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The quantitative structure property relationship (QSPR) for the boiling point (Tb) of polychlorinated dibenzo-p-dioxins and 
polychlorinated dibenzofurans (PCDD/Fs) was investigated. The molecular distance-edge vector (MDEV) index was used as the 
structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear 
regression (MLR) and artificial neural network (ANN), respectively. Leave-one-out cross validation and external validation were 
carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square 
relative error (RMSRE) of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, 
the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative 
relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this 
relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F 
was predicted by the developed models. 
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INTRODUCTION 

Polychlorinated dibenzo-p-dioxins and polychlorinated diben-
zofurans (PCDD/Fs) are two series of persistent organic pollutants 
which have been detected in almost all compartments of the global 
ecosystem. These chemicals have gained much attention due to 
their toxicity, environmental persistence, tendency to accumulate 
through the food chain, and the risk to human health. PCDD/Fs are 
not produced intentionally and do not serve any useful purpose. 
They are formed as byproducts of many industrial and combustion 
processes. PCDD/Fs are semi-volatile compounds. After released 
into the atmosphere, they are likely to transfer to other environmental 
compartments such as soil, water, sediments and their resident biota 
where they can last for years before degradation.1-5

The boiling point (Tb) is an important property for studying the 
volatility of PCDD/Fs, which is correlated with the fate, transport, 
and transformation of PCDD/Fs in the environment. Boiling point 
is also a significant factor in determining physico-chemical proper-
ties of PCDD/Fs, such as vapor pressure, octanol/water partitioning 
coefficient and aqueous solubility.6-9 A quantitative study on the Tb 
is necessary to understand the environmental behavior of PCDD/Fs. 
Experimentally determining the Tb of PCDD/Fs is still a hard work 
because of the complexity of analytical methods, high cost of experi-
ments and lack of the standards.7 In addition, the measurement of 
boiling point of PCDD/Fs is hazardous due to the high vapor pressures 
involved.6 Up to now, the Tb has not been experimentally determined 
for each PCDD/F congener. 

Quantitative structure property relationship (QSPR) method is 
safe, fast, convenient and cost-effective for predicting the property 
of compounds. Therefore, it is worthwhile to develop an accurate 
and easy-to-use QSPR model for predicting the Tb of PCDD/Fs. 
Topological index is a kind of structural descriptor which is often 
used in QSPR researches. It can efficiently describe the structure of 

a molecule without detailed molecular orbital calculations. It is use-
ful because, despite its mathematical simplicity, topological index 
is able to differentiate molecules with different structures.10,11 The 
aim of this work is developing the QSPR model for the Tb of PCDD/
Fs based on the topological index. Molecular distance-edge vector 
(MDEV) index12-17 was used as the structural descriptor of PCDD/
Fs. Multivariate linear regression (MLR) and linear artificial neural 
network (L-ANN) were employed to model the quantitative relation-
ship between the Tb and MDEV index of PCDD/Fs.

EXPERIMENTAL 

Data set 

The MDEV index was calculated according to the approach pre-
sented in the followed section. The MDEV index of the 52 PCDD/
Fs, of which the Tb value is known, is listed in Table 1. The observed 
Tb value of these PCDD/Fs was taken from the references7,18 and 
listed in Table 2. 

Root mean square relative error (RMSRE) was used to indicate 
the prediction performance of the developed models. The RMSRE is 
defined as Equation 1:
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where REi is the relative error of the ith sample; n is the number 
of samples; Tb,pred and Tb,obs is the predicted Tb and observed Tb 
respectively.

MDEV index

For calculating the MDEV index of a molecule, the whole mo-
lecule is regarded as a topological graph. Each non-hydrogen atom 
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is considered as a point and each chemical bond is considered as an 
edge. The relative electronegative of each chlorine atom and benzene 
ring is defined as 1. Correspondingly, the MDEV index is defined 
as Equation 2: 
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In Equation 2, k or l is the type of atoms (k =1 or l =1 denotes 
the chlorine atom, and k =2 or l =2 denotes the benzene ring); Items 
i and j are the coding number of a chlorine atom or a benzene ring. 
Additionally, i and j belong to the kth and lth type respectively. The 
dik,jl represents the nearest relative distance between the ith and jth 
atom. For example, di1,j1 indicates the shortest relative distance be-
tween the ith and jth chlorine atom. The relative distance between the 
two adjacent non-hydrogen atoms is defined as d = 1. According to 
Equation 2, there are three elements, M11, M12 and M22, in the MDEV 
index for a PCDD/F molecule. For instance, the MDEV index of 2, 
3, 7-CDD should be calculated as follows: 
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The MDEV index of 2, 4, 6-CDF should be calculated as 
following: 
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Artificial neural network 

ANN14-17,19-29 is a multivariate calibration approach capable of 
modeling various complex functions. Its basic processing unit is the 
neuron (node). An ANN comprises a number of neurons organized 
in different layers. Linear artificial neural network,25-29 is a kind of 
neural network having no hidden layers, but an output layer with fully 
linear neurons (that is, linear neurons with linear activation function). 
It is the simplest ANN and is usually used to develop linear model. 
It is often used as a good benchmark against which to compare the 
prediction performance of other methods. Although a number of 
multivariable calibration problems cannot be solved or solved well 
by L-ANN, many others can. It is common to find that a problem 
which was perceived to be difficult and non-linear can actually be 
solved satisfactorily by using L-ANN. 

