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RESUMO Neste artigo discuto a intuição subjacente à definição de
números como conjuntos proposta por Frege e Russell, assim como a crítica
de Benacerraf a esta definição. Eu tento mostrar que o argumento de Bena-
cerraf não é tão forte como alguns filósofos o tomaram. Adicionalmente,
examino uma alternativa à definição de Frege e Russell proposta por Maddy,
e indico algumas dificuldades encontrada pela mesma.

ABSTRACT In this paper I discuss the intuition behind Frege's and
Russell's definitions of numbers as sets, as well as Benacerraf's criticism of
it. I argue that Benacerraf's argument is not as strong as some philosophers
tend to think. Moreover, I examine an alternative to the Fregean-Russellian
definition of numbers proposed by Maddy, and point out some problems fa-
ced by it.
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In this paper I shall be concerned with a fundamental ontological questi-
on about mathematical objects, namely, the relation between numbers and
sets. I will first discuss the natural intuition for identifying numbers with sets:
I will review some well known aspects of Frege’s and Russell’s logicism, and
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how this natural suggestion inspires both philosophers. Moreover, I will bri-
efly explain how numbers are treated within the axiomatic set theory of Zer-
melo Fraenkel (ZF). Next, I will explain a particular argument made by Paul
Benacerraf against the identification in question. As I shall argue, Benacerraf’s
argument is not as decisive as some philosophers have taken it to be, and it
seems to beg the question against the realist in some relevant respects. At any
rate, his criticism inspired an alternative approach for numbers developed in
the work of Penelope Maddy, which I shall briefly review. I will argue that
this alternative approach has some problems of its own, which makes it less
attractive than the Fregean-Russellian set theoretical definition.

I-Numbers as Sets

As I said above, there is a natural suggestion, which was the basic intui-
tion behind the definition of numbers proposed in Frege’s and Russell’s logi-
cism, namely, that numbers just are sets. It is well known that Frege’s main
philosophical project in Grundlagen der Arithmetik (1884, from now on sim-
ply Grundlagen) is showing that arithmetic as such is nothing but a further
developed branch of logic. Most of his arguments for this view come from
the observation that arithmetic has a range of applicability that far surpasses
the range of any other science. Any empirical science is restricted in its appli-
cability to things that are real, and that are located in space and time. Geome-
try has a wider applicability, since it applies not only to what is real, but also
to anything that might be conceived of, as long as it is spatial. But it is also
restricted to things that are possible objects of a spatial intuition. Arithmetic,
on the contrary, applies also to things that are not in space: we can count
things like concepts, dreams, ideas, souls, God, and so on. In a word: arith-
metic is applicable to everything that is thinkable. Hence, if it goes as far as
thought goes, and if logic gives the basic laws of thought, then arithmetic is
as widely applicable as logic.

One consequence of this view is that the basic entities of arithmetic, if
there are any, must be of a logical nature. I shall not go into all details of
Frege’s arguments in Grundglagen here. But it seems clear to him that there
are some basic objects of arithmetic, namely, numbers, since we use nume-
rals in some basic sentences (i.e., equalities) that are true. Now one of the
principles of Frege’s thought, the so-called context principle, says that ques-
tions of existence of abstract entities have to be solved by paying attention to
sentential contexts where putative names for these entities are being employed:
if we employ numerals as singular terms in sentences that are true, then we
have to admit that the corresponding entities (numbers) exist, and that they
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are objects. There is actually a different sort of grammatical evidence for
Frege’s claim that numerals are singular terms, namely, the fact that they are
usually preceded by the definite article like, e.g., in ‘the number 3’. As Frege
sees it, the presence of the definite article indicates that the expression is
meant as referring to one and only one object. I shall skip here a deeper dis-
cussion of whether Frege is right in this assumption, or whether he unduly
dismisses other equally appealing grammatical evidence for treating num-
bers as second order concepts rather than objects.2

Now there was a challenge for Frege: On the one hand, he had to say
which objects numbers are in such a way that their logical nature had to beco-
me evident. On the other hand, the account of numbers that Frege was after
had to provide an explanation of why numbers are universally applicable. If
Frege had simply stated that numbers are logical objects, there would be,
strictly speaking, no novelty in his philosophy in comparison to Leibniz’s
philosophical views. It follows that there must be some logical objects to
which numbers are reducible, and this reduction must be well motivated. Now,
for Frege, concepts are the most basic kind of logical entities. However, due
to their predicative nature, they are essentially distinct from objects, and hen-
ce cannot be the adequate candidates for numbers. Truth-values are objects in
Frege’s ontology, but it is hard to imagine that numbers could be reduced to
them. For this reason Frege says in a note to an article by Jourdain from 1910
that “our first aim, then, was to obtain objects out of concepts, namely, ex-
tents of concepts or classes” (Kleine Schriften, p. 339).3  That is to say, accor-
ding to him, we must consider numbers as being reducible to the extension of
concepts.

