FLORÍSTICA E CARACTERIZAÇÃO DE UMA ÁREA DE CAMPO FERRUGINOSO NO COMPLEXO MINERÁRIO ALEGRIA, SERRA DE ANTÔNIO PEREIRA, OURO PRETO, MINAS GERAIS, BRASIL¹

Eduardo Silva Ataíde², Paulo de Tarso Amorim Castro³ e Geraldo Wilson Fernandes⁴

RESUMO – Este estudo apresenta o inventário florístico de uma área de campo ferruginoso localizada na Serra de Antônio Pereira, na região Sul-Sudeste do Quadrilátero Ferrífero, no município de Ouro Preto, Minas Gerais. Para a coleta de dados foram demarcadas 15 unidades amostrais de 10 x 10 m em cada tipologia física de substrato estudado: a canga couraçada e o afloramento de Itabirito. Todas as unidades amostrais ocupavam um mesmo perfil de inclinação com azimute NE. As campanhas de campo estenderam-se de março de 2007 a outubro de 2008 e foram realizadas, em média, semanalmente. Nas coletas, restringiram-se apenas as espécies fanerógamas encontradas dentro das unidades amostrais e nas áreas de entorno. Foram inventariadas 182 espécies reunidas em 47 famílias, sendo 102 espécies dentro das unidades amostrais e 80 nas áreas de entorno. As famílias com maior riqueza de espécies nas unidades amostrais foram: Asteraceae (14 spp), Poaceae e Orchidaceae (8 spp cada), Fabaceae e Melastomataceae (7 spp cada), Myrtaceae e Verbenaceae (6 spp cada) e Cyperaceae, Lauraceae, Rubiaceae e Euphorbiaceae (4 spp cada). Os ambientes estudados - canga couraçada e afloramento de Itabirito - apresentaram-se similares.

Palavras-chave: Unidades amostrais, Serra de Antônio Pereira e Canga couraçada.

FLORISTIC AND CHARACTERIZATION OF THE RUPESTRIAN FERRUGINOUS FIELD AREA IN THE ALEGRIA COMPLEX MINING, SERRA DE ANTÔNIO PEREIRA, OURO PRETO, MINAS GERAIS, BRAZIL

ABSTRACT – This study presents the floristic inventory of the rupestrian ferruginous field areas located in Serra de Antônio Pereira, in the south-southeast of Quadrilátero Ferrífero region in Ouro Preto, MG. There, two different substracts were surveyed: the canga couraçada, a hard ferruginous laterite, and itabirite rock outcrop. In each substract, 15 sample units (10mx10m) were studied. All the samples units were made with the same slope. The data collected were only restricted to the phanerogam species found in the samples units and surrounding areas. The floristic inventory done at Serra de Antônio Pereira found 182 species united in 47 families, of which 102 species occur inside the sample units and other 80 species in surrounding areas. The richest species families in the samples units were: Asteraceae (14 spp), Poaceae and Orchidaceae (8 spp each), Fabaceae and Melastomataceae (7 spp each), Myrtaceae and Verbenaceae (6 spp each), Cyperaceae, Lauraceae, Rubiaceae and Euphorbiaceae (4 spp each). Both the studied units, canga couraçada and itabirite outcrop, showed similarities.

Keywords: Sample units, Serra de Antônio Pereira and Canga couraçada.

⁴ Instituto de Ciências Biológicas da UFMG. E-mail: <gw.fernandes@gmail.com>.

¹Recebido em 07.04.2010 e aceito para publicação em 31.10.2011.

² Faculdade Presidente Antonio Carlos de Congonhas, UNIPAC de Congonhas/MG. E-mail: <eduardosataide@yahoo.com.br>.

³ Departamento de Geologia da Universidade Federal de Ouro Preto, DEGEO/UFOP. E-mail: <paulo_de_castro@degeo.ufop.br>.

1. INTRODUÇÃO

A Serra do Espinhaço é uma cadeia montanhosa que se estende de norte a sul nos Estados da Bahia e de Minas Gerais, em altitudes que variam de 700 a 2.000 m (HARLEY, 1995). Nesses ambientes predominam um tipo vegetacional denominado campos rupestres, que podem estar associados a afloramentos de rochas quartzíticas, graníticas ou ferruginosas. Campos rupestres são aqueles que se desenvolvem sobre afloramentos rochosos ou sobre solos primários com diferentes graus de desagregação da rocha, podendo diferir quanto à composição florística de acordo com a natureza geológica do substrato.

O termo campo rupestre foi utilizado por Magalhães (1966) para designar o tipo de vegetação associada a afloramentos quartzíticos na Serra do Espinhaço (VIANA; LOMBARDI, 2007). Uma vez que o termo campo rupestre vem sendo utilizado particularmente para a vegetação associada a substratos quartzíticos (MAGALHÃES, 1966; GIULIETTI et al., 1987), é recomendável que se discrimine o tipo de substrato ao se tratar de outros campos rupestres, como o campo rupestre sobre substrato granítico e o campo rupestre hematítico ou sobre rocha ferruginosa (VINCENT, 2004).

O termo Campo Ferruginoso foi primeiramente usado por Rizzini (1979) para classificar esse tipo de vegetação que se desenvolve sobre substrato rico em ferro e vem sendo utilizado atualmente por pesquisadores como Vincent (2004) e Vincent et al. (2002).

Essa fitofisionomia, comum no Quadrilátero Ferrífero, em Minas Gerais e na Serra dos Carajás, Pará, é caracterizada por vegetação herbáceo-arbustiva, que possui diversas adaptações para seu estabelecimento nesse ambiente adverso (VINCENT, 2004). Entre essas adaptações está a capacidade de acúmulo de metais pesados em tecidos vegetais, como mostram estudos realizados na Serra dos Carajás por Porto e Silva (1989) e Silva (992) e no Quadrilátero Ferrífero por Teixeira e Lemos-Filho (1998).

Os trabalhos sobre inventários florísticos em campos ferruginosos ainda são escassos, dos quais se podem destacar os trabalhos de Secco e Mesquita (1983), Silva e Rosa (1990) e Silva et al. (1996) e Cleef e Silva (1994), estes realizados na região de Carajás, Pará. Em relação ao Quadrilátero Ferrífero, destacam-se os trabalhos de Brandão e Gavilanes (1990), Roschel (2000), Vincent (2004), Viana e Lombardi (2007), Mourão e Stehmann (2007) e Jacobi et al. (2008).