 In L-ANN, the neurons between the input and output layers 
fully connected, while the neurons in the same layer do not. Figure 
1 shows the basic architecture of the L-ANN. 

In Figure 1, xi ( i =1, 2, …, n), yj ( j =1, 2,… , m) and wij is the 
input variables, output variables and the element of connection weight 
matrix W respectively. And bj is the bias vector, which corresponds 
to the thresholds. The symbol fact( ) means the activation function. 

Table 1. MDEV index of the investigated PCDD/Fs

No. Compound M11 M12 M22

1 Dibenzo-p-Dioxin 0.0000 0.0000 0.2500

2 1-CDD 0.0000 1.0625 0.2500

3 2-CDD 0.0000 1.0400 0.2500

4 2,3-D2CDD 0.1111 2.0800 0.2500

5* 2,7-D2CDD 0.0123 2.0800 0.2500

6 2,8-D2CDD 0.0156 2.0800 0.2500

7 1,2,4-T3CDD 0.2136 3.1650 0.2500

8 1,3,7-T3CDD 0.0938 3.1425 0.2500

9 2,3,7-T3CDD 0.1391 3.1200 0.2500

10* 1,2,3,4-T4CDD 0.4983 4.2050 0.2500

11 1,2,3,7-T4CDD 0.3283 4.1825 0.2500

12 1,3,6,8-T4CDD 0.1986 4.2050 0.2500

13 1,3,7,8-T4CDD 0.1986 4.2050 0.2500

14 2,3,7,8-T4CDD 0.2782 4.1600 0.2500

15* 1,2,3,4,7-P5CDD 0.5623 5.2450 0.2500

16 1,2,3,7,8-P5CDD 0.4878 5.2225 0.2500

17 1,2,4,7,8-P5CDD 0.7375 6.2850 0.2500

18 1,2,3,4,7,8-H6CDD 0.7375 6.2850 0.2500

19 1,2,3,6,7,8-H6CDD 0.7609 6.3786 0.2500

20* 1,2,3,7,8,9-H6CDD 0.7731 6.4272 0.2500

21 1,2,4,6,7,9-H6CDD 0.6626 6.4497 0.2500

22 1,2,3,4,6,7,8-H7CDD 0.9953 7.3475 0.2500

23 O8CDD 1.2931 8.4100 0.2500

24 Dibenzo-p-furan 0.0000 0.0000 1.0000

25* 2-CDF 0.0000 1.0625 1.0000

26 3-CDF 0.0000 1.0400 1.0000

27 2,3-D2CDF 0.1111 2.1025 1.0000

28 2,8-D2CDF 0.0204 2.1250 1.0000

29 3,6-D2CDF 0.0204 2.1025 1.0000

30* 2,3,8-T3CDF 0.1471 3.1650 1.0000

31 2,4,6-T3CDF 0.1181 3.1875 1.0000

32 2,4,8-T3CDF 0.1033 3.1875 1.0000

33 1,2,3,4-T4CDF 0.4983 4.2761 1.0000

34 1,2,3,7-T4CDF 0.3364 4.2536 1.0000

35* 1,2,7,8-T4CDF 0.3064 4.2761 1.0000

36 1,3,6,8-T4CDF 0.2166 4.2761 1.0000

37 1,3,7,9-T4CDF 0.2214 4.3022 1.0000

38 2,3,7,8-T4CDF 0.2895 4.2050 1.0000

39 1,2,3,7,8-P5CDF 0.5113 5.3161 1.0000

40* 1,2,.4,7,8-P5CDF 0.4498 5.3386 1.0000

41 2,3,4,7,8-P5CDF 0.5039 5.2675 1.0000

42 1,2,3,4,6,8-H6CDF 0.7488 6.4011 1.0000

43 1,2,3,4,7,8-H6CDF 0.7657 6.3786 1.0000

44 1,2,3,6,7,8-H6CDF 0.7609 6.3786 1.0000

45* 1,2,3,7,8,9-H6CDF 0.7731 6.4272 1.0000

46 1,2,4,6,7,8-H6CDF 0.7067 6.4011 1.0000

47 1,2,4,6,8,9-H6CDF 0.6747 6.4722 1.0000

48 2,3,4,6,7,8-H6CDF 0.7535 6.3300 1.0000

49 1,2,3,4,6,7,8-H7CDF 1.0357 7.4411 1.0000

50* 1,2,3,4,6,8,9-H7CDF 1.0159 7.5122 1.0000

51 1,2,3,4,7,8,9-H7CDF 1.0553 7.4897 1.0000

52 O8CDF 1.3653 8.5522 1.0000

The ones marked by an asterisk are the PCDD/F congeners in the Group II 
(see text).
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Table 2. Result of leave-one-out cross-validation and external validation

No. Compound Observed Tb

Predicted Tb Relative error (%)

