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A mathematical model is proposed to investigate the kinetics and equilibrium of homogeneous elementary first- and second-order 
chemical reactions. The dynamics is defined by the Monte Carlo method (MCM), with the Metropolis update, and the Ehrenfest urn 
model (EUM). MCM is an important step that accesses the kinetic and thermodynamic properties of the system, while the EUM 
defines the orders of the reactions studied in this work. The main parameters, such as temperature, the activation energy and the steric 
factor, were taken into account in the calculation of the transition probabilities between the reactants and products. It is thus possible 
to reproduce the kinetic profiles of the reactions and to evaluate the influence of temperature and the steric factor. Furthermore, it is 
possible to simulate the behaviour of the system by modifying the activation energy barrier, thus simulating a catalytic process. The 
effect of the addition of molecules was also investigated, with the system returning to a thermodynamic equilibrium condition after 
partial consumption of the added reactant, as predicted by Le Chatelier’s principle. All the simulated data are in agreement with the 
theoretical results present in physical chemistry textbooks.
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INTRODUCTION

Since John Dewy recommended the inclusion of inquiry in the 
K-12 science curriculum in 1910, science education has undergone 
several modifications and adaptations around the world.1,2 Inquiry, 
from a teaching perspective, can be viewed as teaching where the 
students are actively, instead of passively, engaged in their learning 
process, with the teacher serving as a mediator. In this active learning 
environment, the activities and discussion are focused on the students, 
with more emphasis given on process skills, investigative activities 
of science questions, public communications and working as a 
member of a team. The practical activities thus represent a natural 
and important teaching strategy, particularly the use of computer 
simulations.3 Since the advent of computers, numerous efforts have 
been made to employ computers in the classroom. Teaching modules 
in chemical kinetics have used stochastic methods, such as the Monte 
Carlo method (MCM), to study chemical reactions.4–17

Stochastic methods offer a number of advantages. First, due to 
the lack of infrastructure at some school laboratories and universities, 
certain important topics in physical chemistry are either neglected 
or only treated theoretically. Another advantage of such numerical 
approaches is that it is not always possible to achieve the necessary 
high pressure and temperature regimes of some chemical reactions in 
the laboratory. Also, from a theoretical point of view, it is not always 
possible to analytically solve the system of ordinary differential 
equations that describe a chemical reaction due to its complexity.12,13 

A simple stochastic approach based on MCM and the Ehrenfest 
urn model (EUM)12 is proposed here to overcome some of the 
difficulties associated with teaching chemistry by simulating the 
chemical kinetics of elementary reactions. This hybrid model takes 
into account the main kinetics parameters, such as temperature and 
activation energy, thus making it is possible to obtain features in 
chemical kinetics.

EXPERIMENTAL

Mathematical model

The standard MCM,18 defined via the Metropolis update, is 
applied. Here the transition probability functions depend on the 
energy barrier (activation energy), temperature and steric factor.11,12,19 
Thus, when considering the elementary reaction between two species 
A ⇄ B, the transition probabilities, Pf and Pr, for the forward and 
reverse reactions are defined as follows

	 	 (1)

	 	 (2)

where β = (kBT)–1, kB is the Boltzmann constant, T is the temperature, 
pf

s and pr
s are the steric factors for the forward and the reverse reaction, 

respectively, and Ea and Eb are the activation energies for the forward 
and the reverse steps, respectively. For an irreversible reaction, 
Equation (2) is not taken into account, as Pr = 0, which is equivalent 
to assuming EB → ∞. This part of the present approach, defined by 
Equations (1) and (2), is quite similar to that used in the hydrogen 
atom ionisation problem.20,21 Since the transition probabilities are 
well known, the important features that are intimately related to 
the rate law of elementary reactions can be determined, namely the 
Arrhenius’ Law of kinetics. 