O Quadrilátero Ferrífero ocupa uma área de 7.000 km² (DORR, 1969), e situa-se na zona limítrofe entre dois hotspots brasileiros: Mata Atlântica e Cerrado. Localiza-se adjacente ao limite austral da Cadeia do Espinhaço, e sua flora distribui-se em diversas formações vegetais, caracterizadas por um mosaico de influências biogeográficas que evidencia o caráter ecotonal da região. São encontradas na região do Quadrilátero Ferrífero formações florestais (Floresta Estacional Semidecidual e Floresta Ombrófila), savânicas (Cerrado sensu stricto, campos sujos e campos limpos) e rupestres (Campo Rupestre sobre Quartzito, Campo Rupestre sobre Canga e, mais raramente, Campos sobre Afloramento Granítico). A região conta com extrema diversidade florística, incluindo diversas espécies endêmicas, ameaçadas de extinção e de uso potencial como medicinais, ornamentais, alimentícias ou madeireiras (VIANA, 2008).

O Quadrilátero Ferrífero é considerado uma região de maior diversidade florística da América do Sul (HARLEY, 1995; GIULIETTI et al., 1997 apud JACOBI; CARMO, 2008), com mais de 30% de endemismo em sua flora (GIULIETTI et al., 1987 apud JACOBI; CARMO, 2008), prioritária para a conservação da biodiversidade no Estado de Minas Gerais, por possuir os campos ferruginosos com ocorrência de espécies vegetais restritas à região e por constituir um ambiente único em Minas (JACOBI; CARMO, 2008). Essas áreas se encontram ameaçadas pela expansão das minerações, atividade que explora a hematita ocorrente sob os itabiritos.

A grande diversidade geológica e topográfica da região, de fato, é um dos motivos para a existência de riquíssima biodiversidade, o que justificou o reconhecimento do Quadrilátero Ferrífero como uma região de "importância biológica extrema" (DRUMMOND et al., 2005) e sua inserção dentro da Reserva da Biosfera da Cadeia do Espinhaço pela UNESCO em 2005 (JACOBI, 2008).

O objetivo deste trabalho foi contribuir para o conhecimento da flora fanerogâmica de uma área de campo ferruginoso com vistas a subsidiar programas de restauração de áreas futuramente degradadas pela mineração.

2. MATERIAL E MÉTODOS

A Serra de Antônio Pereira abrange parte do Sinclinal Mariana localizado na região Sul-Sudeste do Quadrilátero Ferrífero e está inserida, de forma disjunta, no Complexo da Cadeia do Espinhaço.

O clima dominante da região é do tipo Cwa de Köeppen, temperado quente, com estação seca de abril a setembro. A temperatura média anual é de 20 °C, e a precipitação média anual varia de 1.300 mm, na porção Leste do Quadrilátero, a 2.100 mm, na porção Sul, em Ouro Preto (HERZ, 1978).

A área de estudo localiza-se no Complexo Minerário denominado Alegria 7, de propriedade da Samarco Mineração S.A., possui área de 225,6 ha e encontra-se no extremo Norte do município de Ouro Preto, divisa com o município de Mariana. As unidades amostrais foram plotadas a partir do ponto 0655333 e UTM 7768414 (*Datum* SAD 69, fuso 23 S).

Foram distribuídas 15 unidades amostrais de 10 x 10 m, todas no mesmo perfil de declividade e com azimute NE, em cada tipologia física de substrato estudado: a canga couraçada *sensu* (RIZZINI, 1979) e o afloramento de itabirito, perfazendo um total de 30 unidades. As áreas de canga ocorrem nas meias-vertentes, enquanto os afloramentos predominam nas quotas mais altas do perfil, que variam de 900 m a 1.200 m.

O inventário florístico foi realizado entre março de 2007 e outubro de 2008, com incursões semanais, em média, no campo. As coletas foram restritas às espécies fanerógamas em estado fértil, abrangendo as unidades amostrais e a área de entorno. As espécies estéreis foram marcadas para posteriores coleta e identificação. Todo o material coletado encontra-se depositado no Herbário José Badini (OUPR), da Universidade Federal de Ouro Preto, em Ouro preto, MG.

A identificação das espécies foi por meio de bibliografia especializada, comparação com exsicatas determinadas depositadas no Herbário José Badini (OUPR) e por colaboração de especialistas de outras instituições. A circunscrição das famílias adotada foi aquela proposta pelo APG II (APG, 2003).

A metodologia utilizada para a amostragem fitossociológica foi o método de *Relevè* (MUELLER-DOMBOIS; ELLENBERG, 1974), a qual consistiu em demarcar Relevès (unidades amostrais) de 10 x 10 m em cada tipo de substrato estudado. Os parâmetros fitossociológicos foram coletados nas 30 unidades amostrais utilizadas no inventário florístico.

Para determinar a frequência das espécies, foram estimados dois parâmetros: a Frequência Absoluta (Fai), que é a probabilidade de se encontrar pelo menos um indivíduo da espécie i em uma unidade amostral; e a

Frequência Relativa (FRi), que equivale à razão entre a frequência absoluta de determinada espécie e a somatória das frequências absolutas de todas as espécies amostradas. Também, foi calculado o Índice Valor de Importância (IVI), que é a soma dos valores de Frequência Relativa (FRi) e Dominância Relativa (DoRi).

3. RESULTADOS

O inventário florístico das fanerógamas contou com 182 espécies reunidas em 47 famílias, das quais 102 espécies foram inventariadas nas unidades amostrais (Tabela 1) e 80 nas áreas de entorno (Tabela 2). As 102 espécies inventariadas nas unidades amostrais estão reunidas em 34 famílias, abrangendo 81 gêneros, sendo 73 espécies (71,56%) de dicotiledôneas e 29 (28,43%) de monocotiledôneas. As famílias com maior riqueza são: Asteraceae (14 spp), Orchidaceae e Poaceae (8 spp cada), Melastomataceae e Fabaceae (7 spp cada), Myrtaceae e Verbenaceae (6 spp cada) e Rubiaceae, Lauraceae, Cyperaceae e Euphorbiaceae (4 spp cada).

Dos hábitos de crescimento ocorrentes na área de estudo, 37% eram constituídos por espécies herbáceas, 51% de arbustos, 8% de subarbustos e 4% de lianas.

