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Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful 
in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are 
obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, 
an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural 
network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and 
Levenberg-Marquardt, the most used methods for optimization problems.
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INTRODUCTION

The utilization of renewable fuels derived from non-fossil car-
bon sources, such as Biogas, is rising in Brazil. There are different 
applications of this fuel for power generation such as gas turbines, 
boilers, steam generators and internal combustion engines.1-4 In the 
last case, the use of Biogas as fuel is probably the most advantageous 
manner of transforming alternative energy into net power. Therefore, 
it is important to investigate methane combustion since it represents 
about 65% of this fuel.1

Generally, models representing methane combustion use more 
than 300 reactions to define combustion products, requiring complex 
computational processing.5-9 To simplify this problem, the well-known 
and tested Westbrook and Dryer model (WD-modified) can be used 
for chemical kinetic calculations.8 Simulated and real conditions 
such as biogas concentration, excess air ratio (λ) and temperature 
are considered in this simulation.4,9-11

The use of simplified mechanisms is also very helpful in 
Computational Fluid Dynamics analysis (CFD) since, for the same 
reason, the modeling of industrial combustion requires great computa-
tional effort.8,11 CFD analysis becomes an important industrial tool in 
which chemical reactions are often represented by a mixed-is-burned 
assumption or by a chemical equilibrium.

Kinetic rate constants of irreversible consecutive methane com-
bustion are calculated from the product chemical concentration. 
For this problem, the differential equations set characteristics and 
the usage of experimentally noisy data implies an ill-conditioned 
inverse problem, which has to be solved by robust mathematical 
algorithms.12-14 For the present study, a recurrent neural network 
was chosen.15,16 The approach is numerically stable and robust with 
respect to deviations in the initial conditions or experimental noises.

THEORETICAL METHODOLOGY

Methane combustion kinetic modeling

The WD model consists of three reactions in which oxidation of 

[CO] to [CO2] is treated as an irreversible reaction. The mechanism 
is represented by Equation (1):8

	 	 (1)

Chemical kinetic calculations, using this model to describe 
hydrocarbon oxidation, proved to be useful in CFD models for 
conventional combustion in air. This simplified mechanism can also 
be compared to the Detailed Chemical Kinetic Model (DCKM) by 
Glarborg and Bentzen, as presented in reference 8. The original WD 
model adequately predicts [CO2] and [O2] concentration from [CH4] 
oxidation in flow reactors. Nevertheless, the [CO] concentration is 
not accurately predicted by this model in its original form. For this 
reason, the global model (WD) was modified by Andersen to impro-
ve this property simulation.8 The WD-modified model consists of a 
system of chemical rates:

r1 = [CH4]
0.7[O2]

0.8

r2 = [CO][O2]
0.25[H2O]0.5

r3 = [CO2][H2O]0.5[O2]
–0.25

and the kinetic model for methane combustion can be represented 
as Equation 2,

	 	 (2)
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These coupled differential equations have to be solved from the 
chemical species concentrations to retrieve the kinetic rate constants. 
Although this is a simplified kinetic model, it can yield useful insights 
into the combustion process.

Neural network theoretical background

In the neural network approach, an analogy between artificial 
and biological neurons is established by a mathematical model.  The 
neuron states, ui, are evaluated considering the weighted contribu-
tions, Tij, of all the neurons, uj connected to them. To propagate the 
information, the neurons have to be activated by a monotonically 
increasing function, f(uj)

14,15

	 	 (3)

with Ii(t) representing some external impulse and n the number of 
neurons in the network. During a learning time, t, information is 
changed in the network by the activated neurons until a convergence 
criterion is reached. For this, an energy function is defined as,16-18

	 	 (4)

with Ccal and Cexp constituting the calculated and experimental pro-
perties, respectively. 

The property, Ccal, is calculated based on the activated neurons, 
f(ui(t)) and the derivative of the energy function can be written as 

	 	 (5)

with ej = (Ccal,j – Cexp,j) and equal to the number of experimental data.12

From Equation 4, a neural network convergence criterion can be 
established by imposing the condition,

	 	 (6)

Equation 5 is thus transformed to

	 	 (7)

From this, one can note it is necessary to adopt the transfer func-
tion as an increasing function of the neuron states, i.e. ∂f/∂u > 0, which 

will imply .16,19 In this study, the hyperbolic tangent function 

was used to activate the neuron states.
In this algorithm, the Hopfield neural network (HNN) provides 

the solution that minimizes the error function, Equation 4, and con-
sequently best reproduces the experimental property. In the present 
study, the calculated property is the chemical concentration while 
the neurons in the network represent the rate constants of the pro-
cess, which were obtained by integrating Equation 6. A fourth order 
Runge-Kutta method was used in the neuron state evaluation.20,21 
Starting from an initial guess, the stopping point of the integration 
process is defined as when the error function reaches the minimum 
value, i.e. dui/dt = 0.  