MLR ANN MLR ANN

1 Dibenzo-p-Dioxin 581.00 579.19 580.52 -0.31 -0.08

2 1-CDD 613.00 618.29 617.88 0.86 0.80

3 2-CDD 614.00 617.26 617.76 0.53 0.61

4 2,3-D2CDD 656.00 646.61 648.14 -1.43 -1.20

5* 2,7-D2CDD 672.00 653.33 654.56 -2.78 -2.60

6 2,8-D2CDD 680.00 650.94 652.79 -4.27 -4.00

7 1,2,4-T3CDD 673.00 680.39 679.16 1.10 0.92

8 1,3,7-T3CDD 696.00 685.68 691.60 -1.48 -0.63

9 2,3,7-T3CDD 681.55 682.90 682.42 0.20 0.13

10* 1,2,3,4-T4CDD 717.00 700.02 701.80 -2.37 -2.12

11 1,2,3,7-T4CDD 711.45 709.10 710.38 -0.33 -0.15

12 1,3,6,8-T4CDD 711.45 719.01 715.96 1.06 0.63

13 1,3,7,8-T4CDD 711.45 719.01 716.92 1.06 0.77

14 2,3,7,8-T4CDD 744.00 709.13 711.10 -4.69 -4.42

15* 1,2,3,4,7-P5CDD 737.85 733.28 734.26 -0.62 -0.49

16 1,2,3,7,8-P5CDD 737.85 736.93 737.50 -0.12 -0.05

17 1,2,4,7,8-P5CDD 737.85 761.68 761.10 3.23 3.15

18 1,2,3,4,7,8-H6CDD 760.85 759.81 761.66 -0.14 0.11

19 1,2,3,6,7,8-H6CDD 760.85 761.91 760.73 0.14 -0.02

20* 1,2,3,7,8,9-H6CDD 760.85 762.82 763.70 0.26 0.37

21 1,2,4,6,7,9-H6CDD 760.85 771.25 770.13 1.37 1.22

22 1,2,3,4,6,7,8-H7CDD 780.35 782.57 780.46 0.28 0.01

23 O8CDD 783.15 807.82 804.34 3.15 2.71

24 Dibenzo-p-furan 558.20 585.30 584.74 4.85 4.75

25* 2-CDF 611.35 616.06 617.76 0.77 1.05

26 3-CDF 611.35 615.82 613.78 0.73 0.40

27 2,3-D2CDF 648.15 646.41 647.07 -0.27 -0.17

28 2,8-D2CDF 648.15 653.24 652.90 0.79 0.73

29 3,6-D2CDF 655.00 651.79 652.98 -0.49 -0.31

30* 2,3,8-T3CDF 681.55 682.38 682.56 0.12 0.15

31 2,4,6-T3CDF 681.55 685.22 684.98 0.54 0.50

32 2,4,8-T3CDF 690.00 685.47 687.62 -0.66 -0.34

33 1,2,3,4-T4CDF 711.45 700.24 701.38 -1.58 -1.42

34 1,2,3,7-T4CDF 711.45 709.79 710.88 -0.23 -0.08

35* 1,2,7,8-T4CDF 711.45 712.50 712.36 0.15 0.13

36 1,3,6,8-T4CDF 711.45 718.65 718.30 1.01 0.96

37 1,3,7,9-T4CDF 711.45 719.36 719.34 1.11 1.11

38 2,3,7,8-T4CDF 711.45 710.94 711.42 -0.07 0.00

39 1,2,3,7,8-P5CDF 737.85 737.28 737.58 -0.08 -0.04

40* 1,2,.4,7,8-P5CDF 737.85 741.83 741.34 0.54 0.47

41 2,3,4,7,8-P5CDF 737.85 735.92 735.72 -0.26 -0.29

42 1,2,3,4,6,8-H6CDF 760.85 761.81 762.32 0.13 0.19

43 1,2,3,4,7,8-H6CDF 760.85 759.87 760.38 -0.13 -0.06

44 1,2,3,6,7,8-H6CDF 760.85 760.18 760.63 -0.09 -0.03

45* 1,2,3,7,8,9-H6CDF 760.85 761.22 761.49 0.05 0.08

46 1,2,4,6,7,8-H6CDF 760.85 764.52 764.90 0.48 0.53

47 1,2,4,6,8,9-H6CDF 760.85 769.38 769.26 1.12 1.11

48 2,3,4,6,7,8-H6CDF 760.85 758.81 759.86 -0.27 -0.13

49 1,2,3,4,6,7,8-H7CDF 780.35 781.75 782.58 0.18 0.29

50* 1,2,3,4,6,8,9-H7CDF 780.35 785.34 785.83 0.64 0.70

51 1,2,3,4,7,8,9-H7CDF 780.35 782.38 784.28 0.26 0.50

52 O8CDF 835.00 791.11 792.51 -5.26 -5.09

The ones marked by an asterisk are the PCDD/F congeners in the Group II (see text).
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Before the training procedure, input and output variables are nor-
malized. When the network is executed, it effectively multiplies the 
input variables by the weight matrix W, and then adds the bias vector 
bj. Hence, the post synaptic potential (PSP) function of the neuron 
should be described as Equation 5:

	 j i ij j

1

n

i

v x w b

=
= +∑ .	  (5)

Generally, the activation function used in L-ANN is a linear 
function:

	 yj=vj	 (6)