Frege’s notion of extension of concepts corresponds in some aspects to
the modern idea of sets, but there are some important differences. For exam-
ple, in the most popular set theories nowadays there is an implicit notion of
sets according to which theses are any collections of previously given ob-
jects, while for Frege a set can only be seen as the extension of some previou-
sly given concept. Another difference is that, for Frege, any concept has an
extension, while today, after Russell’s paradox, we know that some concepts
have no extension. It follows that, in Frege’s conception of extensions, the
axiom of foundation, which we take nowadays to be true of sets, is almost
everywhere violated.

It seems that the broader reasons for identifying numbers with extensi-
ons (sets) in Frege’s work is relatively clear. But which extensions? In a letter

2 See Dummett (1991), chapter 9, for a discussion of this point.
3 I quote here from Jourdain’s own translation of Frege’s notes.
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to Karl Zsigmondy,4  we find the clearest exposition of the basic intuition that
led Frege to the choice that he ultimately made:

Generally each number belongs to several aggregates. Hence, a natural suggestion
is to divide the aggregates in classes, so that all aggregates that have the same num-
ber are gathered together in the same class. In this way, to each number corresponds
a class of aggregates, and to each of our classes a number. Different numbers corres-
pond to different classes as we have them, and different classes correspond to diffe-
rent numbers. What else do we know about the numbers except the fact that we can
recognize the same number again, and that we can distinguish different numbers?
The same is true of our classes. It is very compelling to say: our classes are numbers
and numbers are classes of aggregates. We completely eliminate in this way the
distinction between numbers and our classes. Don’t we have in this way everything
that we need? (Wissenschaftlicher Briefwechsel, p. 271)

We have the strong feeling that these aggregates have something in com-
mon, and this feeling comes from the fact that any two of them can be put into
a one-to-one correspondence. So, they are all equinumerous. Hence we could,
on the one hand, choose anyone as having the same number of objects as any
other but, on the other hand, we also feel that there is no one in particular that
we could choose as being the number 10. So, none of them in particular is the
number 10, but all of them have something to do with the number 10. This
strongly suggests, as Frege concludes, that the number 10 is all of them at
once, i.e., the number 10 is the set of all 10-membered sets. Frege’s definition
of number is formulated in Grundlagen § 68 in the following way: the num-
ber that belongs to the concept F is the extension of the concept equinume-
rous with F. The individual numbers are so defined: 0 is the number that
belongs to the concept x ∨  x; ∨ 1 is the number that belongs to the concept x =
0; 2 is the number that belongs to the concept (x = 0 ∨  x = 1); ... n+1 is the
number that belongs to the concept (x = 0 ∨  x = 1 ∨  ... ∨  x = n).

From our modern perspective, there is no such thing as the set of all 10-
membered sets, as there is no set of all singleton sets, as there is no set of all
n-membered sets for any finite or infinite n. (If these collections were sets,
then by the union axiom, their arbitrary union would be a set. But this is
simply the set of all sets, which cannot be a set, for it would have to include
its own power set, and hence be larger than it actually is, but no set is larger
than the set of all sets.) These collections would be too large to be sets, and
they are more appropriately treated as proper classes. I will come back to this
point later.

4 As the editors of Frege’s philosophical correspondence explain, the letter has no unequivocal date, althou-
gh it was dated as “after 1918” by Scholz.
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For reasons that need not concern us here, Frege’s definition did not
work well, since the formal development of it in Grundgesetze der Arithme-
tik (from 1893, from now on simply Grundgesetze) was based on an axiom
that turned out to be inconsistent.5  But it would be inaccurate to conclude,
from Frege’s failure, that numbers are not to be seen as sets (or, as he would
prefer, as extensions). In the appendix to Grundgesetze vol. II (1903), written
shortly after the discovery of Russell’s paradox, Frege still proclaims that,
even if this particular reduction of numbers to extensions may not have pro-
ven as successful as he thought, the way was open for an adequate “scientific
foundation” of arithmetic, i.e., he thought that some other reduction of num-
bers to sets should be sought.