The dimensionless temperature-related variable, θ ≡ kBT/Ea, and 
dimensionless energy-related variable, Eba ≡ Eb /Ea, are defined to 
simplify the calculations. The computational simulations carried out 
in this work are thus based on the thermal energy kBT and Eb, both 
of which are measured with respect to Ea. 

Equations (1) and (2) define one part of the chosen applied 
dynamics of the elementary chemical reaction. The other part of the 
dynamics is defined via EUM as follows.10,22,23 Consider a model 
comprised of two urns, one for type-A molecules and the other for 
type-B molecules, which contain M boxes labelled i = 1,2,…,M. The 
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urns contain NA and NB molecules corresponding to the type-A and 
type-B molecules, respectively. If a given box Ai is occupied with a 
type-A molecule, the corresponding Bi box will be empty and vice 
versa. In addition to the definition given in the literature,10–12 the 
relationship between the total number of molecules is defined here 
as N ≡ NA + NB, and the total number of available boxes M is limited 
by N, such that N ≤ M. The effects of the number of molecules on 
the model can be investigated when N = NA + NB < M, for instance, 
by adding molecules during the simulation, with the case where 
N = M corresponding to the maximum capacity (full-filled case) of 
the containers (urns). 

The following steps were carried out to complete the dynamics 
of a first-order reversible reaction:

(I) Try to select a type-A molecule by choosing a uniform random 
number integer i ∈ [1,M] and check if there is such a molecule in the 
box Ai. If the choice fails, continue to step (II). If the choice succeeds, 
a uniform random number z ∈ [0,1] is generated and compared to Pf 
from Equation (1). If z ≤ Pf, the molecule indexed as i is eliminated 
from box Ai, and a type-B molecule is created in box Bi, which 
indicates that the reaction occurred, transforming A into B. If z > Pf, 
the type-A molecule remains in its original form.

(II) Try to select a type-B molecule, following the same approach 
employed for the type-A molecule in step (I). If the choice fails, the 
step ends. If the choice succeeds, a uniform random number z ∈ [0,1] 
is generated and compared to Pr from Equation (2). If z ≤ Pr, the 
reaction occurs and B is transformed into A. If z > Pr, the type-B 
molecule remains in its original form.

By running steps (I) and (II) M times, one Monte Carlo step 
(MCS) is defined. If the reaction is irreversible, step (II) is not 
performed.

For an irreversible second-order reaction, A + B → C, only 
Equation (1) is followed, thus representing the transition probability 
of the type-A and type-B molecules to overcome the energy barrier, 
E ≡ Ea, and then transform A and B into product C. The following 
step is performed in this case.

(III) Try to select two molecules, one of each type (A and B). If 
at least one of them fails to be chosen during the selection, the step 
ends. If the choices succeed, a uniform random number z ∈ [0,1] is 
generated and compared to Pf from Equation (1). If z ≤ Pf the reaction 
occurs and A reacts with B to form C. If z > Pf, the A and B molecules 
remain unreacted. As previously mentioned above, by performing 
step (III) M times, one MCS is completed. 

It should be noted that the simulation started with given molar 
fractions of the type-A and type-B molecules, χA and χB, respectively. 
For an arbitrary choice of θ, the dynamics of the reaction and the 
influence of model parameters can be studied. Unless otherwise 
stated, all simulations will be performed with N = 106 molecules. 
The influence of N will be treated at the end. The time is measured 
in Monte Carlo Steps (MCSs).

In the next section, the irreversible reaction, A → B, will be 
studied, followed by the reversible A ⇆ Breaction and finally the 
second-order A + B → C transformation.

RESULTS AND DISCUSSION

Irreversible reaction

The irreversible first-order reaction A → B, will be studied 
first. Figure 1 shows χA and χB as a function of time, in MCSs. 
The simulation started with all type-A molecules, where  = 1.0,  

 = 0,0, θ = 1.0 and steric factor pf
s = ps = 1.0. As can be seen, χA 

decreases until these species is completely consumed, whereas χB 
approaches unity. The inset figure shows the behaviour of χA on a 

log scale, showing the exponential time dependence. This result 
fits well to

	 	 (3)

where k is the rate constant and t is the time in MCSs.