Nos ambientes estudados canga couraçada e afloramento de itabirito, as espécies apresentavam-se bem distribuídas, sendo os ambientes bem similares (H'canga = 3,26 nats/ind e H'afloramento = 3,20 nats/ ind). Entretanto, 34 espécies foram inventariadas exclusivamente em canga: Achyrocline satureioides, Aegiphylla sp, Axonopus siccus, Blepharocalix salicifolius, Calyptranthes pteropoda, Cambessedesia pitirofila, Cinnamomum sellowianum, Declieuxia fruticosa, Dicronema sp1, Dioscorea filiformes, Epidendrum secundum, Lantana trifolia, Miconia coralina, Miconia theaezans, Microlicia crenulata, Microtea tenuiflora, Myrcia eriocalix, Myrcia splendens, Nectandra nitidula, Ouratea semiserrata, Paepalanthus hilairei, Panicum wettsteinii, Pera obtusifolia, Phyllanthus klotzchianus, Phylodendron sp, Remijia ferruginea, Schefflera morotononi, Sebastiania corniculata, Stirax comporum, Stylosanthes ruelioides, Tibouchina alba, Vellozia graminea, Vernonia holosericea e Vochysia emarginata. Outras nove espécies foram inventariadas exclusivamente nos afloramentos de Itabirito, como Ditassa linearis, Dasyphyllum sprengelyanum, Eremanthus incanus, Hyptis monticula, Hololepis pedunculata, Mandevilla tenuiflora, Matayba marginata, Nematanthus strigillosus e Trichogonia sp. As demais (59 spp) apresentavam-se de forma generalista e ocorriam nos dois ambientes.

1268 ATAIDE, E.S. et al.

Tabela 1 – Espécies de plantas fanerógamas inventariadas nas unidades amostrais nos campos ferruginosos da Alegria 7 – Samarco Mineração S.A., com seus ambientes de ocorrência (canga couraçada = Cc e afloramento de Itabirito = IT), Número de Herbário (NH) e Formas de Vida (FV). Fan = Fanerófita, Geo = Geófita, Hem = Hemicriptófita, Cam = Caméfita e Ter = Terófita.

Table 1 – Species of phanerogam plants inventoried in the samples units in rupestrian ferruginous field of Alegria 7 - Samarco Mineração S.A., with occurrence sites (Canga couraçada = Cc and Itabirite outcrops = IT), herbarium number (NH) and life forms (FV), Geo = Geophytes, Hem = Hemicryptophytes, Cam = Chamaephytes and Ter = Therophytes.

Família	Espécie	Ambiente	FV	NH
Apocynaceae	Ditassa linearis Mart.	ΙΤ	Cam	OUPR 20618
	Ditassa mucronata Mart.	IT/Cc	Cam	OUPR 21127
	Mandevilla tenuiflora (J.C. Mikan) Woodson	ΙT	Ter	OUPR 20731
Araceae	Anthurium minarum Sakur. & Mayo	IT/Cc	Geo	OUPR 20538
	Philodendron sp	Cc	Geo	OUPR 20770
Araliaceae	Schefflera morototoni (Aubl.) Maquire et al.	Cc	Fan	OUPR 21017
Aristolochiaceae	Aristolochia saxicola Hoene	IT/Cc	Hem	OUPR 21319
Asteraceae	Achyrocline satureioides (Lam.) DC.	Cc	Fan	OUPR 20726
	Baccharis punctulata DC.	IT/Cc	Fan	OUPR 21302
	Baccharis reticularia DC.	IT/Cc	Fan	OUPR 20721
	Dasyphyllum sprengelianum (Gardner) Cabrera	IT	Fan	OUPR 20722
	Eremanthus erythropappus (DC.) MacLeish	IT/Cc	Fan	OUPR 20728
	Eremanthus incanus (Less.) Less.	IT	Fan	OUPR 20733
	Eupatorium sp	IT/Cc	Fan	OUPR 21301
	Eupatorium squalidum DC.	IT/Cc	Fan	OUPR 19436
	Hololepis pedunculata (DC. ex Pers.) DC.	ΙΤ	Fan	OUPR 19417
	Lychnophora pinaster Mart.	IT/Cc	Fan	OUPR 19428
	Lychnophora syncephala (Sch. Bip.) Sch. Bip.	IT/Cc	Fan	OUPR 20600
	Trichogonia sp	IT	Fan	OUPR 19445
	Eremanthus crotonoides (DC.) Sch.Bip.	IT/Cc	Fan	OUPR 20727
	Vernonia holocericea Mart. ex DC.	Cc	Fan	OUPR 20624
Bromeliaceae	Cryptanthus schwackeanus Mez	IT/Cc	Hem	OUPR 21718
	Dyckia rariflora Schult. & Schult.f.	IT/Cc	Hem	OUPR 19418
Cyperaceae	Bulbostylis glaziovii (Boeckeler) C.B. Clarcke	IT/Cc	Hem	OUPR 21304
	Dicronema sp1	Сс	Hem	OUPR 21010
	Fintelmannia microstachya (Nees ex Arn) H. Pfeiff	IT/Cc	Hem	OUPR 20709
	Lagenocarpus rigidus Nees	IT/Cc	Hem	OUPR 20548
Dioscoreaceae	Dioscorea filiformis Griseb.	Cc	Hem	OUPR 21297
Ericaceae	Leucothoe cordifolia Meisn.	IT/Cc	Fan	OUPR 21200
Eriocaulaceae	Paepalanthus hilairei Körn	Сс	Fan	OUPR 19440
Euphorbiaceae	Croton lobatus L.	IT/Cc	Fan	OUPR 19420
	Croton oleoides Müll. Arg.	IT/Cc	Fan	OUPR 19438
	Pera obtusifolia (Schott) Müll. Arg.	Cc	Fan	OUPR 21644
	Sebastiania corniculata Müll. Arg	Cc	Fan	OUPR 20837
Fabaceae	Aeschynomene elegans Schltdl. & Cham.	IT/Cc	Ter	OUPR 21238
	Bauhinia rufa (Bong.) Steud.	IT/Cc	Fan	OUPR 21239
	Centrosema coriaceum Benth.	IT/Cc	Cam	OUPR 20719
	Galactia martii DC.	IT/Cc	Cam	OUPR 20916
	Periandra mediterranea (Vell.) Taub.	IT/Cc	Fan	OUPR 19435
	Senna reniformis (G.Don) H.S.Irwin & Barneby	IT/Cc	Fan	OUPR 20725
C	Stylosanthes ruellioides Mart.	Cc	Cam	OUPR 19448
Gesneriaceae	Nematanthus strigillosus (Mart.) H.E.Moore	IT IT/Co	Cam	OUPR 19449
T *1	Paliavana sericifolia Benth.	IT/Cc	Fan	OUPR 19439
Iridaceae	Neomarica sp	IT/Cc	Geo	OUPR 20850
Lamiaceae	Hyptis monticula Mart. ex Benth.	IT IT/C-	Fan	OUPR 20917
Lauraceae	Cinnamomum erythropus (Nees & Mart.) Kosterm.	IT/Cc	Fan	OUPR 20542
	Cinnamomum sellowianum (Nees & Mart.) Kosterm.	Cc	Fan	OUPR 20688

Continua ...