As Frege sometimes indicates (even before the discovery of Russell’s
paradox), it was actually not without some reluctance that he was led to re-
gard numbers as extensions, and to introduce the infamous Axiom V of Grund-
gesetze. But there was also a general methodological imperative behind his
choice of extensions as the ontological basis of arithmetic. This was seen by
him as the only possible way of giving a logical foundation to arithmetic, as
he explains in his letter to Russell from July 28, 1902 (Wissenschaftlicher
Briefwechsel, p. 223). Indeed, as it seems, Frege might have preferred defi-
ning numbers as concepts, since this would not need the introduction of any
sort of object whatsoever as numbers.6  But this way of proceeding was not
seen by him as methodologically safe. This stems from his preference for the
extensionalist over the intensionalist approach to logic. He says in several
places (e.g., in Nachgelassene Schriften, p. 133) that, although extensionalist
logicians are wrong when they identify concepts with their extensions, they
are right, however, in showing a preference for extensions. Why should this
be seen as a methodological advantage? There is a historical reason for this
view. By the time Frege formulated his logicism, there was an intense debate
among German logicians and mathematicians between the so-called Umfan-
gslogiker (extensionalists) and the so-called Inhaltslogiker (intensionalists).
Umfangslogiker (like, e.g., Schröder) were those who advocated a way of
doing logic that was very close to a pure algebra of classes. The Inhaltslogi-

5 This is Frege’s Axiom V, which says that the extension (or, more generally, value range) of two concepts
(functions) is identical if and only if they yield the same value for any object as argument. As Russell
communicated the discovery of the paradox in a letter in 1902, Frege immediately recognized that it could
be derived within his own system, and that Axiom V was responsible for it.

6 This is actually not quite as simple as I put it here. If numbers are second order concepts, then Frege
needs no objects playing the role of numbers, but there is no guarantee that any number n+1 exists unless
there are n+1 objects in the universe. That is to say, if numbers are not themselves objects, then the
existence of infinite natural numbers would presuppose the existence of countably infinite objects in the
universe. For a discussion of this point, see Dummett (1991, p. 132) and my Ruffino (1998, p. 157).
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ker (like Lotze and Husserl) advocated the thesis that logic is concerned with
more than an algebra of classes, i.e., logic is concerned with the content spe-
cific to concepts. Now in a way Frege endorses the intensionalists’ position,
since logic for him is a science dealing primarily with concepts. But, on the
other hand, the notion of content implicit in most of the intensionalists’ works
was most of the time strongly psychological. But logic should by all means
be kept apart from psychology for him. Hence, according to Frege, although
logic deals primarily with concepts and their contents, the safest way of doing
so without slipping into psychologism is to treat concepts via their extensi-
ons.7

Russell has essentially the same intuition as Frege. In chapter two of
Introduction to Mathematical Philosophy (1919, from now on simply IMP)
he searches for the correct ontological nature of numbers by paying attention
to some general aspects of them. As he explains, a number n is a way of
bringing together all classes of n things, i.e., the number two brings together
all pairs, the number three all trios, and so on. We know that all things in these
classes are equinumerous without knowing previously what the numbers two,
three, and so on are, since being equinumerous, for two given classes a and b,
simply means that there is a one-to-one correlation between the elements of a
and the elements of b. But despite the similarity of positions, Russell is not as
resolute as Frege in defining the number n as the class of all classes of n
things. He makes the following somewhat obscure remark:

It is [...] more prudent to content ourselves with the class of couples, which we are
sure of, than to hunt for a problematical number 2 which must always remain elusi-
ve. (IMP, p. 18)

That is to say, Russell does not seem to think that he has grasped the real
nature of numbers by defining them as classes, as Frege does. But, according
to him, this is the best approximation that we can get to the nature of numbers
that is philosophically respectable.

We have nowadays, within the context of axiomatic set theories, some
alternative definitions of natural numbers as sets different from those defini-
tions proposed by Frege and Russell. The best known treatment is the stan-
dard one in ZF, in which the natural numbers are defined as follows (where
‘∅ ’ stays for the empty set, and ‘S ’ for successor):

7 The titles of the papers published in two of the most influential journals of philosophy in Germany in the
1890s, the Vierteljahrschrift für wissenschaftliche Philosophie and the Zeitschrift für Philosophie und philo-
sophische Kritik, very often suggest some sort of psychologistic approach to concepts. This is the sort of
approach that, I think, Frege was trying to avoid by endorsing the extensionalist methodology.
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0 is the set ∅
1 is the set {∅ }
2 is the set {∅ ,{∅ }}
3 is the set {∅ ,{∅ }, {∅ ,{∅ }}}
...
S(n) is the set n∪ {n}