Because there are no non-linear functions and hidden neurons in 
the network, L-ANN is good at solving linear problems. Actually, 
training a linear network means finding the optimal value of the 
weight matrix W to minimize the root mean squared error of the 
calibration set. In order to reach this goal, the known samples are 
always divided into two subsets: a training set and a verification set. 
The network is trained by using the training set, and is tested after 
each epoch by using the verification set. The training is terminated 
once deterioration in the root mean squared error of verification set 
is occurred. The over-fitting and over-learning are avoided in this 
way. Although the verification set is used to find the best network 
setting, actually, training algorithms do not use the verification set 
to adjust network weights. Standard pseudo-inverse linear optimi-
zation algorithm26 is usually used to train the network. This algo-
rithm uses the singular value decomposition technique to calculate 
the pseudo-inverse of the matrix needed to set the weights in the 
linear output layer, so as to find the least mean squared solution. 
Essentially, it guarantees to find the optimal setting for the weight 
matrix in a linear layer. 

The main difference between MLR and L-ANN is the optimi-
zation algorithm. In MLR, the goal of least square algorithm is to 
find the minimal sum of squared residuals of the training set. As for 
L-ANN, the goal of training algorithm is to minimize the root mean 
squared error of verification set.26 Thus, the prediction ability of 
L-ANN is usually better than that of MLR.

Leave-one-out cross-validation

Leave-one-out cross-validation15-17,30 is a commonly used al-
gorithm for estimating the predictive performance and robustness 
of a multivariable calibration model. Usually, practical calibration 
experiments have to be based on a limited set of available samples. 

The idea behind the leave-one-out cross validation algorithm is to 
predict the property value of each sample in turn with the calibration 
model which is developed from the other samples. When applying the 
algorithm to a dataset including n samples, the calibration modeling 
is performed n times, each time using (n-1) samples for modeling 
and one sample for testing. Hence, the procedure of leave-one-out 
cross validation can be divided into n segments. In each segment i 
(i = 1, … , n), there are three steps: (1) taking sample i out as tempo-
rary ‘test set’, which is not used to establish the calibration model, 
(2) developing a calibration model with the rest (n-1) samples, (3) 
testing the established model with sample i, computing and storing 
the prediction error of the sample. The advantage of leave-one-out 
cross validation over random sub-sampling is that each sample is used 
for validation exactly once. Although leave-one-out cross-validation 
is an effective and commonly used method, there is still the risk of 
overestimating the predictive performance and robustness of a model 
when using this method. It is common to use two or more validation 
methods for estimating a calibration model. The risk of overestimation 
can be effectively lessened in this way. 

External validation

External validation17,25,30 is an algorithm which has been often 
used to assess the predictive ability of a calibration model. When 
using this algorithm, working dataset is split into two subsets: a 
calibration set, which is used to develop the calibration model, and 
a test set, which is used to assess the predictive ability of the devel-
oped model. Obviously, test set is designed to give an independent 
assessment of the predictive performance of the developed model. It 
is not used in developing the model at all, and hence is independent 
of the calibration set. Generally, the calibration set and test set are 
randomly selected from the working dataset. 

Software 

All the calculation was done by using subroutines developed in 
MATLAB (Ver.7.0). The computation was performed on a personal 
computer equipped with an i5-2450M processor. 

RESULTS AND DISCUSSION

The MDEV index of PCDD/Fs was calculated. The result is 
listed in Table 1 and Table 3. Clearly, the MDEV index of different 
PCDD/F molecules is quite different. It is demonstrated that MDEV 
index can describe the structural differences among these compounds. 
It is reasonable to use the MDEV index as the structural descriptor 
to develop the QSPR model of PCDD/Fs. 

MLR model 

Generally, a simple model should always be chosen in preference 
to a complex model, if the latter does not fit the data better. Thus, 
we firstly investigated whether MLR is feasible to model the quan-
titative relationship between the MDEV index and Tb of PCDD/Fs. 
The MDEV index was used as the independent variable and the Tb 
was used as the dependent variable to develop the regression model. 
In order to assess the predictive ability of the developed model, two 
validation methods, leave-one-out cross validation and external 
validation, were conducted. The 52 samples shown in Table 1 were 
randomly split into two groups: Group I, which comprises 42 samples, 
and Group II, which comprises 10 samples.

Leave-one-out cross validation was applied to Group I. The 
result is presented in Table 2. As shown in Table 2, the predicted 

Figure 1. The architecture of linear artificial neural network
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Tb is in consistent with the observed Tb. For the 42 compounds, 
the RMSRE of prediction is 1.77. Moreover, the predicted Tb were 
plotted versus the observed Tb (as shown in Figure 2a) and the plot 
shows a linear relationship (y = 0.9904 x + 7.9881 with R = 0.9819) 
between the predicted and observed Tb. Subsequently, external 
validation was carried out to further assess the predictive ability of 
the MLR model. In this procedure, the model was established by 
using all the 42 compounds in Group I as the calibration set. The 
obtained regression equation is: Tb = -60.50 M11 + 35.78 M12 – 2.14 
M22 + 580.20. The R2, Standard error of the estimate (S.E.) and F 
value of the regression model is 0.9672, 10.426 and 368.8 respec-
tively. The value of F [F < F0.01 (N, N-3)] indicates that MDEV 
index is significant to Tb. It is reasonable to develop a regression 
model between the MDEV index and Tb. The S.E. is significantly 
smaller than the sample mean of Tb. It is shown that the obtained 
regression equation fits the data well. Then, the Tb of the samples in 
Group II was predicted by using the obtained regression equation. 
The prediction result is shown in Table2. As shown in the table, the 
predicted Tb is in good accordance with the observed Tb. For the 10 
compounds, the prediction RMSRE is 1.23. The plot of predicted 
Tb versus observed Tb is shown in Figure 2a, which shows a linear 
relationship (y = 0.9957 x + 0.9347 with R = 0.9864) between the 
predicted and observed Tb.

