation 2 will go to zero at Ep(R) = 0 and 

will not change sign until convergence. Competition on repulsive 
and attractive forces will manifest itself in the phase shift. All phase 
shifts calculated in this work have asymptotic positive values, that 
is, attractive forces dominate the process to find bound states. The 
situation is obvious different for larger collision energy.

The region most sensitivity to the potential is around its minimum, 
in which case the phase derivative has its maximum. Nevertheless, this 
certainly is not the only region to construct the phase. Phase shift is 
constructed along the potential, having important contribution from 

the long range part. This preliminary consideration is to be quantified 
in by varying the potential parameters.

How precise has to be the atomic mass to infer about bound states? 
Using the helium atomic mass as 4.0026 or 4.002603267 amu will be 
give zero bound state, indicating the precision of atomic mass is not 
responsible for the question about He2 stability. Even for the atomic 
mass equal to 4.02 amu there will be not helium molecule. Similar 
considerations are also valid for the other members of the series. 
The number of bound states will not change for HeXe molecule if 
xenon mass is changed even by 10%. Since atomic masses are precise 
within one part in ten thousand this parameter can not affect stability 
of diatomic molecule.

Importance of the dispersion coefficient is to be investigated next. 
Since long range terms decay as a power of Rn, one may expect the 
C10 contribution to be less important. The dipole-dipole interaction 
will have the most important contribution to the molecular spectrum, 
whereas the quadrupole interaction, C8 term, will have a contribu-
tion between dipole and octopole. Nevertheless, these coefficients 
cannot be varied to large values, since this will change the molecule 
individuality being studied. Small variations around the tabulated 
values, as in Table 1, are to be analyzed for zero angular momentum. 

For all diatomic molecules in the series, large variations of the 
C10 coefficient do not change the number of bound states with l=0. In 
some cases this coefficient can be set even to zero, except for HeKr. 
The HeKr has the deepest dissociation energy in the series and this 
interaction is expected to be more relevant.

On the other hand, a very small variation of the C6 coefficient 
for helium interaction, about 0.46%, will predict a He2 molecule. 
This is equivalent to change C6 from 1.4610 to 1.4678 au. This point 
represents a C6 threshold value for the existence of helium molecule, 
keeping all other parameters constant. In general, for the three disper-
sion coefficient and l = 0, it was found that a maximum variation of 
5% (HeNe) is still accept to give the same number of bound states. 
This kind of information is important to the inverse problem analysis. 
Inverted values most are within this range of accuracy. 

As the angular momentum is increased dispersion coefficient 
becomes more important and the repulsive part of the potential less 
important. Turning points will move to the right in this case. One can 
qualitatively describe the importance of the short range part of the 
potential by varying the initial value for integrating the VPM equa-
tion. The initial values, without changing the number of bound states 
are, 3.2 au (HeNe) , 4.3 au (HeAr), 3.1 au (HeKr) and 3.6 au (HeXe). 
The HeHe molecule has already none bound states and this change 
in the initial condition will not affect the formation of bound state. 
Therefore, taking the results for HeNe as an example, the short range 

Figure 1. Radial dependence of phase shift for HeKr at zero angular moment 
and E=10-8 eV

Figure 2. HeXe potential energy function5 (thicker continuous line), phase shift 
(continuous line) and VPM equation (dashed line) for scattering coordinate
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potential before 3 au will not affect the bound states. A hard core can 
be set at this point without change the HeNe spectrum.

CONCLUSIONS

Quantum scattering sensitivity analysis calculation was carried 
out for the helium dimers together with bound state structure for 
different angular momentum. Except for HeHe, all the molecules 
have bound states. The molecules HeKr and HeXe can support two 
vibrational states with l = 0 and these molecules still exist with larger 
angular momentum. The analysis was performed using the variable 
phase method and Levinson’s theorem.

Sensitivity analysis was carried out to quantify how the phase shift 
is changed for potentials parameters variations. Mass effect was also 
carried out for the series. The mass accuracy is not responsible to give 
a bound state on helium molecule. For example, using atomic mass 
as 4.0026 or 4.002603267 amu still gives zero bound states for this 
potential. Changing the mass of xenon atom up to 10% still leaves 
HeXe molecule with two bound states in ground rotational level.

Range of acceptable potential parameters was determined such 
that the original bound state structure will not be changed. Dispersion 
coefficients were changed one each time, keeping all other param-
eters constant. Importance in the dispersion coefficients appears in 
decreasing order, from C10 to C6 coefficients. Results are basically 
unchanged by variation in C10 coefficient. On the other hand, varia-
tions in C6 can be very important. For example, for He2 molecule, 
a 0.46% positive variation in this coefficient predicts one vibration 
state for zero angular momentum. Sensitivity in the repulsive part 
of the potential was determined by establishing a minimum initial 
coordinate tolerable to support the original bound state structures. This 
minimum was found to be around 4.0 au for all the helium dimers.

Although sensitivity analysis was performed in a parametric 
form for a specific potential, the present results are useful for the 
bound state rare gas dimers spectrum and for the potential structure. 
Taking into account the experimental evidence for helium molecule,25 
one may argue about the potential quality. The present results have 
shown that, to improve the potential, it is not a matter of changing 
the potential parameters. Their precision is sufficient to avoid extra 
spectrum structure. In fact, another functional form of the potential 
has to be considered, and this can be achieved by the functional 
sensitivity analysis.26 This will provide the correct function for the 
helium dimers. 
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