We can prove induction and recursion theorems for the set ϖ of all natu-
ral numbers from the axioms of ZF. We can also define a linear ordering on ϖ
in the following way: m<n iff m∈ n. Using recursion, we define addition and
multiplication on natural numbers. We can also define the integers as equiva-
lence classes of pairs of natural numbers, the rational as equivalence classes
of pairs of integers, and finally the real numbers as Dedekind cuts, with all
corresponding operations. In a word, we can formulate (and proof) the whole
arithmetic and analysis within ZF (actually, in ZFC, which is ZF plus axiom
of choice).

It is worth noticing a fundamental difference between the set theoretical
approaches reviewed here. For Frege, the existence of infinite numbers was a
consequence only of the way numbers are defined. No previous existence
had to be assumed as a guarantee that infinite numbers exist. Indeed, if there
are zero objects, then the number zero exists, since it is defined as the number
belonging to the concept x ∨  x, i.e., as the extension of the concept equinume-
rous with x ∨  x. By Axiom V, this extension exists. If zero exists, by the same
reasoning 1 exists, since it is defined as the extension of the concept equinu-
merous with the concept x = 0. And so on. In Russell, numbers are not so
defined as implying their own existence. Indeed, as he explains in chapter
XIII of IMP, there is no guarantee that, for an arbitrary n, there are classes
with n elements. But if there are no such classes then number n is the empty
class, and the number n+1 must also be the empty class, and therefore n=n+1,
which violates Peano’s axioms. Hence, in order to guarantee the existence of
infinite natural numbers with the desired properties, Russell needs the Axiom
of Infinity, which postulates the existence of infinite objects in the universe.
In ZF the existence of an infinity of numbers is also guaranteed by an axiom,
which says that there is at least one inductive set, i.e., a set containing ∅  as
element, and for every x, if x is an element of this set, then the successor of x
(i.e., x ∪  {x}) is also an element of it. The set of natural numbers is then
defined as the intersection of all inductive sets. The reason why Frege did not
need anything like an axiom of infinity is that his Axiom V allowed the “trans-
formation” of concepts into objects, and thereby he has a supply of as many
objects as there are concepts. The hardest task involved in Frege’s definition
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was that of finding concepts that are adequate from a mathematical point of
view; but as to their existence, he could get it for free from Axiom V.

II-Benacerraf’s Problem of Multiple Reductions

In a sequence of two famous articles, Paul Benacerraf has posed some
challenges for the realist account of numbers as sets. In the first one (1965),
Benacerraf raises some difficulties for the idea that there is one particular
correct identification of numbers as sets. Actually, as we shall see, Benacer-
raf wants his argument to have a broader impact, and to challenge the very
idea that there is a correct ontological reduction of numbers at all. In the
second article (1973), Benacerraf argues that there are two apparently incom-
patible tasks to be fulfilled by any philosophical account of mathematics: The
first task is that of providing a correct account of truth for mathematical sta-
tements that does justice to the fact that they have, at least on the surface, the
same syntactical form assumed by ordinary statements. (If we say, for exam-
ple, ‘There are at least two prime numbers between four and ten’, this senten-
ce seems to call for the same kind of explanation of its truth-conditions that
we would provide for a sentence like ‘There are at least tree streets named
‘Broadway’ in Boston’.) The other task is an account of our knowledge of
these statements. If we explain the truth of mathematical statements in terms
of their correspondence with an arrangement of objects and relations in the
world (as we do with ordinary empirical statements), then there is a deficit on
the epistemic side, for we are, according to Benacerraf, incapable of giving
an account of our knowledge of these mathematical facts. On the other hand,
if we account for our mathematical knowledge in terms of things that are
familiar to us (proofs, conventions, intuitions, etc.) then there is a difficulty in
explaining why the statements that we take to be true are true. Although I
find it flawed in some fundamental aspects, I shall forgo a deeper discussion
of this argument here. I want to concentrate instead on the points that Bena-
cerraf makes in the first article, since they are more directly relevant to the
main question of this paper, namely, the ontological relation between num-
bers and sets.

