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Biodiesel is capable of replacing diesel because it has similar physicochemical properties, but this biofuel is susceptible to oxidation, 
which makes the application of antioxidant substances necessary. For this study, alcoholic extracts of senna leaves, hibiscus flowers, 
and blackberry were used. Biodiesel samples were submitted to physicochemical analysis to evaluate interference in the volume of 
these alcoholic extracts with antioxidant properties. The data obtained were processed using the neural network of the multilayer 
perceptron type (MLP). For the network’s training, 200 epochs were used. The samples were randomly divided into three groups, 
with 70% used for training, 15% for testing, and 15% for validation. The type of extract was considered as a categorical variable, 
the extract volume as a target variable, and the other ones as input variables. Among the 200 networks trained, with 5 to 20 hidden 
layers, the 5 with the best performance were highlighted. The Tukey test applied to the means showed no significant difference at the 
5% level, between the value of the added volume and the means value predicted by the networks. The sensitive analysis showed that 
the most important input variable for the construction of the model was the type of extract.
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INTRODUCTION

Biodiesel is produced from sustainable and renewable energy 
sources, such as various types of vegetable oils and animal fat. It can 
be used in compression-ignition vehicles and is capable of replacing 
diesel because it has similar physicochemical properties.1 However, 
it is susceptible to oxidation reaction, which affects some of its 
essential characteristics.2

In the oxidation reaction occurs the formation of free radicals 
that degrade and polymerize the biodiesel. This can happen when the 
biodiesel is exposed to the presence of oxygen, light, temperature, 
enzymes, ions of metallic elements, and humidity, making it difficult 
to guarantee its quality, to be within the compliance parameters 
required for its commercialization, such as specific mass, flash point, 
viscosity, oxidative stability, acid number, among others.3–5 

In order to delay the oxidation process and inhibit the formation 
of free radicals, conditions that favor the beginning of the oxidation 
must be eliminated and antioxidants must be added. Synthetic 
antioxidants are the most used in the industry. The natural extracts 
with antioxidants properties are obtained from fruits, leaves, spices, 
and flowers, which have phenolic compounds in their composition. 
Both types of antioxidants act in the biodiesel inhibiting the beginning 
of the oxidation process.6,7

To evaluate the effect of antioxidants in biodiesel, as well as its 
ability to protect the material against oxidation, computational tools 
can be used. They allow the experimental data modeling. One of these 
tools is the artificial neural networks (ANN), which are computational 
techniques that can make generalizations, that is, they generate their 
own rules to associate the input and output variables, after learning 
with training data.8,9

Among the computational tools is the Multilayer Perceptron type 
(MLP) network that has been widely used for modeling and patterns 
classification, and can solve problems of a general nature, such as 
approximation, classification, categorization, and forecast.10,11 This 

set of techniques has been applied to a wide range of areas, especially 
process control, satellite navigation, weather forecasting, signal 
processing, voice recognition, medical diagnostics and monitoring, 
waste treatment, ceramic engineering, geographic origin, fire 
detection, financial market, and pattern recognition.11–16

Since neural networks with MLP architecture are universal 
approximators, they can perform any regression task as long as they 
have an adequate number of hidden layers and neurons.14

The architecture of this type of network consists of an input layer 
with a neuron for each variable used, one or more intermediate layers, 
forming decision boundaries with some neurons to be defined, and an 
output layer that depends on how many parameters will be classified 
and how they will be represented.8,9

The objective of this work was to apply the Multilayer Perceptron 
type neural networks to study the behavior of natural extracts with 
antioxidant properties in mixtures with biodiesel.

EXPERIMENTAL PART

Biodiesel

Nine commercial biodiesel samples were supplied by the Fuel 
Research and Analysis Laboratory of the Department of Chemistry 
at the State University of Londrina. 

Biodiesel physical-chemical characterization

The density (20 ºC) was determined according to the ASTM 
D405217 method, the flashpoint by the ASTM D93,18 kinematic 
viscosity (40 ºC) by the ASTM D445,19 acid number by the ASTM 
D664,20 water content by the ASTM D6304,21 cloud and pour point 
by the ASTM D2500.22

Determination of Induction Period (IP)

The assays were performed at 110 °C, using the Rancimat 
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equipment (Brand: Metrohm; Model: 873), according to the 
methodology described in the EN 14112.23

Alcoholic extracts obtention 

Extracts of senna leaves, blackberries, and hibiscus flowers were 
prepared using 10 g of each sample previously dried in an oven at 
60 ºC and added to 250 mL of absolute ethyl alcohol (Synth). This 
mixture was kept protected from light at rest for 48 hours, then filtered 
and concentrated to approximately 50 mL with the aid of a heating 
plate at 60 °C. After a period of cooling at room temperature, the 
extract was transferred to a 50 mL volumetric flask and completed 
with absolute ethyl alcohol.24 

