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DATA MINING TECHNIQUES FOR IDENTIFICATION OF SPECTRALLY 
HOMOGENEOUS AREAS USING NDVI TEMPORAL PROFILES OF SOYBEAN CROP  

 
JERRY A. JOHANN2, JANSLE V. ROCHA3, STANLEY R. DE M. OLIVEIRA4, 

LUIZ H. A. RODRIGUES5, RUBENS A. C. LAMPARELLI6 

ABSTRACT: The aim of this study was to group temporal profiles of 10-day composites NDVI 
product by similarity, which was obtained by the SPOT Vegetation sensor, for municipalities with 
high soybean production in the state of Paraná, Brazil, in the 2005/2006 cropping season. Data 
mining is a valuable tool that allows extracting knowledge from a database, identifying valid, new, 
potentially useful and understandable patterns. Therefore, it was used the methods for clusters 
generation by means of the algorithms K-Means, MAXVER and DBSCAN, implemented in the 
WEKA software package. Clusters were created based on the average temporal profiles of NDVI of 
the 277 municipalities with high soybean production in the state and the best results were found 
with the K-Means algorithm, grouping the municipalities into six clusters, considering the period 
from the beginning of October until the end of March, which is equivalent to the crop vegetative 
cycle. Half of the generated clusters presented spectro-temporal pattern, a characteristic of soybeans 
and were mostly under the soybean belt in the state of Paraná, which shows good results that were 
obtained with the proposed methodology as for identification of homogeneous areas. These results 
will be useful for the creation of regional soybean “masks” to estimate the planted area for this crop. 
 
KEYWORDS: annual crop, MODIS, SPOT Vegetation, MAXVER, K-Means. 
 

TÉCNICAS DE MINERAÇÃO DE DADOS PARA IDENTIFICAÇÃO DE ÁREAS 
ESPECTRALMENTE HOMOGÊNEAS, UTILIZANDO PERFIS TEMPORAIS DE NDVI 

DA CULTURA DA SOJA NO ESTADO DO PARANÁ 

RESUMO: O objetivo deste trabalho foi agrupar, por semelhança, perfis temporais do produto 
NDVI decendial, obtido pelo sensor SPOT Vegetation, para os municípios produtores de soja no 
Estado do Paraná, na safra agrícola de 2005/2006. A Mineração de Dados é uma ferramenta valiosa 
que permite extrair conhecimento de uma base de dados, identificando padrões válidos, novos, 
potencialmente úteis e compreensíveis. Neste sentido, adotou-se a abordagem de geração dos 
clusters pelos algoritmos K-Means, MAXVER e DBSCAN no software WEKA. Foram gerados 
clusters com base no perfil temporal médio de NDVI dos 277 municípios produtores de soja do 
Estado, e os melhores resultados foram encontrados com o algoritmo K-Means, agrupando os 
municípios em seis clusters, utilizando o período do início de outubro ao final de março, 
equivalente ao ciclo vegetativo da cultura. Metade dos clusters gerados apresentou padrão espectro-
temporal característico de soja e esteve, em sua grande maioria, sob o cinturão da soja do Estado do 
Paraná, demonstrando os bons resultados encontrados com a metodologia proposta, em termos de 
identificação de áreas homogêneas. Estes resultados serão úteis na geração de “máscaras” de soja 
regionalizadas para estimativa de área plantada desta cultura. 
 
PALAVRAS-CHAVE: cultura anual, MODIS, SPOT Vegetation, MAXVER, K-Means. 
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INTRODUCTION 

The agricultural production plays a crucial and strategic role in the economy of Brazil. 
According to FAOSTAT (2009), the harvested area of soybean in the world, in the crop year of 
2005/2006, was 94.93 million hectares with a production of 214.24 million tons, in which Brazil 
was responsible for respectively 23.23% and 24.49% of this production and area (IBGE, 2008). In 
Brazil, the state of Paraná was responsible for 48.3% of the planted area and 52.8% of soybean 
production in the crop year of 2005/2006, indicating the importance of this state in the soybean 
complex (IBGE, 2008). 