Benacerraf’s argument in the first article starts with the claim that, if
numbers are sets, there must be an answer as to which sets they are. Now it is
well known from set theory that there are some possible reductions of num-
bers to sets that are satisfactory. There is, for example, Zermelo’s account, for
which



9NUMBERS AND SETS

0 = Ø
1 = { Ø }
2 = {{ Ø }}
...
n+1 = {n}

with the corresponding definitions of elementary operations; and there is also
the possibility of identifying numbers with von Neumann’s ordinals, which is
essentially the standard definition in ZF that we reviewed in section I. But if
we consider, say, the number 3 in each of these accounts, we get different
sets. There is further disagreement. For one of these approaches (von
Neumann’s), a number m is a member of any larger number n, while for the
other (Zermelo’s), m is a member only of its successor. Successor itself has
different definitions: S(n) = n∪ {n} for one approach, and S(n) = {n} for the
other. The explanation of cardinality is also different for each one of the ap-
proaches. In von Neumann’s approach, a set has cardinality n if and only if it
can be put into a one-to-one correspondence with the number n, but this ex-
planation would be wrong in Zermelo’s approach, since here all numbers are
singleton sets.

Now, Benacerraf claims, both accounts seem to be correct in that they
both satisfy conditions that seem to be necessary (and possibly) sufficient for
correctness. These conditions are the following, according to him: (i)-a cor-
rect account should provide definitions of ‘1’, ‘number’ and ‘successor’, and
of the operations ‘+’, ‘x’, so that the basic laws of arithmetic can be derived;
(ii)-it should also provide an explanation of the applications of numbers to
other non-numerical entities, that is to say, an explanation of cardinality and
cardinal numbers (1965, p. 277). But if both accounts are right from this
perspective, and if they are nevertheless different, then the difference must be
in some aspect that is non-essential. Hence, as Benacerraf concludes, to be
identified with this or that sequence of sets is not essential for numbers.

From these considerations, Benacerraf concludes that numbers are not
sets, for if they were sets we should be able to say which sets they are. Moreo-
ver, according to him, numbers are nothing at all in particular. Any ϖ-sequen-
ce of objects can be the sequence of natural numbers, as long as the successor
relation, and the other relevant operations on numbers, are properly defined.
The only major restriction that Benacerraf places is that the ordering defined
over the elements of the arbitrary ϖ-sequence should be recursive. In a more
recent text (1996), Benacerraf changes his mind and drops even this minimal
requirement: there is no reason anymore, so he thinks, for the ordering to be
recursive. Any ϖ-sequence would do it, according to him.
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III-Numbers as Properties of Sets

There is an alternative approach that, on the one hand, combines set the-
oretical realism with mathematical Platonism and, on the other hand, seems
to be able to avoid Benacerraf’s problem of multiple reductions. This appro-
ach was first proposed by Penelope Maddy in a paper (1981) and later deve-
loped in her book (1990), in the context of a reconstruction of set theoretical
realism in naturalistic terms. Maddy is fully convinced of the force of
Benacerraf’s argument as showing that, since numbers can be identified with
more than one ϖ-sequence, we cannot hold anymore that they are sets. But
she still wants to retain part of the intuition that guided Frege in his definition
of cardinal numbers, namely, the idea that a numerical statement says some-
thing about a concept. According to Frege, when we say ‘There are three
chairs in this room’, we are saying something not about the objects in this
room, but about the concept chair in this room, namely, that it has three ins-
tances (Grundlagen §§ 46-52). Based on this observation, Frege toyed with
the idea that, since this is the case, numbers may be second order properties
(concepts) after all. Indeed, before proposing the definition of numbers in
terms of extensions of concepts in Grundlagen § 68, he presents in § 55 an
attempted definition of numbers as second order concepts, or, better said, as
part of numerical quantifiers (i.e., of expressions of the form ‘there are n xs
such that... ’), which he ends up rejecting as inadequate.8  But instead of pro-
perties of concepts, Maddy believes that numbers should rather be seen as
properties of sets. Consider three different sets: the set of five books on the
table in front of me, the set of fingers in my right hand, and finally the set of
stars in the Southern Cross. Maddy claims that, although it is metaphysically
wrong to say that these sets taken altogether are the number five, they have,
nevertheless, something to do with the number five: being five-numbered is
instantiated by all of them. Hence, Maddy suggests that the number five should
rather be seen as a property shared by all these sets. Numbers are indeed,
according to her, fundamental properties of sets, and set theory involves the
study of properties of sets in the same way that physics, for instance, involves
the study of fundamental properties of physical bodies like length and tempe-
rature.