Determination of phenol content

The total content of phenolic compounds in each extract was 
determined in triplicate by spectrophotometry (Perkin Elmer, 
model UV-vis LAMBDA 25), using the Folin-Ciocalteu 2N reagent 
(Sigma-Aldrich).25

Relative protection factor (RFP)

The relative protection factor was determined by the following 
equation: 

 RPF = IP/ (IPc V) (1)

RPF is the relative protection factor, IP (h) is the induction period 
of the sample with antioxidants, IPC (h) is the induction period of 
the control sample and V (mL) is the volume of the extract added.

Kinetic parameter 

To calculate the rate constant (k), it was determined the slope 
(equation 2) of the linear fit of the time (h) and the natural logarithm 
of the electrical conductivity (Λ).26

 ln Λ = ln Λ0 - kt (2)

Artificial Neural Networks (ANN)

The multilayer perceptron network type (MLP) of the artificial 
neural network module of the Statistica 13.4 (2018)13 software was 

used. The volume of extract added (mL) was chosen as the continuous 
target variable, physical-chemical parameters were selected as 
continuous inputs variables, and the extracts used were chosen as 
the categorical variables, where: A = 1 for the blackberry extract; 
A = 2 for the hibiscus flowers extract and A = 3 for the senna leaves 
extract. To train the MLP network was used 200 epochs, an initial 
learning rate of 0.10, and it was applied to a random subdivision of 
the samples, in three groups: 70% for training, 15% for testing, and 
15% for validation. 

The algorithms used for activating the hidden layer and the output 
were selected by the application, among those that compose its library 
for the module used, that is, identity, logistic (logistic sigmoid), 
hyperbolic tangent, exponential, and sine.

RESULTS AND DISCUSSION

The three alcoholic extracts used were subjected to analysis of 
total phenols content to verify the antioxidant efficiency. The phenols 
have in their chemical structures one or more hydroxyl groups that 
are responsible for the biodiesel protections. 

The content of total phenols expressed as gallic acid equivalent 
in the blackberry, hibiscus flowers and senna leaves extracts was 
16.45  (± 0.27), 4.62 (± 0.14), and 4.06 (± 0.12) mgGAE g-1

dry mass, 
respectively.

From the results obtained and to evaluate the oxidative stability 
at 110 ºC (IP), aliquots of 1.30 - 2.00 mL of blackberry extract were 
taken to add 4.28 - 6.60 mgEAG in 100g of biodiesel; 4.28 - 7.57 mL 
of hibiscus flower extract corresponding to 3.96 - 7.00 mgEAG/100g 
of biodiesel; and 4.28 - 7.57 mL for the senna leaves extract 
corresponding to 3.48 - 6.15 mgEAG/100g of biodiesel. Before the 
extracts were added to the biodiesel, the alcohol was evaporated so 
they do not interfere in the biodiesel physicochemical parameters, 
especially the flashpoint.

Among the parameters used are: the volume in mL; dimensionless 
relative protection factor (RPF); density (D) in kg m-3; flash point 
(FP) in °C; kinematic viscosity at 40 °C (V) in mm² s-1; water content 
(W) in mg kg-1; acid number (AN) in mg KOH g-1; cloud point (C) in 
°C; pour point (P) in °C; sample rate constant (k) in h-1; control rate 
constant (kc) in h-1. The induction period of the samples containing 
the extracts (IP) and the induction period of the control sample (IPc) 
in h was determined, tabulated (Table 1, 2, and 3), and processed 
in the regression module of the automated Neural Network of the 
software Statistica 13.4 (2018),13 to evaluate the physicochemical 
parameters’ behavior of the biodiesel samples and their impact on the 

Table 1. Volumes of blackberry extracts used and values of the physicochemical parameters of the biodiesel samples