Continued ...

Tabela	1 – Cont.
Table	1 Cont

	Nectandra nitidula Ness	Cc	Fan	OUPR 21658
	Ocotea tristis (Nees & Mart.) Mez	IT/Cc	Fan	OUPR 21645
Lythraceae	Diplusodon buxifolius (Cham. & Schltdl.) A.DC.	IT/Cc	Fan	OUPR 19434
Malpighiaceae	Byrsonima variabilis A.Juss.	IT/Cc	Fan	OUPR 20599
Maipigmaceae	Heteropterys campestris A.Juss.	IT/Cc	fan	OUPR 20716
Melastomataceae	Cambessedesia pityrophylla (Mart. ex DC.) A.B.Martins	Сс	Fan	OUPR 21015
	Leandra atropurpurea Cogn.	IT/Cc	Fan	OUPR 19413
	Miconia corallina Spring	Cc	Fan	OUPR 21639
	Miconia theaezans (Bonpl.) Cogn.	Cc	Fan	OUPR 21640
	Microlicia crenulata (DC) Mart.	Cc	Fan	OUPR 20595
	Tibouchina alba Cogn.	Cc	Fan	OUPR 21316
	Tibouchina multiflora (Gardner) Cogn.	IT/Cc	Fan	OUPR 19427
Myrsinaceae	Myrcine lancifolia Mart.	IT/Cc	Fan	OUPR 1570
Myrtaceae	Blepharocalyx salicifolius (Kunth) O.Berg	Cc	Fan	OUPR 20825
	Calyptranthes pteropoda O.Berg	Cc	Fan	OUPR 21685
	Myrcia pulchra (O.Berg) Kiaersk.	IT/Cc	Fan	OUPR 21857
	Myrcia splendens (Sw.) DC.	Cc	Fan	OUPR 20996
	Myrcia eriocalix DC.	Сс	Fan	OUPR 21289
	Myrcia venulosa DC.	IT/Cc	Fan	OUPR 20723
Ochnaceae	Ouratea semiserrata (Mart. & Nees) Engl.	Cc	Fan	OUPR 20592
Orchidaceae	Acianthera teres (Lindl.) Borba	IT/Cc	Hem	OUPR 20544
	Epidendrum martianum Lindl.	IT/Cc	Hem	OUPR 20650
	Epidendrum secundum Jacq.	Cc IT/Cc	Hem	OUPR 21651
	Hoffmannseggella crispata (Thunb.) H.G.Jones		Hem	OUPR 19412
	<i>Hoffmannseggella cinnabarina</i> (Batem. <i>ex</i> Lindl.)H.G.Jones	IT/Cc	Hem	OUPR 21657
	Oncidium gracile Lindl.	IT/Cc	Hem	OUPR 21318
	Oncidium blanchetii Rchb. f.	IT/Cc	Hem	OUPR 21655
	Sophronitis caulescens (Lindl.) Van den Berg & M.W. Chase	IT/Cc	Hem	OUPR 21067
Passifloraceae	Passiflora villosa Vell.	IT/Cc	Cam	OUPR 21030
Phyllanthaceae	Phyllanthus klotzschianus Müll.Arg.	Cc	Cam	OUPR 20594
Phytolacaceae	Microtea tenuiflora Moq.	Cc	Ter	OUPR 21299
Poaceae	Apochloa poliophylla (Renvoize & Zuloaga) Zuloaga & Morrone	IT/Cc	Hem	OUPR 21087
	Axonopus laxiflorus (Trin.) Chase	IT/Cc	Hem	OUPR 21086
	Axonopus siccus (Nees) Kuhlm.	Cc	Hem	OUPR 20839
	Ichnanthus bambusiflorus (Trin.) Döll	IT/Cc	Hem	OUPR 20819
	Panicum pseudisachne Mez	IT/Cc	Hem	OUPR 20834
	Panicum wettsteinii Hack.	Cc	Hem	OUPR 20831
	Schizachyrium sanguineum (Retz.) Alston	IT/Cc	Hem	OUPR 21084
Dalvaanaaaa	Schizachyrium tenerum Nees	IT/Cc IT/Cc	Hem	OUPR 21077
Polygonaceae Rubiaceae	Coccoloba acrostichoides Cham.	IT/Cc IT/Cc	Fan	OUPR 21293
Kubiaceae	Alibertia rotunda (Cham.) K. Schum. Declieuxia fruticosa (Willd. ex Roem. &	Cc	Fan Fan	OUPR 21240 OUPR 19426
	Schult.) Kuntze	CC	1 an	OOTR 17420
	Psyllocarpus laricoides Mart. ex Mart. & Zucc.	IT/Cc	Cam	OUPR 19456
	Remijia ferruginea (A.StHil.) DC.	Cc	Fan	OUPR 21642
Sapindaceae	Matayba marginata Radlk.	IT	Fan	OUPR 21036
Styracaceae	Styrax camporum Pohl	Cc	Fan	OUPR 21295
Velloziaceae	Vellozia compacta Mart. ex Schult. & Schult.f.	IT/Cc	Fan	OUPR 21293
, cholincone	Vellozia graminea Pohl	Cc	Hem	OUPR 19454

Continua ...

Continued ...

Tabela 1 – Cont. **Table 1** – Cont.

Verbenaceae	Aegiphylla sp	Cc	Fan	OUPR 20853
	Lantana fucata Lindl.	IT/Cc	Fan	OUPR 21315
	Lantana trifolia L.	Cc	Fan	OUPR 20876
	Lippia glandulosa Schauer	IT/Cc	Fan	OUPR 20720
	Lippia hermannioides Cham.	IT/Cc	Fan	OUPR 19458
	Stachytarpheta glabra Cham.	IT/Cc	Fan	OUPR 19431
Vochysiaceae	Vochysia emarginata (Vahl) Poir.	Cc	Fan	OUPR 20912

Tabela 2 – Inventário florístico fanerogâmico das áreas de entorno das unidades amostrais. NH = Número de Herbário; FV = Formas de Vida; Fan = Fanerófita; Cam = Caméfita; Geo = Geófita; Ter = Terófita; e Hem = Hemicriptófita

Table 2 – Species of phanerogam plants inventoried in the around areas of the samples units. Herbarium number (NH); life forms (FV); Geo = Geophytes, Hem = Hemicryptophytes; Cam = Chamaephytes; and Ter = Therophytes.