8 The reasons for Frege’s rejection of this idea are not quite clear. He concentrates on the claim that this
approach does not do justice to the fact that numerals are employed in equalities, and hence must be
proper names. But there seems to be a further reason for Frege’s rejection, even if he is not explicit about
it: If numbers were second-order concepts, then the existence of a number n+1 would depend on the
existence of n objects. And since numbers are not themselves these objects, then arithmetic would de-
pend, for its truth, on the previous existence of non-arithmetical (i.e., non-logical) objects, which would be
unacceptable for Frege. For a more detailed discussion of Frege’s reasons, see Dummett (1991) and
Ruffino (1998).
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Maddy’s alternative seems to avoid Benacerraf’s difficulty, in that there
is no question of identifying numbers with particular sets anymore. Instead,
sequences of sets like von Neumann’s ordinals or Zermelo’s numbers can be
seen as different standards for measuring the number-property of sets, in the
same way that different yardsticks can be seen as different (though equiva-
lent) instruments for measuring length, and there is no saying that one of
them “is” length. As she comments,

[W]hen Benacerraf tells the story of two youngsters who learn von Neumann and
Zermelo versions of number theory, their dispute over whether or not 3Î17 is analo-
gous to an imagined argument over whether an inch is plastic or wooden. (1981, p.
507)

Now Maddy’s program involves some immediate difficulties, as she her-
self recognizes. The first difficulty is that, as it seems, if numbers are proper-
ties of sets, and not sets themselves, then we have to recognize two kinds of
basic entities in set theory (sets and properties), and not just one (sets), and
this seems to require the introduction of a different kind of variable, as well as
of new axioms for properties. The second difficulty arises when it comes to
the individuation of these properties, for although there is no correct identifi-
cation of numbers as sets anymore, there is nevertheless a correct identifica-
tion of numbers as properties. So we have to find out what are the correct
properties, and how they are to be distinguished from other properties. How
are properties to be individuated from one another if not through their exten-
sions? Frege thought that the analogue of identity for concepts is given by
coextensiveness, i.e., two concepts are “identical” if and only if they have the
same extension, but Maddy rejects this alternative claiming that it is usually
wrong that coextensional properties are the same. How can we say, for exam-
ple, that the property of being equinumerous with {Ø,{ Ø}, {{ Ø}}} is the
same as the property of being equinumerous with { Ø, { Ø}, { Ø,{ Ø}}}?
Maddy appeals at this point to the notion of nomological coextensiveness,
which the above mentioned predicates provably have.

But a more serious worry arises in connection with the picture that Ma-
ddy has in mind regarding number theory as a science. How are the number-
properties to be investigated? This is the question raised and answered in the
following passage:

How do properties usually appear within formal set theory? Answer: via their exten-
sions. One doesn’t speak of ‘being a prime’ or ‘being a real number’, one speaks of
‘the set of primes’ and ‘the set of real numbers’. This is why I said I was inclined to
agree with Benacerraf that a property view lends some support to Frege’s identifica-
tion of numbers with sets of equinumerous sets. Of course, the problem is that the



12 Marco Ruffino

extension of being 3-membered is not a set, but a proper class. So, I think that the
problem of understanding the role of number properties within formal set theory is a
special case of the problem of understanding the role of proper classes. (1981, p.
508)

As she remarks here, number properties are actually to be studied via
their extensions, and this can be carried out by developing a theory of proper
classes. (Maddy herself developed such a theory in Maddy (1983).) Her stra-
tegy seems to be very much in the spirit of Frege’s defense of extensionalism
in logic. As we saw, for Frege, the extensional approach to concepts is not
just an option, but a condition for being scientific. Maddy’s remark here see-
ms actually to reinforce the Fregean alternative for a definition of numbers (if
the definition is properly amended with the qualification that numbers are not
to be seen as sets of sets, but as proper classes of sets) instead of carrying
some strength to her own alternative. For her point was that we are better off
if, instead of treating numbers as sets, we regard them as properties of sets.
But now the suggestion is that these properties have to be studied through
their extensions, and their identity is to be given by nomological coextensive-
ness. But then it is not clear exactly what is gained by preferring this detour,
instead of simply identifying numbers with proper classes, and claiming that
understanding the role of numbers is a special case of understanding the role
of proper classes. In other words, it is not clear why Maddy’s approach should
be more attractive than the amended Fregean approach (except for the fact
that is apparently avoids Benacerraf’s problem).