The effect of temperature on the rate constant is shown in Figure 
2, where χA is plotted as a function of time for different temperatures. 
Since θ = kBT/Ea, this behaviour can be interpreted in two different 
ways.11,12 One is that the increase in θ means that the kBT term has to 
increase when using a constant activation energy. We thus explore 
the effect of temperature on a given system by defining a specific 
activation energy. However, the increase in θ can also occur by fixing 
kBT and decreasing Ea. Therefore, we also investigated different 
systems (different Ea) with the same temperature. Considering the 
set of parameters (θ values) used in Figure 2, the same relationship 
between the rate constant (k) and temperature, in the form of the 
Arrhenius’ Law, is observed

	 	 (4)

where A = 0.99844 and b = 1.002 ± 0.003. This is an expected result, 
because the Metropolis update used to simulate the data has the 
same mathematical structure as the Arrhenius’ Equation, which can 
be seen in the comparison between Equations (1) and (4). Another 
important feature here is the half-life (τ1/2). Using this model, the 
simulation yielded11,12

	 	 (5)

where c = 0.69122 ± 0.0009, which is in good agreement with the 
theoretical first-order behaviour that yielded an expected value 
of ln(2) = 0.69314… . These results thus align with the theory of 
chemical kinetics that is widely discussed in many elementary 
textbooks.19,24,25

The influence of the steric factor in the system was also 
addressed. This parameter was introduced to take into account the 
dependence of the rate constant on the mutual orientation of the 
reactant molecules. The effect of the steric factor on the reaction is 
shown in Figure 3, where χA is plotted as a function of ps for θ = 1.0. 
Decreasing ps decreases k, which leads to a slower consumption rate, 
thus highlighting the fact that the molecules are not able to react 
in all directions. This implies that there is a favourable collision 
orientation, from a geometric point of view, that becomes increasingly 

Figure 1. χA and χB as a function of time, in MCSs
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limited. Here the case where ps = 1.0 means that all collisions are 
geometrically favourable.

An important issue that deserves attention is the fact that the steric 
factor does not change the main aspects of the kinetics. A simulation 
using ps = 0.5 was thus performed to check this phenomenon. 

The rate constant k, on a log scale, is a function of the reciprocal 
of θ as shown in Figure 4(a). The solid line is the fitted function 
k = Ae–b′/θ, with A = 0.49881 and b′ = 0.9992 ± 0.0004. It is thus worth 
noting that, within the standard error limit,  follows the Arrhenius’ 
Law, with the only change being the pre-exponential factor A, as 
demonstrated in Equation (4). For other ps values, it is seen that 
A ∼ ps, thus indicating that this approach is useful in dealing with the 
kinetics of irreversible chemical reactions. As mentioned above, it is 
expected that A = ps and b′ = 1, which represent the parameters  and  
in Equation (4), since the transition probabilities have been defined 
from a mathematical structure similar to the Arrhenius’ Equation.

The half-life τ1/2 is shown as a function of 1/k in Figure 4(b). 
Even though k is different for other ps values, the dependence of 
τ1/2 on 1/k is approximately linear, as indicated by the solid line on 
Figure 4(b). The fitted data yield τ1/2 ∼ c′/k, with c′ = 0.699 ± 0.001, 
which is in good agreement with Equation (5) which was obtained 
without steric factor.