The result of the leave-one-out cross validation and external 
validation demonstrates that the MDEV index of the investigated 

PCDD/Fs is quantitatively related to their Tb. In previous researches, 
MDEV index has been just used as the structural descriptor to de-
velop the QSPR model of the compounds which include the same 
basic structure, such as the boiling points model of alcohols,13 the 
gas/particle partition coefficient model of PCBs,17 etc.14-16 The basic 
structure of polychlorinated dibenzo-p-dioxins is different from the 
basic structure of polychlorinated dibenzofurans. Thus, it is shown 
that MDEV index can be used as the structural descriptor to establish 
the QSPR model for the compounds with different basic structures. In 
addition, the validation result demonstrates that MLR is practicable 
for modeling the quantitative relationship between the MDEV index 
and Tb of PCDD/Fs. Obviously, a linear QSPR model based on MDEV 
index is able to predict the Tb of PCDD/Fs. Thus, an MLR model was 
developed by using all the 52 PCDD/Fs listed in Table 1. The obtai-
ned regression equation is: Tb = –59.68 M11 + 35.49 M12 – 4.99 M22 
+ 583.46 The R2, S.E. and F value of the regression model is 0.9679, 
10.81 and 477.1 respectively. The Tb of the other 53 PCDDs and 107 
PCDFs was then predicted by using this regression equation. The 
result is shown in Table 3. The Tb value of these PCDD/Fs has not 
been experimentally determined as yet. Thus, our prediction result 
can be used as an estimation Tb of these compounds.

L-ANN model

L-ANN is another commonly used linear calibration method in 
QSPR studies. Thus, we investigated whether a better model can 
be established by using L-ANN. A 3-1 L-ANN (i.e. 3 input varia-
bles and 1 output variable in the network) was used to develop the 
calibration model. The MDEV index and Tb was used as input and 
output variables respectively. In each run of ANN, ten samples were 
randomly selected and used as the verification set. Leave-one-out 
cross validation and external validation were carried out to assess 
the prediction performance of the developed model. Group I was 
still used to complete the leave-one-out cross validation. The result 
of leave-one-out cross validation is listed in Table 2. As shown in 
the table, the predicted Tb is in good agreement with the observed 
Tb. For the 42 compounds, the RMSRE of prediction is 1.65. The 
predicted Tb were plotted versus the observed Tb (shown in Figure 
2b) and the plot shows a linear relationship (y = 0.9893 x + 9.0119 
with R= 0.9847) between the predicted and observed Tb. Then, all 
the 52 samples were used to complete the external validation. An 
L-ANN model was developed by using the 42 samples of Group 
I as the calibration set. In the training procedure, verification set 
comprises ten randomly selected samples. The Tb of the samples in 
Group II was predicted by using the obtained network. The result 
of external validation is also shown in Table 2. Obviously, the pre-
dicted Tb is also in good agreement with the observed Tb. For the 
ten samples, the prediction RMSRE is 1.16. The plot of predicted 
Tb versus observed Tb (shown in Figure 2b) shows that there is a 
linear relationship (y = 0.9966x + 0.9747 with R=0.9875) between 
the predicted and observed Tb. Obviously, the prediction accuracy 
of the L-ANN model is slightly higher than that of the MLR model. 
Using L-ANN is slightly better than MLR in modeling the quan-
titative relationship between the MDEV index and Tb of PCDD/
Fs. It is demonstrated that L-ANN is a practicable and promising 
method for predicting the Tb of PCDD/Fs. Thus, a 3-1 L-ANN 
model was developed by using all the 52 PCDD/Fs listed in Table 
1. In the training procedure, 13 samples were randomly selected 
and used as the verification set. The Tb of the other 53 PCDDs and 
107 PCDFs was then predicted by using this model. The result is 
also listed in Table 3. Certainly, this prediction result can also be 
used as an estimation of the Tb of these compounds and should be 
slightly better than the prediction result of MLR model.