Família	Espécie	FV	NH
Acanthaceae	Ruellia macrantha (Mart. ex Ness) Lindau	Fan	OUPR 19460
Apocynaceae	Ditassa decussata Mart.	Fan	OUPR 20602
	Ditassa laevis Mart.	Fan	OUPR 19424
	Ditassa retusa Mart.	Fan	OUPR 20546
	Tassadia sp	Fan	OUPR 19419
Aquifoliaceae	Ilex conocarpa Reissek	Fan	OUPR 20918
	Ilex pseudobuxus Reissek	Fan	OUPR 20878
	Ilex sp	Fan	OUPR 20598
Arecaceae	Syagrus sp	Fan	OUPR 19422
Aristolochiaceae	Aristolochia c.f gracilis Duch.	Cam	OUPR 20763
	Aristolochia c.f smilacina (Klotzsch) Duch.	Cam	OUPR 20717
	Aristolochia fimbriata Cham.	Cam	OUPR 20610
Asteraceae	Baccharis platypoda DC.	Fan	OUPR 21892
	Baccharis sp	Fan	OUPR 20725
	Calea clematidea Baker	Fan	OUPR 19447
	Eupatorium adamantinum Gardner	Fan	OUPR 20686
	Eupatorium angustissimum Spreng. ex Baker	Fan	OUPR 20944
	Mikania hirsutissima DC.	Cam	OUPR 20549
	Mikania sp	Cam	OUPR 20723
	Richterago amplexifolia (Gardner) Kuntze	Hem	OUPR 20607
	Senecio pohlii Sch.Bip. ex Baker	Fan	OUPR 19443
	Trichogonia hirtiflora (DC.) Sch.Bip. ex Baker	Fan	OUPR 20718
	Trixis divaricata (Kunth) Spreng.	Fan	OUPR 21014
	Vernonia scorpioides (Lam.) Pers.	Fan	OUPR 19457
	Vernonia sp	Fan	OUPR 19415
Begoniaceae	Begonia c.f lobata Schott	Hem	OUPR 22268
Campanulaceae	Siphocampylus sp	Fan	OUPR 19444
Cyperaceae	Bulbostylis sp	Hem	OUPR 20714
-	Cryptangium minarum (Nees) Boeckeler	Hem	OUPR 20914
	Dicronema sp2	Hem	OUPR 21310
	Rynchospora sp	Hem	OUPR 21129
Convolvulaceae	Ipomea sp	Cam	OUPR 19441
	Cuscuta racemosa Mart.	Cam	OUPR 20764
	Jaquemontia sp	Cam	OUPR 20615
Ericaceae	Gaylussacia c.f brasiliensis (Spreng.) Meisn.	Fan	OUPR 20767
	Gaylussacia c.f montana (Pohl) Sleumer	Fan	OUPR 20685
	Leucothoe sp	Fan	OUPR 19425

Continua ...

Continued ...

Tabe	la	2	- Cont.
Table	, 2	_	Cont

Table 2 - Cont.			. — — — — —
Eriocaulaceae	Paepalanthus hilairei Körn.	Fan	OUPR 19440
Fabaceae	Chamaecrista mucronata (Spreng.) H.S. Irwin & Barneby	Fan	OUPR 19416
Gentianaceae	Lisianthus sp	Cam	OUPR 19453
Iridaceae	Sisyrinchium sp	Geo	OUPR 20757
Lamiaceae	Hyptis homalophylla Pohl ex Benth.	Fan	OUPR 20768
	Hyptis passerina Mart. ex Benth.	Fan	OUPR 20966
Lauraceae	Ocotea diospyrifolia (Meisn.) Mez	Fan	OUPR 21013
Loganiaceae	Spigelia spartiodes Cham.	Fan	OUPR 21296
Malvaceae	Hibiscus bifurcatus Cav.	Fan	OUPR 19446
	Hibiscus sp	Fan	OUPR 21001
	Pavonia montana Garcke ex Gürke	Fan	OUPR 19452
	Sida spinosa L.	Fan	OUPR 19442
Malpighiaceae	Heteropteris sp	Fan	OUPR 20982
Melastomataceae	Lavoisiera sp	Fan	OUPR 19451
	Marcetia sp	Fan	OUPR 20597
	Acisanthera variabilis (Mart. & Schrank) Triana	Fan	OUPR 20631
	Trembleya parviflora (D.Don) Cogn.	Fan	OUPR 21009
Myrtaceae	Eugenia nutans O. Berg.	Fan	OUPR 20817
,	Eugenia racemulosa O. Berg	Fan	OUPR 21001
	Myrcia c.f subavenia (O. Berg) N. Silveira	Fan	OUPR 20802
	Myrcia amazonica DC.	Fan	OUPR 21857
	Myrcia vautheriana O. Berg.	Fan	OUPR 21540
	Myrcia splendens (Sw.) DC.	Fan	OUPR 20996
	Myrcia mutabilis (O. Berg) N. Silveira	Fan	OUPR 20992
	Myrcia detergens Miq.	Fan	OUPR 20801
Ochnaceae	Sauvagesia erecta L.	Cam	OUPR 20696
Oleaceae	Chionanthus filiformis (Vell.) P.S.Green	Fan	OUPR 21928
Orchidaceae	Acianthera ramosa (Barb.Rodr.) F. Barros	Hem	OUPR 21072
Phyllanthaceae	Phyllanthus rosellus (Müll.Arg.) Müll.Arg.	Cam	OUPR 21317
·	Phyllanthus klotzschianus Müll.Arg.	Cam	OUPR 20594
Poaceae	Andropogon leucostachyus Kunth	Hem	OUPR 20851
	Axonopus pressus (Nees ex Steud.) Parodi	Hem	OUPR 21088
	Andropogon bicornis L.	Hem	OUPR 21557
	Paspalum brachytrichum Hack	Hem	OUPR 20745
Polygalaceae	Polygala oleifolia A.StHil. & Moq.	Fan	OUPR 20875
Rubiaceae	Borreria poaya (A.StHil.) DC.	Fan	OUPR 20756
	Borreria sp	Fan	OUPR 19455
	Coccocypselum crassifolium Standl.	Fan	OUPR 20596
	Psychotria pleiocephala Müll. Arg.	Fan	OUPR 20865
	Psychotria sessilis Vell.	Fan	OUPR 20822
Sapindaceae	Paullinia carpopoda Cambess.	Fan	OUPR 20730
Solanaceae	Solanum refractifolium Schltdl.	Fan	OUPR 19430
Velloziaceae	Barbacenia c.f tomentosa Mart.	Hem	OUPR 21314
Vochysiaceae	Vochysia tucanorum Mart.	Fan	OUPR 19459
Verbenaceae	Lippia rubiginosa Schauer	Fan	OUPR 21038
Xyridaceae	Xyris c.f laxifolia Mart.	Hem	OUPR 19450
	11,100 oij odavejovete irititi.	110111	3311(1)(30