This approach is applied in the kinetics of catalytic reactions by 
considering an energy change in the following manner: E → E + ∆E. 
If ∆E > 0, there is a “negative” catalysis or inhibition. Otherwise, if 
∆E < 0, there is a “positive catalysis”.24 The kinetics are thus defined 

by the parameter ∆Ecat ≡ ∆E/Ea. The kinetic profiles of the catalytic and 
non-catalytic reactions, with θ = 0.9 and no steric factor, are shown in 
Figure 5. As can be seen for a fixed value of θ, as the energy decreases 
(∆Ecat < 0), a given type-A molecule has greater chance (probability) 
of overcoming the potential energy and being transformed into a 
type-B molecule. This analysis thus shows that by decreasing the 
energy barrier, the rate constant of the catalytic reaction increases 
in comparison to the non-catalytic one. An analogue analysis can be 
made for ∆Ecat > 0. 

Reversible reaction

Here the reversible reactions of the type A ⇆ B are discussed, 
where both Equations (1) and (2) are considered. For simplicity, the 
steric factors are set to pf

s = pr
s = 1. Unlike the irreversible reactions, it 

is necessary to define the dimensionless energy parameter, Eba ≡ Eb/Ea, 
which represents the reverse reaction energy barrier (rationed) to Ea. 
Some results are shown in Figure 6, where Eba = 2.0 are considered, 
with  = 0.8 and  = 0.0. The behaviours of χA and χB are shown 
in Figure 6(a) for two distinct temperatures, θ = 1.0 (empty squares 
and circles) and θ = 1.5 (filled squares and circles).

When the system reaches thermodynamic equilibrium, χA and 
χB are altered by increasing θ. The increase in the temperature from 
θ = 1.0 to θ = 1.0 promotes a shift of the thermodynamic equilibrium 

Figure 2. χA evolution as a function of time for different temperatures

Figure 3. The effect of the steric factor on the irreversible first-order reaction

Figure 5. The kinetic profiles of the catalytic and non-catalytic reactions

Figure 4. (a) The rate constant k, on a log scale, as a function of the reciprocal 
of θ and (b) The half-life τ1/2 as a function of 1/k
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position to lower χB and higher χA values. The simulated system 
behaves similarly to an exothermic reaction. As it is defined here, 
the proposed model considers the relationship between the activation 
energies of the forward and reverse reactions (Eba = 2, which implies 
Eb = 2Ea), similar to an exothermic reaction.19,25 This behaviour 
can be easily observed in Figure 6(a). Calculation of the reaction 
equilibrium constants, in terms of χ, for θ = 1.0 and θ = 1.0 yields 
Ke = 2.720 ± 0.006 and Ke = 1.949 ± 0.006, respectively. Thus, the 
results obtained from the simulation are consistent with several 
textbooks that discuss Le Chatelier’s Principle.24,25 The influence of 
the addition of the type-A reactant on the kinetics of the reaction is 
shown in Figure 6(b), where empty symbols represent the system 
without adding reactant and filled symbols represent the system with 
the addition of ∆χA = 0.2 at t = 15. These results were obtained for θ = 
1.0, and showed that the system quickly promoted the consumption of 
a portion of type-A molecules and the formation of type-B molecules 
soon after the addition of the A reactant (∆χA = 0.2). However, the 
system was shifted to a new thermodynamic equilibrium position with 
the new values of χA and χB. Similar to the results in Figure 6(a), these 
results are in agreement with Le Chatelier’s principle, with the added 
reactant disturbing the thermodynamic equilibrium of the system.

Even though the equilibrium values of χA and χB before and 
after adding the type-A molecules to the system are different, their 
ratios remain constant and equal to the thermodynamic equilibrium 
constant, Ke ≡ χB/χA. The thermodynamic equilibrium constant was 
evaluated by measuring Ke at t ∈ [50,100] (not shown on the plot). 
The simulations without extra reactant added yielded Ke = 2.720 
± 0.006, whereas Ke = 2.718 ± 0.005 for the simulation with extra 
type-A reactant added. These results are in agreement with the 
expected theoretical value of the equilibrium constant, Ke = 2.718…, 
which is defined as the ratio between the kinetic constants of the 
forward and the reverse reactions, Ke = kf / kr. Similarly, Ke can be 
defined here as the ratio between the forward and reverse transition 
probabilities, Ke = Pf / Pr.