III-Benacerraf’s Argument Reconsidered

Now I want to go back to Benacerraf’s argument and critically ask how
much it really achieves. The conclusion of his argument seems prima facie
too strong: From the fact that there are more then one successful reduction of
numbers to sets he concludes that numbers could not be sets. But it is not
exactly clear why he thinks that two successful definitions of numbers to sets
prevent them from being sets. Independently of this, however, I think that
Benacerraf’s argument is not as impressive or conclusive as some philoso-
phers (like Maddy) have taken it. In order to better understand the possibility
of multiple reductions of numbers to sets and what exactly this amounts to, it
might be of some help to compare this case with the analogous one of ordered
pairs. Ordered pairs are entities, and we find it compelling that they should be
reducible to sets. (At least this is how we learn about ordered pairs in ZF.)
Now it is well known that there are more than one possible definition of
ordered pairs as sets that satisfy the condition of adequacy given by
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<a,b>=<c,d> iff a=c and b=d.

We have, for example, Kuratowski’s definition (which became standard), i.e.,
<a,b>={{a}, {a,b}}, but also Wiener’s definition, i.e., <a,b>={{{a},Ø },
{{b}}}. This seems to present an analogous case to the one of numbers as
sets, and if we were to apply Benacerraf’s reasoning here, we should say that
this possibility of multiple reductions is sufficient to show that ordered pairs
are not sets.9  And, if ordered pairs cannot be sets, following Benacerraf’s
conclusion, neither can functions and relations be sets, for they are defined in
standard ZF set theory as sets of ordered pairs, neither can other entities like
Peano’s systems be sets, etc. At this point I just want to call attention for the
fact that Benacerraf’s conclusion, if correct, would have a far greater impact
on our beliefs than the restricted one about numbers as sets, since a whole
group of things that are normally treated as sets could simply not be sets.

It is doubtful, however, that Benacerraf’s argument of multiple reducti-
ons is a decisive argument against a realist philosopher that wants to hold
on to the idea that numbers are sets. I do not intend here to defend the view
that Frege’s intuition was right and numbers are indeed sets, but rather to
point out what seems to me to be a basic weakness of Benacerraf’s argu-
ment. It seems that his argument gains its apparent force from not taking
the realist’s perspective seriously enough. But it is not hard to see how a
realist could resist Benacerraf’s claim in a surprisingly simple way. Faced
with the possibility of multiple reductions that Benacerraf mentions, two
different reactions are possible: one is to discredit, as Benacerraf and Ma-
ddy do, the idea that numbers are particular sets. The other one is to consi-
der the different possible reductions as different working hypotheses, each
one trying to describe a reality of numbers as sets existing independently of
our theories. There might be small differences between the approaches that
are not, strictly speaking, essential for each one of them to derive the laws
of arithmetic. But these small differences make one of them more practical,
simple and elegant. We know that von Neumann’s definition has several
advantages over Zermelo’s. Now Benacerraf is certainly aware of this fact.
But he does not consider these advantages as being something that matters.
For all that matters for him is that the different approaches satisfy the crite-
ria of correctness, namely, they both provide definitions of the basic predi-
cates (‘number’, ‘successor’, ‘one’, etc.) and an explanation of cardinality.

9 Kitcher (1978) concludes from this fact that set theory needs two kinds of entities, namely, sets and also
functions. Maddy (in personal communication) also thinks that this fact alone is enough to show that
ordered pairs are not sets, although we may use set theoretical counterparts of ordered pairs that satisfy
the condition of adequacy for mathematical purposes.
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And, in so doing, Benacerraf disregards a way of thinking characteristic of
realist philosophers. In what follows, I will present three examples that illus-
trate this way of thinking.

We could contrast Benacerraf’s view with Frege’s pragmatic view ex-
pressed in two different passages of the introduction of Grundgesetze. The
first passage is one in which Frege justifies his highly controversial thesis
that complete sentences are semantically analogous to proper names, and the
objects to which they refer are the truth values true and false. As he explains,
one of the facts that delayed the publication of the book was that he introdu-
ced some technical novelties in his old system of the Begriffsschrift, and the-
se changes led him to dismiss an almost completed early version of his book.
One of this changes, as he explains, was the introduction of truth-values as
objects. As Frege comments,

Only a detailed acquaintance with this book can show how much simpler and shar-
per everything becomes by the introduction of truth-values. These advantages alone
put a great weight in balance in favor of my own conception, which indeed may
seem strange at first sight. (Grundgesetze, p. ix)

Now it is interesting to compare Frege’s attitude towards truth-values
with his attitude towards extensions of concepts. As he comments in the same
introduction, extensions were necessary from the beginning, and we cannot,
according to him, build anything without them. But with truth-values the si-
tuation was different. They were not necessary from the beginning, since a
version of Grundgesetze (the neglected manuscript mentioned in the intro-
duction) was actually prepared by Frege without them. So the justification for
the introduction of truth values as objects is mainly pragmatic, i.e., the tech-
nical advantages brought by this move is a good sign that a theory that intro-
duces truth values is closer to the truth than a theory (let’s say, the old version
of Grundgesetze) that dispenses with these objects.