4. DISCUSSÃO

As famílias botânicas com maior diversidade de espécies encontradas neste estudo são também citadas em outros trabalhos realizados em Campos Ferruginosos do Quadrilátero Ferrífero (ROSCHEL, 2000; BRANDÃO et al., 1991, 1994; BRANDÃO et al., 1997; VINCENT, 2004; VIANA; LOMBARDI, 2007). A família Asteraceae, a mais rica em espécies neste estudo, também foi citada em outros trabalhos (MOURÃO; STEHMANN, 2007) como a mais diversa. Silva (1991) citou as famílias Asteraceae, Orchidaceae, Poaceae, Euphorbiaceae, Rubiaceae, Fabaceae,

Myrtaceae e Cyperaceae como aquelas com ampla distribuição geográfica, sendo consideradas as maiores famílias botânicas do mundo. Também, foram reportadas por Goodland e Ferri (1979) como "super representadas no cerrado". Aqui, evidentemente, não é correto usar a expressão super representadas, mas são bem representadas por espécies características do tipo de ecossistema em estudo. Deve-se considerar que os trabalhos citados seguiram a circunscrição de Cronquist e este estudo segue a circunscrição proposta pelo APG II (APG, 2003).

Nessa área ocorrem ainda espécies que só foram observadas nas vias de acesso aos ambientes estudados, incluídas neste estudo como áreas de entorno, também inventariadas. Essas vias foram abertas pela empresa e são caracterizadas por apresentarem um substrato friável, constituído por nódulos ferruginosos, semelhantes à canga nodular descrita por Vincent (2004). As espécies ocorrentes exclusivamente nesse ambiente são: Hibiscus bifurcatus, Hibiscus sp, Pavonia montana, Andropogon leucostachyus e Andropogon bicornis. A presença das três primeiras espécies se deve ao fato de elas serem arbustos de médio porte e preferencialmente se estabelecerem nesse ambiente por necessitarem de substrato que lhes permitisse maior penetração de seu sistema radicular. Já as gramíneas A. Bicornis e A. leucostachyus são espécies daninhas ou ruderais (LORENZI, 2000) e possivelmente colonizaram esse ambiente, que foi constituído após a perturbação da canga anteriormente predominante. Segundo Roschel (2000), as espécies da família Eriocaulaceae desenvolvem-se em solos arenosos, onde há acúmulo de água e matéria orgânica. A espécie Paepalanthus hilairei também foi observada com frequência nas áreas perturbadas devido, também, à característica de boa penetrabilidade do sistema radicular naquele substrato.

Nas áreas de meia vertente, onde predominam as cangas, observou-se a ocorrência de pequenos capões formados por arbustos com altura de até 3 m. Nesses sítios foi constatada a presença de uma camada mais espessa de substrato, de natureza coluvionar, permitindo, assim, o desenvolvimento de espécies arbustivas de maior porte, como Aegiphylla sp, Vochysia emarginata, Miconia theaezans, Schefflera morototoni, Eremanthus erythropappus e Syagrus sp. Essas áreas são ecotonais, com as porções de mata ciliar do rio Piracicaba que ocorrem nas partes inferiores do perfil.

Do total de espécies inventariadas neste estudo, sete estão registradas na Lista de Espécies Ameaçadas de Extinção da Fundação Biodiversitas (DRUMMOND et al., 2005). São classificadas como vulneráveis (VU) as seguintes espécies: Ditassa laevis, Calea clematidea, Sophronitis caulescens e Sophronitis crispata. Destacaram-se as espécies Oncidium gracile, Dyckia rariflora e Paspalum brachytrichum, que estão classificadas como criticamente em perigo (CR), sendo a última citada por Viana e Filgueiras (2008) como provavelmente endêmica dos campos ferruginosos do Quadrilátero Ferrífero, com registros apenas nas serras de Capanema e Moeda, além do material tipo proveniente da serra de Itabirito.

As espécies mais recorrentes na canga estudada foram *Periandra mediterranea*, *Bauhinia rufa*, *Tibouchina multiflora* (FR = 100%), *Lychnophora pinaster*, *Baccharis reticularia*, *Vellozia compacta*, *Leandra athropurpurea*, *Stachytarpheta glabra* e *Acianthera teres*. No trabalho de Jacobi et al. (2008), as espécies *S. glabra*, *A. teres e T. multiflora* são citadas como comuns no Quadrilátero Ferrífero, apesar da baixa similaridade entre as áreas, ressaltando-se a importância do potencial dessas espécies nos programas de restauração de áreas degradadas por mineração na região.

A família Orchidaceae é de grande importância no ambiente de canga, sendo essa família, em alguns trabalhos como o de Jacobi et al. (2008), uma das mais ricas, com índice de frequência relativa (FR) de 11,06%. Neste trabalho foram inventariadas nove espécies, sendo A. teres a mais amostrada no ambiente canga (FA = 86,67). Segundo Vincent (2004), essa espécie é importante nas áreas de canga e participa da sucessão primária em afloramentos rochosos quartzíticos (ALVES; KOLBEK, 2000; NOGUEIRA et al., 2005 apud JACOBI et al., 2008). A associação com micorrizas é fator imprescindível no ciclo de vida de certas orquídeas epilíticas, sendo alguns fungos simbiontes encontrados mesmo em áreas degradadas pela mineração (NOGUEIRA et al., 2005 apud JACOBI et al., 2008).

Projetos de reabilitação de áreas degradadas devem utilizar uma variedade grande de espécies, e um dos critérios de escolha pode ser a representatividade de suas famílias tanto em número de espécies quanto em número de indivíduos, uma vez que essa é uma indicação do sucesso do táxon num ambiente particular (JACOBI et al., 2008).