Vol. RPF IP k D FP W AN C P V kc IPc
1.50 0.73 2.83 0.78 879.30 86.60 292.10 0.40 3.00 0.00 4.45 0.82 2.58
2.00 1.32 7.86 0.32 876.60 136.40 348.30 0.22 7.50 2.00 4.70 1.07 2.97
1.50 1.51 6.73 0.34 876.60 136.40 348.30 0.22 7.50 2.00 4.70 1.07 2.97
2.00 1.02 7.85 0.31 877.30 135.00 409.50 0.17 7.00 4.00 4.43 0.57 3.86
1.30 1.71 5.07 0.43 876.60 136.40 348.30 0.22 7.50 2.00 4.69 1.12 2.28
1.50 1.45 4.96 0.48 876.60 136.40 348.30 0.22 7.50 2.00 4.69 1.12 2.28
1.50 1.10 6.40 0.34 876.30 91.40 430.20 0.13 7.00 2.00 4.41 0.63 3.87
1.30 1.20 5.82 0.45 878.00 166.00 298.90 0.27 5.00 1.00 4.18 0.73 3.74
1.50 1.69 4.08 0.71 886.30 101.20 566.40 0.85 3.00 -5.00 5.02 1.39 1.61
1.30 1.14 5.78 0.43 878.00 121.30 342.80 0.48 4.00 -1.00 4.34 0.66 3.9
1.50 2.33 5.74 0.42 877.20 131.20 352.80 0.52 7.00 4.00 4.49 1.27 1.64
1.30 1.88 6.63 0.39 878.30 121.70 431.20 0.40 6.00 2.00 4.52 1.05 2.71
1.50 0.77 3.59 0.66 877.30 135.00 409.50 0.17 7.00 4.00 4.43 0.65 3.09
1.50 1.57 3.78 0.78 886.30 101.20 566.4 0.85 3.00 -5.00 5.02 1.39 1.61
1.50 1.00 5.84 0.43 878.00 121.30 342.80 0.48 4.00 -1.00 4.34 0.66 3.9
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Table 2. Volumes of hibiscus flower extracts used and values of the physicochemical parameters of the biodiesel samples

Vol. RPF IP k D FP W AN C P V kc IPc
7.60 0.15 2.93 0.79 879.30 86.60 292.10 0.40 3.00 0.00 4.45 0.82 2.58
7.00 0.38 7.97 0.31 876.60 136.40 348.30 0.22 7.50 2.00 4.70 1.07 2.97
6.50 0.43 8.38 0.29 876.60 136.40 348.30 0.22 7.50 2.00 4.70 1.07 2.97
4.30 0.55 9.09 0.25 877.30 135.00 409.50 0.17 7.00 4.00 4.43 0.57 3.86
5.00 0.45 5.08 0.44 876.60 136.40 348.30 0.22 7.50 2.00 4.69 1.12 2.28
6.00 0.39 5.34 0.47 876.60 136.40 348.30 0.22 7.50 2.00 4.69 1.12 2.28
6.00 0.28 6.5 0.35 876.30 91.40 430.20 0.13 7.00 2.00 4.41 0.63 3.87
5.00 0.32 6.03 0.43 878.00 166.00 298.90 0.27 5.00 1.00 4.18 0.73 3.74
6.00 0.45 4.37 0.72 886.30 101.20 566.40 0.85 3.00 -5.00 5.02 1.39 1.61
5.00 0.3 5.82 0.43 878.00 121.30 342.80 0.48 4.00 -1.00 4.34 0.66 3.90
5.00 0.52 7.03 0.36 878.30 121.70 431.20 0.40 6.00 2.00 4.52 1.05 2.71
6.00 0.71 6.96 0.35 877.20 131.20 352.80 0.52 7.00 4.00 4.49 1.27 1.64
6.00 0.21 3.85 0.59 877.30 135.00 409.50 0.17 7.00 4.00 4.43 0.65 3.09
6.00 0.24 5.58 0.48 878.00 121.30 342.80 0.48 4.00 -1.00 4.34 0.66 3.90
6.00 0.41 3.97 0.76 886.30 101.20 566.40 0.85 3.00 -5.00 5.02 1.39 1.61

Table 3. Volumes of senna leaves extracts used and values of the physicochemical parameters of the biodiesel samples