Another sign of this pragmatic attitude can be found in the closing rema-
rks of the introduction of Grundgesetze. Frege recognizes that his system
might not be the only possibly one. Than he adds:

Anyone who holds other convictions has only to try to erect a similar structure upon
them, and I think he will perceive that it does not work, or at least does not work so
well.

It is not quite clear what Frege is referring to when he says that other
system do not work “as well” as his. But in view of his comment that I quoted
earlier, it seems plausible to assume that working well for him means not just
being able to get all theorems derivable in his system, but also deriving it in a
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short, simple and elegant way.10  Although simplicity, practicality, etc., are
not essential aspects of a formal system, they are, nevertheless, to be taken
into account in the dispute between rival theories.

We find something quite similar in Church’s defense of the same thesis
(in Church 1956). In the opening sections of the book, he says that a great
advantage of regarding sentences as names of truth-values is that we can, in
this case, apply the semantic theory that was independently developed for
ordinary names and predicates, thereby producing a unified theory. And he
adds:

Else we should have to develop independently a theory of the meaning of sentences;
and in the course of this, it seems, the development of these three sections [on sense
and reference of names, on constants and variables, and on functions] would be so
closely paralleled that in the end the identification of sentences as a kind of names
(though not demonstrated) would be very forcefully suggested as a means of simpli-
fying and unifying the theory. (1956, 24)

That is to say, the acceptance of truth-values as objects referred to by
sentences is not intrinsically necessary for Church, but this acceptance is jus-
tified because it greatly simplifies the semantical theory.

As a third illustration of this typically realistic attitude, I want to quote a
passage from Gödel’s discussion of the continuum problem (1947). Gödel
famously claims that the axioms of set theory up to that point are insufficient
to settle the question one way or another, and that new axioms are necessary.
Moreover, the system of set theory can be “supplemented without arbitrari-
ness” by new axioms, so as to better capture the concept of set. And Gödel
adds the following remark regarding the acceptability of new axioms:

[E]ven disregarding the intrinsic necessity of some new axiom, and even in case it
has no intrinsic necessity at all, a probable decision about its truth is possible also in
another way, namely, inductively by studying its “success.” Success here means
fruitfulness in consequences, in particular in “verifiable” consequences, i.e., conse-
quences demonstrable without the new axiom, whose proofs with the help of the
new axiom, however, are considerably simpler and easier to discover, and make it
possible to contract into one proof many different proofs. (1947, p. 477)

That is to say, in Gödel’s perspective, practicality plays an important role
in the recognition of some axioms as true, even if these axioms are not in

10 There is some biographical evidence that, by the time he wrote Grundgesetze, Frege was well acquainted
with Dedekind’s work in “Was sind und was sollen die Zahlen.” Lothar Kreiser registers in his recent
biography that, in the winter semester of 1889/1990, Frege offered a seminar on Dedekind’s monograph
(Kreiser 2001, p. 295). That is to say, he was aware that there were alternative ways of arriving at essen-
tially the same results that he obtained in Grundgesetze.
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principle indispensable, and other proofs for the same results might be produ-
ced without them.

Now why are things like practicality, simplicity, and so on, important
(though not essential) for Frege, Church, and Gödel, while they do not seem
to be so for someone like Benacerraf? I suspect that part of what is involved
here is a fundamental difference between the realist’s perspective of regar-
ding mathematical theories as working hypothesis, as an attempt to describe
an independent mathematical reality, and the attitude of someone like Bena-
cerraf, for whom any theory that produces such and such results is in princi-
ple correct. If my perspective is correct here, there is an important sense in
which Benacerraf’s argument begs the question against the realist, for it dis-
regards a typically realistic way of looking at matters of truth and existence.
Indeed his argument takes for granted that some non-essential aspects of
mathematical theories do not count, while realists like Frege, Gödel and Church
would tend to see these secondary aspects as signs that a working hypotheses
is closer to the truth than another one, even if both hypotheses can yield es-
sentially the same results.
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