RESULTS AND DISCUSSION

In the first part of this work, simulated data and the modified 

WD mechanism for methane combustion were adopted to test the 
efficiency of the proposed method. Simulated conditions of oxy-firing 
combustion, i.e. 28% O2 and 72% N2, and stoichiometric combus-
tion at 1600 K, were selected. For this assumption, the methane and 
oxygen initial molar fraction percent concentrations were 11.18 and 
23.02, respectively. Figure 1 shows the highest species concentration 
calculated in the direct problem using the modified WD model with  
k1 = 881 s-1, k2 = 2464 s-1 and k3 = 0.5 s-1.8 The CO concentration data 
proved to be in agreement with the validated model, the Detailed 
Chemical Kinetic Model – DCKM, as proposed by Andersen.8

This model adequately predicts the [O2], [CO] and [CO2] levels 
under fuel-lean and oxy-firing conditions and can be used to describe 
post ignition fuel-consumption rate in isothermal plug-flow reac-
tors.4,22 The model also predicts the reactor residence time as the time 
scale for complete conversion of methane to [CO2 ]. As can be noted 
in Figure 1, the time of 10-3 s is in agreement with the literature.22

The neural network states are established by the integration of 
Equation 6, with rate constants used as initial guesses. The activated 
neuron states correspond to inverted rate constants calculated from the 
error optimization process. The [CO] molar fraction percent concen-
tration data, from Figure 1, was input to the network together with the 
initial condition k1 = 100 s-1, k2 = 1000 s-1 and k3 = 1 s-1. These initial 
estimates were chosen considering the same magnitude as the rate 
constants used in the simulation step, where the initial residual error for 
these constants is 13.001. The inverted rate constants retrieved from this 
data are given in Table 1. Also, this table also shows the residual error 
for the concentration fit. The good agreement among the data can be 
verified in Figure 2, in which all concentrations were calculated using 
the kinetic constants retrieved by the network, as shown in Table 1.

The HNN inputs are established by initial guesses for the rate 
constants and the converged neuron states correspond to inverted rate 
constants. The network time convergence, the most used optimization 
technique, is related to the quality of this initial condition, and this 
property can be used to test the reliability of the methodology, since 
for an exact initial guess and theoretical data, the temporal variation 
of the activated neuron state has to be null. Using the rate constants 
provided in Table 1 and the simulated [CO] or [CO2] concentration 
data, the retrieved constants do not change, thereby proving the relia-
bility of the computational method. The [CO] (or [CO2]) concentration 
should be used as the simulated data in the neural network error 
function, for its greater sensitivity with respect to the rate constants. 

Figure 1. Molar fraction percent concentration data to () [O2], () [CH4] 
and () [CO] in plug-flow calculations from ref. 8
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Simulated data with random noises was also used to analyze 
Hopfield neural network efficiency against Simplex and Levenberg-
Marquardt algorithms. The Levenberg-Marquardt method requires 
matrix inversion and applying this inverted matrix to data presenting 
errors results in large fluctuation in the results due to the matrix con-
dition. Matrix inversion is not performed for the Simplex algorithm, 
but this method is very sensitive with respect to experimental error. 
This is not the case for the HNN approach, which solves the problem 
using the dynamical character of the neurons. In this work, a study 
of the influence of error on the inversion procedure was performed 
considering these three methodologies. A comparison among the 
methods is shown in Table 2. Random noises of 3, 5, 7 and 10% were 
added to the simulated [CO] concentrations. Even at a noise level of 

10%, the algorithm was stable and, in comparison with the Simplex 
and Levenberg-Marquardt algorithms, the HNN method had smaller 
errors in the rate constant calculations and in the residual error of 
the concentration reproduction, as shown in Table 2. The maximum 
residual error of the HNN was attained when 10% random noise was 
added to the simulated data. The Simplex and Levenberg-Marquardt 
methods cannot handle errors greater than 7%, giving unphysical 
results for the concentration.  

Other tests of the algorithms entail providing different initial 
conditions to propagate the coupled differential equations. In this 
problem, initial guesses deviating by up to 30% for k1 and k2, and up 
to 300% for k3, from the correct values were used and in all neural 
network inversions, the inverted rate constants produce an error of 
about 10-6 in relation to the simulated [CO] concentrations.

For the WD kinetic differential equations, the sensitivity analysis 
involves an investigation on how changes in the concentration data 
affect the solution of the problem, the kinetic rate constants. Important 
information on the inversion process can be obtained by analyzing 
some aspects of the sensitivity curves. The region in which curves 
assume larger values will be more stable for obtaining the inverted 
rate constants and conversely, low sensitivity values correspond to a 
limited potentiality of the inversion procedure. 