Vol. RPF IP k D FP W AN C P V kc IPc
7.50 0.15 2.93 0.79 879.30 86.60 292.10 0.40 3.00 0.00 4.45 0.82 2.58
7.00 0.38 7.97 0.31 876.60 136.40 348.30 0.22 7.50 2.00 4.70 1.07 2.97
6.50 0.43 8.38 0.29 876.60 136.40 348.30 0.22 7.50 2.00 4.70 1.07 2.97
4.30 0.55 9.09 0.25 877.30 135.00 409.50 0.17 7.00 4.00 4.43 0.57 3.86
5.00 0.45 5.08 0.44 876.60 136.40 348.30 0.22 7.50 2.00 4.69 1.12 2.28
6.00 0.39 5.34 0.47 876.60 136.40 348.30 0.22 7.50 2.00 4.69 1.12 2.28
6.00 0.28 6.5 0.35 876.30 91.40 430.20 0.13 7.00 2.00 4.41 0.63 3.87
5.00 0.32 6.03 0.43 878.00 166.00 298.90 0.27 5.00 1.00 4.18 0.73 3.74
6.00 0.45 4.37 0.72 886.30 101.20 566.40 0.85 3.00 -5.00 5.02 1.39 1.61
5.00 0.3 5.82 0.43 878.00 121.30 342.80 0.48 4.00 -1.00 4.34 0.66 3.90
5.00 0.52 7.03 0.36 878.30 121.70 431.20 0.40 6.00 2.00 4.52 1.05 2.71
6.00 0.71 6.96 0.35 877.20 131.20 352.80 0.52 7.00 4.00 4.49 1.27 1.64
6.00 0.21 3.85 0.59 877.30 135.00 409.50 0.17 7.00 4.00 4.43 0.65 3.09
6.00 0.24 5.58 0.48 878.00 121.30 342.80 0.48 4.00 -1.00 4.34 0.66 3.90
6.00 0.41 3.97 0.76 886.30 101.20 566.40 0.85 3.00 -5.00 5.02 1.39 1.61

volume of the alcoholic extracts of blackberry, hibiscus flowers, and 
senna leaves added to the biodiesel samples. In Tables 1, 2, and 3, it 
is possible to observe that all extracts increase the biodiesel induction 
period, with the blackberry extract presenting greater influence, as it 
has 3.56 and 4.05 times more phenolic compounds in its composition 
than the extracts of hibiscus flowers and senna leaves, respectively. 
In addition, it has a relative protection factor greater than one in most 
experiments, and the rate constant of the biodiesel oxidation reaction 
undergoes a greater reduction when using this extract.

In the regression module, the multilayer perceptron type neural 
network (MLP) was used, testing from 5 to 20 hidden layers. The 
activation functions evaluated for the neurons in the hidden and output 
layers were: identity, logistic, tanh, exponential and sine. 

200 networks were trained and the 5 best were selected by the 
software used. Before the network initialization, the sum of squares 
(SOS) error function was selected and the training algorithm used was 
the BFGS. The error function was used to evaluate the performance 
of the neural network during training. It measures how close the 
network predictions are to the targets, and therefore how much 
weight adjustment should be applied by the training algorithm on 
each iteration. The sum of the squares error function is mainly used 
for regression analysis.13

The most recommended algorithm for training neural networks 
is the BFGS, individually proposed by Broyden-Fletcher-Goldfarb-
Shanno.9 This method performs significantly better than more 

traditional algorithms, such as the gradient method, but it uses more 
memory and requires longer computational time. However, this 
technique may require fewer interactions to train a neural network 
due to its rapid rate of convergence.8,9 Thus, before the network 
initialization, the sum of the squares error (SOS) function was selected 
and the training algorithm used was the BFGS.

In the present work, the networks were trained with 70% of 
the samples for the training group, 15% for the test, and 15% for 
validation, and the choice of samples in each group was performed 
randomly.

The performance of a neural network is measured by how well it 
generalizes unseen data, that is, how well it predicts new data that was 
not used during training.13 The test step aims to verify the ability of 
the trained network to perform generalizations since artificial neural 
networks learn a rule using training examples.27 Thus, to avoid just a 
coincidence in the test results, a set of validation data, also not seen, 
was used as an extra check on the model performance.8,9,13

The number of epochs, as well as the number of hidden layers, 
cannot be too high, because when a neural network learns many 
input-output examples, it may end up memorizing the training data. 
This phenomenon is known as adjustment or overtraining and causes 
the network to lose its ability to generalize.8,9 Thus, an initial learning 
rate of 0.1 and a maximum number of epochs equal to 200 were 
applied. The strategy to create the predictive model was Automated 
Network Search (ANS), from the Statistica 13.4 software (2018),13 
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and the decay weight in the hidden layer and the output layer ranged 
from 10-4 to 10-3. 

For the random number generator (seed for sampling), a value 
of 1000 was set to always produce the same random sample of data. 
To create a sample of different data, this value needs to be changed.

Figure 1 shows the number of epochs used to train the network 
with the best performance, showing that the network needed only 
113 epochs to achieve training and test stability. The error reduction, 
which represents the sum of the squared differences between the 
target and the output values (SOS), was fast and no oscillations 
were observed during training and testing. This is the standard error 
function commonly used in regression problems. 

The sensitivity analysis, which evaluates the importance of 
the model’s input variables, showed that the type of extract used 
contributed with 26.67%, the relative protection factor with 22.18%, 
the rate constant with 8.51%, and the others, all together, contributed 
with 42.64% in the construction of the model by the neural networks 
of the MLP type. The variables’ order of importance was A > RPF > 
k > kc > IPc > AN > IP > P > C > W > D > FP > V. 