Finally, the results of the simulations for the catalytic and non-
catalytic reversible reactions are compared in Figure 7. Eba = 2.0,  

 = 0.8,  = 0.0 and θ = 1.0 were considered in this case. The 
simulation of the catalytic reaction was accomplished by shifting the 
energy barrier by ∆Ecat = –0.5. It was observed that the rate constant 
of the catalytic reaction was higher than the non-catalysed one. It was 
also observed that, regardless of the decrease in the energy barrier, the 

equilibrium position of the system converged to the same value for 
both cases. These results show an important aspect regarding the use 
of catalysts in chemical reactions, whereby these species accelerate 
the reaction rate (by increasing the rate constant) but do not affect 
the equilibrium position of the system.

Second-order reactions

The last examples we discuss are second-order reactions. Second-
order reactions are categorised into two types, those that consist of two 
first-order reactants of the form A + B → C and those that consist of a 
single second-order reactant of the form 2A → C.19 These irreversible 
reactions only require Equation (1) in the mathematical model, with 
ps = 1, following step (III) in the experimental section. Depending 
on the initial conditions of χA and χB, our model simulates the kinetic 
behaviour of two second-order reactions, A + B → C, if  ≠ , and 
2A → C, if  = .

The time evolution of χA and χC for the second-order reaction, 
2A → C, is shown in Figure 8. The type-B molecule has the 
same behaviour as that observed for the type-A molecule since  

 =   = 0.5. Thus, it is expected that the reciprocal of the molar 
fraction exhibits a linear behaviour with time.24,25 The inset shows 

the dependence of  as a function of time. The data provide a 

remarkable fit to  , where  = 2.006 ± 0.005 and 

k = 0.6059 ± 0.0001, which is in good agreement with the theoretical 
calculation (k = 0.606530…).24,25 This kinetic characteristic is valid 
for other values of θ and initial molar fractions for χA and χB, with 
the constraint  = . 

The behaviour of χA (A symbols), χB (B symbols) and χC (C 
symbols) for a second-order chemical reaction, A + B → C , with 
the initial condition χA

0 ≠ χB
0, is shown in Figure 9(a). The predicted 

theoretical behaviour is that   exhibits a linear dependence 

on time as follows:  . We thus carried out 

simulations considering χA
0 = 0.5, χB

0 = 0.2, χC
0 = 0.0 and θ = 1.0 to 

investigate this situation. The simulated results are plotted in Figure 

9(b), where   is plotted on a log scale as a function of time. 

The simulated data provided an exceptional fit to  , 
where k′ = 0.11103 + 0.00008, which was approximately equal to 

Figure 6. (a) The time evolution of χA and χB for two distinct temperatures 
and (b) The influence of the addition of the type-A reactant on the kinetics 
of the reaction

Figure 7. Simulations for the catalytic and non-catalytic reversible reactions



An approach to the kinetics and thermodynamics of elementary chemical reactions using a stochastic model 1087Vol. 41, No. 9

the theoretical result of .19,24,25 These 

initial parameters, as well as the other tested parameters, yielded 
results that reproduced the theoretical results. 

Effect of the number of molecules (N) and the sampling (Ns) on 
rate constant for a second- order reaction (2A → C)

Here we discuss how the number of the molecules (N) and the 
sampling (Ns) influence the results for a given rate constant and a 
second-order reaction of the type 2A → C. 

Figure 10 shows χA versus time for N = 102 (filled circles) and 
105 (empty circles) molecules. The simulated results were obtained 
using  =  = 0.5,  = 0.0, θ = 1.0 and Ns = 1. The fluctuations 
on the temporal evolution of χA diminishes as N increases, and the 
simulated data merge toward the expected theoretical result (straight 
line). As seen in Table 1, the simulated rate constant (ks) possesses 
an increasingly better agreement with the theoretical one (kt) as N 
increases.