Figure 3 depicts the sensitivity curves, Sij = ∂Cj/∂k, of the [CH4], 
[CO], [H2O] and [CO2] with respect to k1, k2 and k3 constants. These 
curves indicate the level of information intrinsic in the data with 
respect to each parameter. To compute the   ∂Cj/∂ki  curves, the 
slope of a nearby secant line through the points (x – h, f(x – h)) and 
(x + h, f(x + h)) was determined, i.e. the second order numerical 

differentiation concept was adopted as  .  

In this sense, a set of coupled differential equations, similar to equa-
tion 2, was solved. Notably, in the sensitivity curves with respect to 
k1 constant, the [O2] concentration is preferable compared to other 
data. However, for the k2 and k3 constants, the [CO] and [CO2] data 
has greater sensitivity and can be used with the same efficiency in 
the inversion process. 

Spark ignition engines working at 3600 rpm commonly present a 
biogas residence time of about 10-3 s.1,4,22 In this case, the rate constants 
retrieved in this work may reproduce this experimental condition and 
can be used for kinetic calculations by modifying only the initial 
chemical concentration. In this example, the initial molar fraction 
percent concentrations must be 9.04% [CH4], 18.08% [O2] and 1.84% 

Table 1. Kinetic rate constants calculated from [CO] molar fraction percent 
concentration data 8

k1 / s
-1 k2 / s

-1 k3 / s
-1 Error*

881 2464 0.6 0.0027

*Defined as Equation 4.

Figure 2. Molar fraction concentration data calculated from the inverted 
constants obtained by the neural network: () [O2], () [CH4], () [CO], 
() [H2O] and () [CO2] in plug-flow reactors

Table 2. Kinetic rate constant errors from [CO] molar fraction percent concentration data

Method Error
Random noise added in CO concentration

3% 5% 7% 10%

Neural Network

k1 / s
-1 1.2% 1.0% 4.9% 5%

k2 / s
-1 1.0% 0.96% 4.6% 5%

k3 / s
-1 14% 30% 43% 50%

Equation 4 0.0311 0.0790 0.1348 0.3905

Simplex

k1 / s
-1 2.0% 1.2% 5% Unphysical results

k2/ s
-1 2.0% 1.14% 4.6% Unphysical results

k3/ s
-1 16% 40% 44% Unphysical results

Equation 4 0.0330 0.0792 0.1349 Unphysical results

Levenberg-Marquardt

k1 / s
-1 1.2% 1.2% 4.9% Unphysical results

k2 / s
-1 1.0% 1.2% 4.6% Unphysical results

k3 / s
-1 16% 40% 44% Unphysical results

Equation 4 0.032 0.0792 0.1349 Unphysical results
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[CO2], which reproduces fuel characteristics. Since rate constants are 
the same as those shown in Table 1, the time concentration behavior 

Figure 3. Sensitivity curves of chemical concentration data with respect to 
k1, k2 and k3 constants. The symbols are the same as in Figure 2: () [O2], 
() [CH4], () [CO], () [H2O] and () [CO2]

is similar to that depicted in Figure 2. For experimental calculations, 
only the [CO] or [CO2] temporal concentration must be input to the 
network, further illustrating the applicability of the method.

The WD model yields valuable information for a future more 
elaborate analysis. For example, a more detailed model will not 
change the importance of [CO2] and [CO] concentrations, as predicted 
by the practical WD model. Also, the Hopfield neural network has 
shown to be an adequate method for retrieving rate constants from 
experimental data and not restricted to a specific model. 

CONCLUSION

Kinetic rate constants of methane combustion were obtained in 
the present study from [CO] molar fraction percent concentration 
data using an artificial neural network. The modified WD kinetic 
model was adopted for its simplicity and accuracy in [CH4], [CO] and 
[CO2] concentration predictions. Simulated data were first calculated 
considering real conditions including biogas concentration, excess 
air ratio and temperature in combustion engines. From these data 
and a well-known WD kinetic model, the Levenberg-Marquardt and 
Simplex algorithms were compared against the Hopfield network 
methodology. The efficiency of these algorithms was investigated 
using random noises in the simulated data and error in the initial 
guesses. A neural network is a superior method of retrieving rate 
constants from simulated data with random noise, as evident from 
the above considerations. 

The HNN is non-restrictive with regard to the system and can 
be used for any set of differential equations which describe a con-
secutive reaction mechanism. The algorithm was numerically stable 
in relation to different initial conditions and also  more robust than 
Levenberg-Maquardt and Simplex algorithms, common optimization 
methods used to solve this kind of problem, for all the noise levels 
tested. The numerical stability of the method allows treatment of data 
with large experimental noise and guarantees efficient convergence 
of neurons even for initial conditions that deviate from the real es-
timated parameters.  

The [CO] concentration was chosen because of its greater sensi-
tivity values with respect to the three constants. However, the [CO2] 
concentration can also be used with the same efficiency. The application 
of results obtained to spark ignition engines provides a useful prediction 
method in combustion chamber design and can be adjusted to obtain 
knock effects, activation energy and exhaust emission concentrations 
for different pressures, temperatures and excess air ratios. 
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