As espécies de reprodução clonal e rizomatosas, como as Poaceae, são espécies importantes na recuperação de áreas degradadas por mineração de ferro, uma vez que contribuem para a estabilização de taludes por crescerem e se espalharem pelo substrato (SHU et al., 2005 apud JACOBI et al., 2008). Segundo Ângelo et al. (2002), a restauração de áreas degradadas feita a partir de semeadura de mistura de sementes de gramíneas com leguminosas e outras espécies herbáceas, arbustivas e arbóreas constitui uma técnica alternativa que poderá trazer resultados satisfatórios. Porém, recentemente, as empresas de mineração começaram a se interessar por espécies nativas nos programas de recuperação (JACOBI et al., 2008).

Ângelo et al. (2002), estudando uma área em reabilitação também no Complexo Alegria, constataram que as espécies nativas *Vernonia polyanthes* e *Leandra* sp apresentaram altos índices de regeneração em áreas de campo ferruginoso após a perturbação pela mineração.

Neste estudo, *Leandra atropurpurea* foi uma espécie com boa amostragem nos ambientes estudados, com IVI = 1,82, ocupando o 19^{0} lugar entre as mais importantes na canga couraçada e com IVI = 1,73 no ambiente rocha, ficando em 22^{0} lugar entre as mais importantes nesse ambiente.

A recuperação da cobertura vegetal de áreas degradadas é de grande importância à medida que se procura, por meio do uso de espécies adequadas a cada condição ambiental, proteger o solo e, a partir daí, estabelecer condições para a sucessão vegetal, visando atingir uma comunidade mais estável (LIMA, 1986).

Segundo Lima et al. (2006), uma das causas do questionamento da qualidade dos Planos de Recuperação de Áreas Degradadas – PRAD de minas de ferro no Quadrilátero Ferrífero é a ausência de conhecimento prévio sobre as características dos ecossistemas. Portanto, a caracterização das comunidades vegetais de campo ferruginoso em áreas ainda não mineradas constitui importante avanço nos critérios e escolha de espécies vegetais nativas nos programas de reabilitação de áreas degradadas por mineração de ferro no Quadrilátero Ferrífero.

A melhor forma de compreender a estratégia de desenvolvimento de uma comunidade em um ambiente adverso como os campos ferruginosos é analisar como essa comunidade se comportava antes da degradação. Essa análise é feita através do inventário florístico

e fitossociológico e da relação dessa comunidade com o tipo de substrato que a suporta, pois assim é possível prever a reação das espécies nos processos de mitigação e recuperação de áreas degradadas.

A lista de espécies apresentada é preliminar se considerar a alta diversidade florística e a dissimilaridade entre os campos ferruginosos do Quadrilátero Ferrífero. Portanto, recomendam-se outros inventários florísticos e fitossociológicos para otimizar o conhecimento sobre esse ecossistema tão ameaçado.

Para os programas de recuperação de áreas degradadas, recomenda-se o aprimoramento do resgate de espécies de campo ferruginoso, bem como estudar como essas plantas se comportam *ex situ*, a fim de entender melhor o seu mecanismo de adaptação fisiológica *in situ*, além de constituírem um banco de germoplasma das espécies, principalmente daquelas ameaçadas de extinção.

6. AGRADECIMENTOS

À Samarco Mineração S.A., pelo apoio logístico e financeiro; à CAPES, pela bolsa de estudo concedida ao primeiro autor; a Marcos Sobral, pela identificação das Myrtaceae, e Pedro Lage Viana, pela identificação das Poaceae; e à professora Maria Cristina Teixeira Braga Messias, ao Jorge Luiz, pela ajuda nos trabalhos de campo, CNPq 30 3352/2010-8 e Fapemig RDP-00048-10.

7. REFERÊNCIAS

ALVES, R. J. V.; KOLBEK, L. Primary sucession on quartzite clifts in Minas Gerais, Brazil. **Biologia Bratislava**, v.55, n.1, p.69-83, 2000.

ÂNGELO, J. G. M.; LENA, J. C.; SANTOS, J. B.. Diversidade vegetal em áreas em reabilitação de mineração de ferro, na mina de Alegria, em Mariana, MG. **Revista Árvore**, v.26, n.2, p.183-192, 2002.

APG. An update of the Angiosperm Phylogeny Group classification for the orders e families of flowering plants: APG II. **Botanical Journal of the Linnean Society,** v.141 p.399-436, 2003

BRANDÃO, M.; GAVILANES, M. L. Contribuição para o conhecimento da vegetação da Serra da Piedade, MG. In: CONGRESSO NACIONAL DE BOTÂNICA, 35., Manaus, 1984. **Anais.**.. Manaus: SBB, 1984. p.34-51.

- BRANDÃO, M. et al. Contribuição para o conhecimento da Cadeia do Espinhaço em Minas Gerais (Serra de Itabirito). III. **Daphne**, v.1. n.3, p.39-41, 1991.
- BRANDÃO, M.; GAVILANES, M. L.; ARAÚJO, M. G. Aspectos físicos e botânicos de campos rupestres do estado de Minas Gerais. **Daphne**, v.4, n.1, p.17-38, 1994.
- BRANDÃO, M.; FERREIRA, P. B. D.; ARAÚJO, M. G. Mais uma contribuição para o conhecimento da cadeia do Espinhaço em Minas Gerais VI: Serra do Rola Moça. **Daphne**, v.7, n.4 p.50-64, 1997.
- CLEEF, A.; SILVA, M. F. F. Plant communities of Serra dos Carajás (Pará), Brazil. **Boletim do Museu Paranaense Emílio Goeldi**, **Série Botânica**, v.10, p.206-281, 1994.
- DORR, J. V. N. Physiographic, stratigraphic and strutural development of the Quadrilátero Ferrífero Minas Gerais, Brazil.. Washington: United States Government, 1969. 110p.
- DRUMMOND, G. M. et al. **Biodiversidade em Minas Gerais:** um atlas para sua conservação. 2.ed. Belo Horizonte: Fundação Biodiversitas, 2005. 222p.
- GIULIETTI, A. M. et al. Flora da Serra do Cipó, Minas Gerais: caracterização e lista de espécies. **Boletim Botânico da Universidade de São Paulo**, v.9, p.1-151, 1987.
- GIULIETTI, A. M.; PIRANI, J. R.; HARLEY, R. M. Espinhaço Range Region Eastern Brazil. In: DAVIS, S. D., (Ed.) **Centres of plant diversity:** a guide and strategy for their conservation. The Americas. WWF/IUCN Publications Unit., 1997. v.3. p.397-404.
- GOODLAND, R.; FERRI, M. G. **Ecologia do cerrado**. Belo Horizonte: Itatiaia/São Paulo: Universidade de São Paulo, 1979. 193p.
- HARLEY, R. M. Flora of the Pico das Almas, Chapada Diamantina-Bahia, Brasil. In: STANNARD, B. L. E. (Ed). **The trustees of the Royal Botanic Gardens**. Kew: 1995. 853p.