The effect of multiple simulations is presented in Table 2. The data 
were obtained with N = 103 molecules and  = = 0.5,  = 0.0, 
θ = 1.0. As can be seen, ks approaches kt as Ns increases, evidencing 
a similar effect when compared to the increase in N.

CONCLUSIONS AND PROSPECTS

A simple mathematical model has been used to investigate the 
equilibrium and kinetic properties of elementary homogeneous 
chemical reactions. The reaction dynamics between the reactants 
were proposed via the Monte Carlo method and the Ehrenfest urn 
model. The Ehrenfest urn model was used to define the order of 
the reaction, while the Monte Carlo method, with the Metropolis 
update, was used to access the main physical chemistry features as 
a function of activation energy, steric factor and temperature. All the 
basic characteristics of the reactions, such as the reaction order, the 
Arrhenius’ Law and Le Chatelier’s principle, were recovered with this 
simple model. Although the methodology presented here was only 
applied to first- and second-order reactions, we argue that it can be 
also used to study more complex (higher order) reactions.

Here we demonstrated the effectiveness of our model as a useful 

Figure 8. The time evolution of χA and χC for the second-order reaction,2A → C 

Figure 9. (a) The time evolution of χA, χB and χC for the second-order 
reaction,A + B → C, (b) –χ on a log scale as a function of time

Figure 10. χA versus time for N = 102 (filled circles) and 105 (empty circles) 
molecules

Table 1. The effect of the number of molecules N, for 1 sampling, on the 
rate constant value for a second-order reaction 2A → C and the percentage 
error of measurement between kt (theoretical rate constant) and ks (simulated 
rate constant)

N ks

 
103 0.7362 21.38

104 0.6117 0.85

105 0.6037 0.46

106 0.6059 0.09

Table 2. The effect of sampling Ns (multiple simulations, for N = 103 mo-
lecules, on rate constant value for a second-order reaction 2A → C and the 
percentage error of measurement between kt (theoretical rate constant) and 
ks (simulated rate constant)

Ns ks

 
1 0.7362 21.38

10 0.6245 2.96

100 0.6103 0.62

1000 0.6063 0.03



Nascimento et al.1088 Quim. Nova

tool for chemistry-related class activities at all education levels, as 
well in scientific research that covers physical chemistry topics related 
to thermodynamics and reaction kinetics, which highlights the wide 
applicability of such a model.

It is worth pointing out the advantages of this present model. 
One of them is the low cost to carry out such a study when compared 
with the experimental laboratory procedures. Furthermore, the lack 
of laboratory facilities limits the activities and research in physical 
chemistry at some schools and universities. 

Additionally, from a mathematical point of view, the model seems 
to be useful as a complementary tool to the traditional methodologies 
that employ differential ordinary equations and integrated rate laws 
amplifying mathematical concepts necessary to a better understanding 
of the phenomena in chemical kinetics.

It is important to highlight that the Monte Carlo step, defined and 
used in this work, does not have at first a direct relationship with the 
real time. However, it is possible to propose a relationship between 
them, in order to use the simulations to treat real problems in chemical 
kinetics. One possibility would be to establish a connection between 
the MCS and some characteristic time of the chemical kinetics in a 
real problem, as proposed by López-Castilho and Souza Filho in 
which the step was related to the half-life time.10 Another possibility 
would be to propose a proportionality between the Monte Carlo step 
and the time between successive molecular collisions, given by the 
collision theory, as discussed by Oliveira-Neto et al., in the study of 
hydrogen atom ionization problem.20

Finally, we highlight that it is possible to develop a computational 
software interface with the algorithm reported here to facilitate its 
manipulation by users, be they teachers or students. This software 
development, as well as other results, are currently being undertaken.
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