Table 4 presents the samples used for training, testing, validation, 
and the values of the volumes used experimentally and predicted by 
the 5 chosen networks, in which the first number represents the 15 
input variables, the second represents the number of hidden layers 
and the third represents the number of outputs. It also shows the mean 
values and the standard deviations (StdD). The perceptron networks 
with the best performance showed 14, 19, and 13 hidden layers, for 
the extract volume prediction model in the biodiesel. 

For all cases, both the Newman-Keuls test and the Tukey test 
applied to the means did not show significant differences, at the 5% 
level, when analyzing the extracts volume values and the mean value 
obtained by the 5 networks chosen with the p statistic ranging from 
0.12 ≤ p ≤ 0.99. Since Tukey’s method is only valid if the variance 
is homogeneous, Levene’s test was applied. In the test, the p-value 
was greater than 0.05, except for two cases that are indicated by 
asterisks in the mean values (Table 4), so the hypothesis of variance 
homogeneity was accepted.

The 5 selected networks presented a performance of 0.99 for 
training, testing, and validation, that is the best performance. The 
error ranged from 4 x 10-4 to 1 x 10-2 for training, from 5 x 10-2 to 
5 x 10-3 for testing and from 1 x 10-2 to 3 x 10-2 for validation. To 
activate the hidden layer, the exponential and tanh algorithms were 
applied and for the output, activation was used the identity, logistic, 
and tanh. The algorithms used for activating the hidden layer and for Figure 1. Error stabilization and the number of epochs used by the network

Table 4. Samples used for training, testing, and validation, used and predicted volume and statistical test employed

Samples
Volume Volume Volume Volume Volume Volume

Mean StdD
Target 15-14-1 15-14-1 15-19-1 15-14-1 15-13-1

Train 1.50 1.68 1.51 1.46 1.51 1.65 1.56 0.10

Train 2.00 1.98 1.98 1.86 1.97 1.39 1.84 0.25

Train 1.50 1.52 1.51 1.46 1.54 1.37 1.48 0.07

Train 2.00 2.04 2.02 2.65 2.01 1.41 2.03 0.44

Validation 1.30 0.91 1.06 1.34 0.93 1.34 1.12 0.21

Validation 1.50 1.24 1.29 1.38 1.13 1.36 1.28 0.10

Validation 1.50 1.40 1.38 1.49 1.29 1.40 1.39 0.07

Train 1.30 1.28 1.29 1.33 1.30 1.38 1.32 0.04

Test 1.50 1.54 1.54 1.32 1.28 1.30 1.40* 0.13

Train 1.30 1.31 1.28 1.32 1.29 1.38 1.31 0.04

Train 1.50 1.52 1.52 1.32 1.51 1.33 1.44* 0.10

Train 1.30 1.24 1.27 1.33 1.28 1.33 1.29 0.04

Train 1.50 1.67 1.48 1.42 1.49 1.35 1.48 0.12

Test 1.50 1.44 1.44 1.32 1.17 1.30 1.34 0.11

Train 1.50 1.54 1.50 1.33 1.51 1.39 1.46 0.09

Train 7.60 7.59 7.59 7.52 7.55 7.57 7.56 0.03

Train 7.00 7.04 7.00 6.64 7.00 6.80 6.90 0.17

Test 6.50 6.69 6.66 6.49 6.87 6.85 6.71 0.16

Train 4.30 4.48 4.29 4.07 4.31 4.26 4.28 0.15

Test 5.00 5.34 5.19 4.95 5.10 5.52 5.22 0.22

Train 6.00 6.05 6.01 5.78 6.01 5.96 5.96 0.11

Test 6.00 5.78 5.96 5.48 5.81 6.04 5.81 0.22
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activating the output were selected by the software among those that 
compose its library for the module used, that is, identity, logistics 
(logistic sigmoid), hyperbolic tangent, exponential, and sine.

Figure 2 shows the dispersion between the target volume and 
output, during the training of the 5 best neural networks of the MLP 
type, which is a quality indication of the regression model.

CONCLUSIONS

In this work, the influence of physicochemical parameters on the 

volume of blackberry, hibiscus flowers, and senna leaves extracts to 
be added in biodiesel was studied, using the multilayer perceptron 
artificial neural networks as a computational tool.

The sensitivity analysis of the neural network used revealed that 
the type of extract was the most important variable in the construction 
of the regression model. The applied statistical tests showed that there 
is no significant difference between the predicted and experimental 
values used in the validation of the predictive model constructed to 
evaluate the extract volume to be added for the biodiesel conservation.
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