Soybean has two important characteristics: short cycle and crops in large areas, requiring care 
in monitoring and tracking. Remote sensing has proved to be a valuable tool in agricultural 
monitoring due to a synoptic view and the periodicity for obtaining information concerning large 
areas of the land surface (LABUS et al., 2002). REES (1990) also pointed out that the application of 
this tool is related to the monitoring of the extention, vigor and type of vegetation covering. 
However, it is necessary the knowledge of the spectral pattern of these surfaces, since different 
targets have different spectral signatures (SMITH, 2001; JENSEN et al., 2002). 

In this regard, JIANYA et al. (2008), JENSEN et al. (2002) and FERREIRA et al. (2008) 
suggested the use of multi-temporal satellite images to study the changes in the Earth's surface. 
Moreover, one crop presents a high dynamic spectro-temporal feature and requires the monitoring 
with vegetation indices in multiple dates (HOLBEN, 1986), which has allowed to well describing 
this characteristic, reflecting the vegetation conditions along its phenological cycle, as shown by 
various studies (FONTANA et al., 1998; LABUS et al., 2002; RUDORFF et al., 2005; 
ESQUERDO, 2007; RIZZI & RUDORFF, 2007). One of the most used vegetation indices for this 
purpose has been the Normalized Difference Vegetation Index (NDVI), proposed by ROUSE et al. 
(1973), according to the studies of LUNETTA et al. (2006), YI, et al. (2007), WARDLOW & 
EGBERT (2008), MERCANTE et al. (2009), FERNANDES et al. (2011) and ARAÚJO et al. 
(2011). 

Soybean is an example of this dynamic spectro-temporal feature, making its monitoring more 
complex when considering all phenological phases. Thus, the evaluation of the NDVI temporal 
profile of soybean, per municipality, generates a large amount of data which may become a difficult 
task, since the spectro-temporal pattern may vary according to the location. In this context, the data 
mining (DM) is a valuable tool because it allows for analyzing large volumes of data, aiming to 
extract from them useful information (knowledge). According to FAYYAD et al. (1996), DM is the 
nontrivial process of identifying valid, novel, potentially useful and understandable patterns in data. 

According to REZENDE (2005) and LAXMAN & SASTRY (2006), the DM process 
involves domain knowledge, problem identification, pre-processing, pattern extraction, post-
processing and the use of the gained knowledge. During the pre-processing phase, the domain 
knowledge and the problem identification help in selecting the data set. In the pattern extraction 
phase, it is defined the DM task, i.e., it should be defined a descriptive activity (association rules, 
summarization, grouping or clusters) or a predictive activity (classification, regression), according 
to the desired goals and then the algorithm which will be used for this task. Finally, in post-
processing phase, after the selection of the most important or relevant patterns, the knowledge 
obtained should be used to solve the identified problem. The prediction activities in DM aim 
decision making process. The generation of clusters is a descriptive task that aims to segment a data 
set into a number of homogeneous subgroups, which are at the same time, distinctly heterogeneous 
between each other. 

RIE & OSAMU (2001) identified cloudiness information in long temporal series of images 
through clusters, by using meteorological satellite images. The information about such clusters was 
inserted in a relational database, which enabled users to make queries. ZHANG et al. (2008) 
reported almost the same procedures for analyzing time series of meteorological satellite images 
using DM techniques to improve weather forecast. 
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used to group data. It is based on statistics of maximum likelihood to estimate the parameters of the 
normal distribution. The data is a mixture of n univariate normal distributions of the same 2 

variance and the averages of each normal distribution are estimated, i.e, the hypothesis that 
maximizes the likelihood of such means and, through an iterative process, the clusters are formed. 

The purpose was to characterize homogeneous areas of soybean production of the 277 
municipalities in the state of Paraná, so an average NDVI temporal profile was generated for each 
one. Thus, to group these 277 municipalities regarding the NDVI temporal profile, three simulations 
with different periods were performed to generate the clusters. In the first Simulation (S1) it was 
considered the entire analysis period (from 1st Sep 2005 to 3rd_May 2006). In the second 
Simulation (S2) the dekads between September 2005 and May 2006 were removed and the third 
Simulation (S3) considered only the period between the first dekad of October 2005 (01_Oct 05) 
and the third dekad of March 2006 (03_Mar 06) to generation the clusters. The main purpose of 
reducing the amount of dekads was just to adjust the analysis for the period that included the 
soybean crop cycle in the state. 