Figure 2. Observed Tb versus the predicted Tb of the: (a) MLR model; (b) 
L-ANN model
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Table 3. Predicted Tb of PCDD/Fs

No. Compound M11 M12 M22

Predicted Tb (K)

MLR L-ANN

1 1,2-D2CDD 0.1111 2.1025 0.25 640.94 580.70

2 1,3-D2CDD 0.0625 2.1025 0.25 643.84 619.08

3 1,4-D2CDD 0.0400 2.1250 0.25 645.87 618.27

4 1,6-D2CDD 0.0204 2.1250 0.25 647.04 648.84

5 1,7-D2CDD 0.0156 2.1025 0.25 646.64 655.04

6 1,8-D2CDD 0.0204 2.1025 0.25 646.36 654.83

7 1,9-D2CDD 0.0278 2.1250 0.25 646.60 681.58

8 1,2,3-T3CDD 0.2847 3.1425 0.25 662.30 688.44

9 1,2,6-T3CDD 0.1471 3.1650 0.25 671.19 684.58

10 1,2,7-T3CDD 0.1391 3.1425 0.25 670.99 701.32

11 1,2,8-T3CDD 0.1471 3.1425 0.25 670.51 710.91

12 1,2,9-T3CDD 0.1593 3.1650 0.25 670.47 720.17

13 1,3,6-T3CDD 0.1033 3.1650 0.25 673.81 720.17

14 1,3,8-T3CDD 0.0953 3.1425 0.25 673.60 713.33

15 1,3,9-T3CDD 0.1059 3.1650 0.25 673.65 734.79

16 1,4,6-T3CDD 0.0882 3.1875 0.25 675.40 738.64

17 1,4,7-T3CDD 0.0760 3.1650 0.25 675.44 761.32

18 2,3,6-T3CDD 0.1471 3.1425 0.25 670.51 761.32

19 1,2,3,6-T4CDD 0.3412 4.2050 0.25 691.32 763.27

20 1,2,3,8-T4CDD 0.3331 4.1825 0.25 691.12 764.26

21 1,2,3,9-T4CDD 0.3485 4.2050 0.25 690.89 771.98

22 1,2,4,6-T4CDD 0.2774 4.2275 0.25 695.82 783.51

23 1,2,4,7-T4CDD 0.2620 4.2050 0.25 696.05 803.19

24 1,2,4,8-T4CDD 0.2653 4.2050 0.25 695.85 576.54

25 1,2,4,9-T4CDD 0.2822 4.2275 0.25 695.53 614.90

26 1,2,6,7-T4CDD 0.2862 4.2050 0.25 694.61 614.09

27 1,2,6,8-T4CDD 0.2457 4.2050 0.25 697.02 645.50

28 1,2,6,9-T4CDD 0.2353 4.2275 0.25 698.33 652.00

29 1,2,7,8-T4CDD 0.2829 4.1825 0.25 694.12 651.19

30 1,2,7,9-T4CDD 0.2498 4.2050 0.25 696.78 681.58

31 1,2,8,9-T4CDD 0.3064 4.2050 0.25 693.40 684.22

32 1,3,6,9-T4CDD 0.1867 4.2275 0.25 701.23 685.13

33 1,3,7,9-T4CDD 0.1997 4.2050 0.25 699.77 699.64

34 1,4,6,9-T4CDD 0.1764 4.2500 0.25 702.53 709.01

35 1,4,7,8-T4CDD 0.2232 4.2050 0.25 698.37 711.69

36 1,2,3,4,6-P5CDD 0.5825 5.2675 0.25 709.32 717.36

37 1,2,3,6,7-P5CDD 0.4959 5.2450 0.25 713.81 717.99

38 1,2,3,6,8-P5CDD 0.4520 5.2450 0.25 716.43 710.19

39 1,2,3,6,9-P5CDD 0.4450 5.2675 0.25 717.53 736.39

40 1,2,3,7,9-P5CDD 0.4546 5.2450 0.25 716.27 741.07

41 1,2,3,8,9-P5CDD 0.5080 5.2450 0.25 713.08 735.10

42 1,2,4,6,7-P5CDD 0.4369 5.2675 0.25 718.01 760.64

43 1,2,4,6,8-P5CDD 0.3916 5.2675 0.25 720.72 758.77

44 1,2,4,6,9-P5CDD 0.3860 5.2900 0.25 721.74 759.08

45 1,2,4,7,9-P5CDD 0.3931 5.2675 0.25 720.63 760.07

46 1,2,4,8,9-P5CDD 0.4450 5.2675 0.25 717.53 763.27

47 1,2,3,4,6,7-H6CDD 0.7577 6.3075 0.25 730.58 767.84

48 1,2,3,4,6,8-H6CDD 0.7091 6.3075 0.25 733.48 757.77

49 1,2,3,4,6,9-H6CDD 0.7068 6.3300 0.25 734.31 780.19

50 1,2,3,6,7,9-H6CDD 0.6622 6.3075 0.25 736.28 783.97

51 1,2,3,6,8,9-H6CDD 0.6670 6.3075 0.25 736.00 780.70

52 1,2,4,6,8,9-H6CDD 0.6113 6.3300 0.25 740.01 799.58

No. Compound M11 M12 M22

Predicted Tb (K)