- HERZ, N. Metamorphic rocks of the Quadrilátero Ferrífero, Minas Gerais, Brazil. **Geological Survey Professionl Paper**, v.641, n.1, p.1-81, 1978.
- JACOBI C. M.; CARMO F. F.; VINCENT, R. C. Estudo fitossociológico de uma comunidade vegetal sobre canga como subsídio para a reabilitação de áreas mineradas no Quadrilátero Ferrífero, MG. **Revista Árvore**, v.32, n.2, p.345-353, 2008.
- JACOBI, C. M. Afloramentos ferruginosos: um ecossistema diverso e ameaçado. SIMPÓSIO AFLORAMENTOS FERRUGINOSOS NO QUADRILÁTERO FERRÍFERO, 1., 2008, Belo Horizonte. **Trabalho completo...** Belo Horizonte: Universidade Federal de Minas Gerais, 2008.
- JACOBI, C. M.; CARMO, F. F. Diversidade dos campos rupestres ferruginosos no Quadrilátero Ferrífero, MG. Brasil. **Megadiversidade**, v.4, n.1/2, p.99-116, 2008.
- LIMA, W. P. **Princípios de hidrologia florestal para o manejo de bacias hidrográficas**. São Paulo: Escola Superior de Agricultura Luiz de Queiroz, 1986. 242p.
- LIMA, H. M.; FLORES, J. C. C.; COSTA, F. L. Plano de Recuperação de Áreas degradadas versus plano de fechamento de mina: um estudo comparativo. **Revista Escola de Minas**, v.59, n.4, p.397-402, 2006.
- LORENZI, H. **Plantas daninhas do Brasil:** terrestres, aquáticas parasitas e tóxicas. 3.ed. Nova Odessa: Plantarum, 2000. 608p.
- MAGALHÃES, G. M. Sobre os cerrados de Minas Gerais. **Anais da Academia Brasileira de Ciências**, v.38, (Supl.) p.59-70, 1966.
- MOURÃO, A.; STEHMANN, J. R. Levantamento da Flora do Campo Rupestre Sobre Canga Hematítica Couraçada Remanescente na Mina do Brucutu, Barão de Cocais, MG. **Rodriguésia**, v.58, n.4, p.775-786, 2007.
- MUELLER-DOMBOIS, D.; ELLENBERG, G. H. **Aims and methods of vegetation ecology**. New York: Wiley & Sons, 1974. 547p.

NOGUEIRA, R. E. et al.. Fungos micorrízicos associados a orquídeas em campos rupestres na região do Quadrilátero Ferrífero, MG, Brasil. **Acta Botânica Brasílica**, v.19, n.3, p.417-424. 2005.

PORTO, M. L.; SILVA, M. F. F. Tipos de vegetação mesófila em áreas da Serra de Carajás e de Minas gerais, Brasil. **Acta Botânica Brasileira**, v.3, n.2, p.13-21, 1989.

RIZZINI, C. T. **Tratado de fitogeografia do Brasil**; aspectos sociológicos e florísticos. São Paulo: HUCITEC/USP, 1979. 374p

ROSCHEL, M. B. Levantamento florístico fanerogâmico do Campo Rupestre da Estrada da Torre, Antônio Pereira, Ouro Preto, MG. 2000. 133f. Dissertação (Mestrado em Ciências Biológicas) - Universidade Federal do Rio de Janeiro/Museu Nacional, 2000. 133p.

SECCO, R. S.; MESQUITA, A. I. Notas sobre a vegetação de canga da serra Norte – I. **Boletim Museu Paranaense Emilio Goeldi, Nova Série Botânica, v.**59, p.1-13, 1983.

SILVA. M. F. F.; ROSA, N. A. Estudos botânicos na área do Projeto Ferro Carajás – Serra Norte. I. Aspectos fito-ecológicos dos campos rupestres. In: CONGRESSO NACIONAL DE BOTÂNICA, 35., 1990, Manaus. **Anais.**.. Manaus: Sociedade Brasileira de Botânica, 1990. p.367-379.

SILVA. M. F. F. Análise florística da vegetação que cresce sobre Canga Hematítica em Carajás – Pará – Brasil. **Boletim do Museu Paranaense Emílio Goeldi, Série de Botânica,** v.7, n.1, p.7-22, 1991.

SILVA, M. F. F. Distribuição de metais pesados na vegetação metalófila de Carajás. **Acta Botânica**, v.6, n.1, p.107-122, 1992.

SILVA, M. F. F.; SECCO, R. S.; LOBO, M. G. A. Aspectos ecológicos da vegetação rupestre da Serra de Carajás, estado do Pará, Brasil. **Acta Amazônica**, v.26, n.1, p.17-44, 1996.

SHU, W. S. et al.. Natural colonization of plants on five lead/zinc mine tailings in southern China. **Restoration Ecology**, v.13, n.1, p.49-60, 2005.

TEIXEIRA, W. A.; LEMOS-FILHO, J. P. Metais pesados em folhas de espécies lenhosas colonizadoras de uma área de mineração de ferro em Itabirito, Minas Gerais. **Revista Árvore** v.22, n.2, p.381-388, 1998.

VIANA, P. L.; LOMBARDI, J. A. Florística e Caracterização dos Campos Rupestres Sobre Canga na Serra da Calçada, Minas Gerais, Brasil. **Rodriguésia**, v.58, n.1, p.159-177, 2007.

VIANA, P. L. A flora sobre os campos rupestres sobre canga no Quadrilátero Ferrífero. SIMPÓSIO: AFLORAMENTOS FERRUGINOSOS NO QUADRILÁTERO FERRÍFERO, 1., 2008, Belo Horizonte. **Trabalho completo.** Belo Horizonte: Universidade Federal de Minas Gerais, 2008.

VIANA, P. L.; FILGUEIRAS, T. S. Inventário e distribuição das gramíneas (Poaceae) na Cadeia do Espinhaço, Brasil. **Megadiversidade**, v.4, n.1-2, p.99-116, 2008.

VINCENT, R. C.; JACOBI, C. M.; ANTONYNY, Y. Diversidade na adversidade. **Ciência Hoje**, v.31, n.185, p.64-67, 2002.

VINCENT, R. C. Florística, fitossociologia e relações entre a vegetação e o solo em áreas de campos ferruginosos no quadrilátero ferrífero, Minas Gerais. 2004. 144f. Tese (Doutorado em Ecologia) -Instituto de Biociências, USP, 2004. 144p.