To generate the clusters, it was used DBSCAN, K-Means and Maxver algorithms with in the 
WEKA software on mode "use training set". The K-Means and Maxver methods require that the 
user define the desired number of clusters; however, the Maxver also allows the algorithm to find 
the number of clusters automatically. Thus, several tests were conducted to find the best number of 
clusters to group the 277 municipalities. The DBSCAN method, which determines the number of 
clusters automatically, the MinPts was set in six for a single cluster and in each group (default) and 
the Eps ranged from 0.1 to 2.0.  

 
RESULTS AND DISCUSSION 

In Figure 3, it is shown, as an example, the NDVI temporal profile average and the NDVI 
coefficient of variation (CV_NDVI) of the 2005/2006 cropping season of the municipality of 
Marechal C. Rondon - Paraná (PR), Brazil. 

 
FIGURE 3.NDVI temporal profile and its corresponding coefficient of variation (CV_NDVI) of 

Marechal C. Rondon, during the 2005/2006 cropping season. 
 

It can be seen that in late September, and more specifically, in the first dekad of October 2005 
(01_Oct 05), the lowest value of NDVI (0.446) occurred, since it is the period just after winter, 
when vegetation is dry and soil is uncovered, leading to a low reflectance, hence justifying the low 
value of NDVI. This period represents the first phenological phase of the soybean crop in the 
municipality that involves sowing, seed germination and initial development, corroborating what 
ADAMI (2010) defined. It was found that low NDVI values represent high coefficient of variation 
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values (CV_NDVI), since at this phase there is a great diversity of crops: some are being prepared 
for sowing, others are in seed germination phase and others are in the initial development phase, 
justifying the high value of CV_NDVI. Following, NDVI values increase due to the second 
phenological phase (green cover dominance, when the crop is in the vegetative, flowering, pod 
formation and/or grain filling phase). In this phase, peak vegetative or Maximum Vegetative 
Development (MVD) is reached, with maximum values of NDVI (0.856) in the second dekad of 
December 2005 (02_Dec05); in the same period, the lowest CV_NDVI value occurs, since the 
majority of farms in the municipality are in the vegetative phase, hence justifying the low variability 
of NDVI at this time. The MVD usually occurs between the phenological phases R1 (beginning of 
flowering) and R3 (beginning of pod formation) of soybean development (ADAMI, 2010), which is 
one of the most important periods to define the final crop yield. This demonstrates the importance 
of knowing it all over the state. 

The last crop phenological phase, maturation, senescence and desiccation of leaves, can be 
identified by the reduction of NDVI values. This is due to the effect of exposure of dry vegetation 
and soil. Further increase in CV_NDVI reinforces this phase identification. For this municipality 
and year studied, the lowest NDVI (0.553) occurred in the third dekad of February 2006 
(03_Feb06). This indicates the end of summer crops cycle and the beginning of winter crops 
sowing. In the municipality evaluated, it is characteristic farmers to sow off-season maize (maize 
crop during winter) soon after summer crops harvest. This justifies, in Figure 3, the identification of 
a new crop cycle, with vegetative peak in the third dekad of April 2006 (03_Apr06) and subsequent 
decrease of NDVI values after this phase, similar to what occurred with the soybean crop. 

To achieve the clusters, 277 NDVI temporal profiles (one for each county) were considered, 
similar to those discussed in Figure 3. They were grouped by the DBSCAN, K-Means and Maxver 
methods for the three simulations periods (S1: 01_Sep05 to 03_May06; S2: 01_Oct05 to 03_Mar06; 
S3: 01_Oct05 to 03_Mar06). Results show that regardless of the clustering method, different 
configurations (in terms of clusters) were found for simulation periods S1, S2 and S3. 