MLR L-ANN

53 1,2,3,4,6,7,9-H7CDD 0.9444 7.3700 0.25 751.84 649.66

54 1-CDF 0.0000 1.1111 1 617.34 652.72

55 4-CDF 0.0000 1.0625 1 615.86 654.93

56 1,2-D2CDF 0.1111 2.1736 1 643.11 656.17

57 1,3-D2CDF 0.0625 2.1511 1 645.33 655.67

58 1,4-D2CDF 0.0400 2.1736 1 647.35 655.36

59 1,6-D2CDF 0.0278 2.1736 1 648.08 655.69

60 1,7-D2CDF 0.0204 2.1511 1 647.84 676.32

61 1,8-D2CDF 0.0278 2.1736 1 648.08 685.78

62 1,9-D2CDF 0.0400 2.2222 1 648.84 685.44

63 2,4-D2CDF 0.0625 2.1250 1 644.53 684.94

64 2,6-D2CDF 0.0278 2.1250 1 646.60 684.98

65 2,7-D2CDF 0.0156 2.1025 1 646.64 688.51

66 3,4-D2CDF 0.1111 2.1025 1 640.94 688.20

67 3,7-D2CDF 0.0156 2.0800 1 645.96 688.33

68 4,6-D2CDF 0.0278 2.1250 1 646.60 690.27

69 1,2,3-T3CDF 0.2847 3.2136 1 664.46 690.23

70 1,2,4-T3CDF 0.2136 3.2361 1 669.39 684.94

71 1,2,6-T3CDF 0.1667 3.2361 1 672.19 711.11

72 1,2,7-T3CDF 0.1471 3.2136 1 672.68 710.81

73 1,2,8-T3CDF 0.1593 3.2361 1 672.63 710.67

74 1,2,9-T3CDF 0.1789 3.2847 1 672.95 715.93

75 1,3,4-T3CDF 0.2136 3.2136 1 668.71 716.10

76 1,3,6-T3CDF 0.1107 3.2136 1 674.85 715.88

77 1,3,7-T3CDF 0.0985 3.1911 1 674.89 715.66

78 1,3,8-T3CDF 0.1059 3.2136 1 675.13 714.58

79 1,3,9-T3CDF 0.1229 3.2622 1 675.60 717.11

80 1,4,6-T3CDF 0.0956 3.2361 1 676.44 718.60

81 1,4,7-T3CDF 0.0808 3.2136 1 676.63 713.98

82 1,4,8-T3CDF 0.0882 3.2361 1 676.88 716.86

83 1,4,9-T3CDF 0.1078 3.2847 1 677.19 713.30

84 1,6,7-T3CDF 0.1593 3.2136 1 671.95 721.64

85 1,6,8-T3CDF 0.1181 3.2361 1 675.09 720.01

86 1,7,8-T3CDF 0.1593 3.2136 1 671.95 723.11

87 2,3,4-T3CDF 0.2847 3.1650 1 662.98 718.53

88 2,3,6-T3CDF 0.1593 3.1650 1 670.47 734.33

89 2,3,7-T3CDF 0.1424 3.1425 1 670.79 738.94

90 2,4,7-T3CDF 0.0985 3.1650 1 674.09 741.70

91 2,6,7-T3CDF 0.1545 3.1650 1 670.75 742.97

92 3,4,6-T3CDF 0.1593 3.1650 1 670.47 741.56

93 3,4,7-T3CDF 0.1471 3.1425 1 670.51 738.21

94 1,2,3,6-T4CDF 0.3607 4.2761 1 692.33 743.47

95 1,2,3,8-T4CDF 0.3485 4.2761 1 693.06 746.32

96 1,2,3,9-T4CDF 0.3729 4.3247 1 693.08 747.49

97 1,2,4,6-T4CDF 0.2969 4.2986 1 696.82 746.24

98 1,2,4,7-T4CDF 0.2701 4.2761 1 697.74 742.97

99 1,2,4,8-T4CDF 0.2822 4.2986 1 697.70 760.88

100 1,2,4,9-T4CDF 0.3092 4.3472 1 697.57 763.94

101 1,2,6,7-T4CDF 0.3138 4.2761 1 695.13 764.89

102 1,2,6,8-T4CDF 0.2774 4.2986 1 697.99 766.88

103 1,2,6,9-T4CDF 0.2744 4.3472 1 699.65 766.58

104 1,2,7,9-T4CDF 0.2774 4.3247 1 698.78 770.88
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Table 3. Predicted Tb of PCDD/Fs (cont.)

No. Compound M11 M12 M22

Predicted Tb (K)