Results found by using the DBSCAN method varying Eps from 0.1 to 2.0 are presented in 
Table 1. For Eps≥0.7, all the 277 municipalities were grouped into a single cluster. When Eps=0.1, 
municipalities were considered outliers for all simulations periods. For Eps values between 0.2 and 
0.5, municipalities groups varied from one cluster to multiple clusters, depending on the period to 
be considered. However, it is worth observing that certain municipalities were grouped as outliers in 
most simulations. This suggests that these municipalities have NDVI temporal profile remarkably 
different from the other municipalities. In general, this algorithm did not have good performance 
with this database. 

Concerning simulation, a procedure similar to DBSCAN was performed for the K-Means and 
Maxver algorithms. The main difference between both was to determine a desired number of 
clusters for the latter. Different numbers of clusters were tested, aiming to find the best grouping of 
municipalities. In order to validate these results, for each number of clusters generated for both K-
Means and Maxver, graphs of average NDVI profile of municipalities grouped in each cluster were 
generated for comparative analysis. For example, when two clusters have been defined (for K-
Means or Maxver), all the 277 municipalities have been represented in two graphs (cluster0 and 
cluster1). Similar graphs were generated for different number of clusters for the three simulation 
periods. Other method used to analyze the results was to create a classification method in WEKA 
with four algorithms: J48 (decision tree), SMO (support vector machine), Multilayer Perceptron 
(neural networks) and Naive Bayes (probabilistic model). For the classification task, the NDVI data 
set of defined periods in each simulation were used as predictive attributes and a target attribute was 
created, whose values  were labels of the clusters generated in the previous phase. For example, for 
the first simulation (S1), 28 attributes (NDVI from 01_Sep05 to 01_May06 and cluster) were 
considered. Similar procedures were used for the other two simulations (S2 and S3). 
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TABLE 1. Number of clusters generated by DBSCAN method for the three defined periods of 
simulation. 

Epsilon 
(Eps) 

S1 
(01_Sep05 a 03_May06) 

S2 
(01_Oct_05 a 03_May06) 

S3 
(01_Oct05 a 03_May06) 

0.1 Outliers=277 Outliers=277 Outliers=277 

0.2 Outliers=277 Outliers=277 
C0=10; C1=5; C2=6; C3=6; 

Outliers=250 

0.3 C0=7; C1=9; C2=9; Outliers=252
C0=24; C1=36; C2=17; C3=16; 

C4=8; C5=7; Outliers=169 
C0=181; C1=7; C2=7; Outliers=82

0.4 
C0=58; C1=58; C2=65; C3=6; 

Outliers=90 
C0=232; Outliers=45 C0=244; C1=5; C2=6; Outliers=12

0.5 C0=238; Outliers=39;  C0=260; Outliers=17 C0=273; Outliers=4 
0.6 C0=272; Outliers=5 C0=275; Outliers=2 C0=277 

0.7 to 2.0 C0=277 C0=277 C0=277 
Legend: C0 = cluster0; C1 = cluster1; C2 = cluster2; C3 = cluster3; C4 = cluster4; C5 = cluster5; outlier = noise. 

 
In a general way, different clusters were found for these two methods (K-Means and Maxver) 

and the three period simulations performed. Among the analysis, the best results were found for the 
third simulation (S3: 01_Oct05 to 03_Mar06). In Tables 2 and 3 the results of classification 
methods are summarized, respectively, for the grouping method Maxver and K-Means. It can be 
observed that most classification algorithms presented a good performance regardless of the number 
of clusters used. This generated a difficulty to determine the ideal number of clusters for the 277 
municipalities. In order to determine the best clustering algorithm and the best number of clusters, 
the results of the classification methods and graph analysis of the average NDVI behavior profile. 
Thus, six was found to be the best result regarding clustering and K-Means considered the best 
algorithm. 

 

TABLE 2. Proportion of correctly classified instances from the Maxver algorithm achieved in the 
third simulation (NDVI between 01_Oct05 to 03_Mar06) for the 277 municipalities in 
the State of Paraná, Brazil. 