MLR L-ANN

105 1,2,8,9-T4CDF 0.3382 4.3472 1 695.84 787.51

106 1,3,4,6-T4CDF 0.2896 4.2761 1 696.57 616.67

107 1,3,4,7-T4CDF 0.2701 4.2536 1 697.05 614.90

108 1,3,4,8-T4CDF 0.2774 4.2761 1 697.30 648.04

109 1,3,4,9-T4CDF 0.3018 4.3247 1 697.33 650.28

110 1,3,6,7-T4CDF 0.2578 4.2536 1 697.78 652.51

111 1,3,6,9-T4CDF 0.2111 4.3247 1 702.74 653.28

112 1,3,7,8-T4CDF 0.2530 4.2536 1 698.07 652.92

113 1,4,6,7-T4CDF 0.2475 4.2761 1 699.08 653.28

114 1,4,6,8-T4CDF 0.2062 4.2986 1 702.23 654.28

115 1,4,6,9-T4CDF 0.2033 4.3472 1 703.89 649.34

116 1,4,7,8-T4CDF 0.2401 4.2761 1 699.53 651.53

117 1,6,7,8-T4CDF 0.3607 4.2761 1 692.33 651.49

118 2,3,4,6-T4CDF 0.3607 4.2275 1 690.85 645.50

119 2,3,4,7-T4CDF 0.3364 4.2050 1 691.61 650.67

120 2,3,4,8-T4CDF 0.3412 4.2275 1 692.01 651.53

121 2,3,6,7-T4CDF 0.3017 4.2050 1 693.68 674.69

122 2,3,6,8-T4CDF 0.2578 4.2275 1 696.99 679.98

123 2,4,6,7-T4CDF 0.2652 4.2275 1 696.55 682.91

124 2,4,6,8-T4CDF 0.2214 4.2500 1 699.85 683.34

125 3,4,6,7-T4CDF 0.3064 4.2050 1 693.40 683.38

126 1,2,3,4,6-P5CDF 0.6021 5.3386 1 710.32 683.91

127 1,2,3,4,7-P5CDF 0.5704 5.3161 1 711.53 679.17

128 1,2,3,4,8-P5CDF 0.5826 5.3386 1 711.49 685.63

129 1,2,3,4,9-P5CDF 0.6143 5.3872 1 711.08 685.58

130 1,2,3,6,7-P5CDF 0.5235 5.3161 1 714.33 685.93

131 1,2,3,6,8-P5CDF 0.4870 5.3386 1 717.19 686.61

132 1,2,3,6,9-P5CDF 0.4889 5.3872 1 718.56 687.40

No. Compound M11 M12 M22

Predicted Tb (K)

MLR L-ANN

133 1,2,3,7,9-P5CDF 0.4871 5.3647 1 717.98 687.51

134 1,2,3,8,9-P5CDF 0.5478 5.3872 1 715.05 687.84

135 1,2,4,6,7-P5CDF 0.4645 5.3386 1 718.53 688.38

136 1,2,4,6,8-P5CDF 0.4280 5.3611 1 721.40 682.58

137 1,2,4,6,9-P5CDF 0.4325 5.4097 1 722.61 685.99

138 1,2,4,7,9-P5CDF 0.4281 5.3872 1 722.19 682.58

139 1,2,4,8,9 -P5CDF 0.4889 5.4097 1 719.25 672.93

140 1,2,6,7,8-P5CDF 0.5282 5.3386 1 714.73 680.82

141 1,2,6,7,9-P5CDF 0.4767 5.3872 1 719.29 681.08

142 1,3,4,6,7-P5CDF 0.4571 5.3161 1 718.29 684.62

143 1,3,4,6,8-P5CDF 0.4159 5.3386 1 721.43 681.12

144 1,3,4,6,9-P5CDF 0.4178 5.3872 1 722.80 680.82

145 1,3,4,7,8-P5CDF 0.4450 5.3161 1 719.01 680.78

146 1,3,4,7,9-P5CDF 0.4207 5.3647 1 721.94 708.28

147 1,3,6,7,8-P5CDF 0.4748 5.3161 1 717.23 709.06

148 1,4,6,7,8-P5CDF 0.5282 5.3386 1 714.73 709.29

149 2,3,4,6,7-P5CDF 0.5200 5.2675 1 712.85 713.12

150 2,3,4,6,8-P5CDF 0.4800 5.2900 1 716.15 713.97

151 1,2,3,4,6,7-H6CDF 0.7900 6.3786 1 731.10 714.04

152 1,2,3,4,6,9-H6CDF 0.7600 6.4497 1 734.90 714.11

153 1,2,3,4,7,9-H6CDF 0.7500 6.4272 1 734.76 711.23

154 1,2,3,4,8,9-H6CDF 0.8100 6.4497 1 731.82 714.33

155 1,2,3,6,7,9-H6CDF 0.7100 6.4272 1 736.83 716.28

156 1,2,3,6,8,9-H6CDF 0.7300 6.4497 1 736.79 715.28

157 1,2,4,6,7,9-H6CDF 0.6600 6.4497 1 740.59 712.27

158 1,3,4,6,7,8-H6CDF 0.6945 6.3786 1 736.52 712.74

159 1,3,4,6,7,9-H6CDF 0.6478 6.4272 1 740.79 713.17

160 1,2,3,4,6,7,9-H7CDF 1.0037 7.4897 1 751.95 713.52

CONCLUSIONS

The QSPR model for predicting the boiling point of PCDD/
Fs was investigated. The MDEV index was used as structural 
descriptor of PCDD/Fs. Both MLR model and L-ANN model 
were developed and investigated. The predictive ability of the 
developed models was assessed by leave-one-out cross validation 
and external validation. The validation result indicates that both 
MLR model and L-ANN model are practicable for predicting the 
Tb of PCDD/Fs. It is demonstrated that MDEV index of PCDD/Fs 
is quantitatively related to the Tb of PCDD/Fs. MDEV index can 
be calculated easily. It is easy and convenient to develop the QSPR 
model for the Tb of PCDD/Fs based on the MDEV index. In addition, 
the validation result demonstrates that both MLR and L-ANN are 
practicable for modeling the quantitative relationship between the 
MDEV index and Tb of PCDD/Fs. It is reasonable to predict the Tb 
of PCDD/Fs by using the established models. Thus, the Tb of each 
PCDD/F congener was predicted by using the developed models. 
The predicted Tb can be used as an estimation of the boiling point  
of PCDD/Fs.
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