Number of Clusters Algorithm I 
J48 (C4.5) 

Algorithm II
SMO

Algorithm III 
MultilayerPerceptron 

Algorithm IV
NaiveBayes

14 (default) 88.45% 94.59% 99.64% 100.00%
2 99.28% 99.28% 100.00% 100.00%
3 94.95% 98.56% 100.00% 100.00%
4 93.50% 97.47% 100.00% 100.00%
5 93.50% 96.39% 100.00% 100.00%
6 94.59% 96.75% 100.00% 100.00%
7 94.95% 97.11% 100.00% 100.00%
8 93.14% 97.11% 100.00% 100.00%

 
TABLE 3. Proportion of correctly classified instances from the algorithm K-Means achieved in the 

third simulation (NDVI between 01_Oct05 to 03_Mar06) for the 277 municipalities in 
the state of Paraná. 

Number of Clusters Algorithm I 
J48 (C4.5) 

Algorithm II
SMO

Algorithm III 
MultilayerPerceptron 

Algorithm IV
NaiveBayes

2 96.03% 100.00% 100.00% 98.20%
3 94.59% 99.28% 100.00% 96.03%
4 92.42% 99.64% 100.00% 95.31%
5 89.89% 96.03% 100.00% 95.67%
6 94.22% 94.59% 100.00% 96.39%
7 89.53% 94.95% 100.00% 98.20 %
8 90.25% 95.31% 100.00% 98.20 %
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Table 4 presents a contingency table where can be seen the overall accuracy (EG) between K-
Means and Maxver, both with six clusters. EG is defined as the sum of the main diagonal divided 
by the total number of registers in the data (n=277). In this case, the EG was 84.48%, showing that 
although while the two methods have different heuristics grouping, there was a high degree of 
similarity between them. Among the simulations, except for the grouping with two clusters 
(EG=93.50%), the other results were worse than with six clusters, defined as the best. 

 

TABLE 4. Contingency table with six clusters between the K-Means and Maxver algorithms for the 
third simulation (NDVI between 01_Oct05 to 03_Mar06) for the 277 municipalities in 
the state of Paraná. 

K-Means (6) 
    Maxver(6)        

cluster4 cluster0 cluster3 cluster1 cluster5 cluster2 General Total
cluster0 19  -  - -  -   - 19 
cluster1 - 56 9 - 12 - 77 
cluster2 - - 38 - 1 3 42 
cluster3 3 - - 55 - 2 60 
cluster4 - - - 11 33 1 45 
cluster5 - - 1 - - 33 34 

General Total 22 56 48 66 46 39 277 
 
Figures 4-9 show the graphs of the average NDVI profile between the first dekad of October 

2005 (01_Oct05) and the third dekad of March 2006 (03_Mar06) for the K-Means method with six 
clusters. Main differences between the graphs for each of the six clusters, were for NDVI values at 
the beginning of the crop cycle (01_Oct05: highlighted with red brackets on the Y axis) and 
vegetative peak (high NDVI values: blue rectangle highlighted in the graphs). In general, the 
clusters 0; 3 and 4 (Figures 4; 5; 6) showed temporal profiles that are more similar to soybean crop. 
For the clusters 1; 2 and 5 (Figures 7; 8; 9) NDVI profiles presented less variation throughout the 
crop cycle. As can be seen in Figure 11, the clusters 0; 3 and 4 coincide, mostly, with the soybean 
belt mask showed in Figure 1, i.e., municipalities most representatives of soybean production and 
planted area in 2005/2006 crop season. 

An agricultural zoning with the regionalization of cultivars and soybean seeding periods was 
proposed by KASTER & FARIAS (2011). Thus, the state of Paraná was subdivided into two macro 
regions (1 and 2) and five micro regions of soybean crop (MRS 103, MRS 104, MRS 201, MRS 
202 and MRS 203), as illustrated in Figure 11. In this new zoning, the classification of cultivars was 
organized by Relative Maturity Groups (GMR) proposed by ALLIPRANDINI (2005) and the 
Number of Days to Maturity (NDM). Because of this, soybean cultivars were grouped into three 
groups (G1-G3) for macro regions 1 and 2. For macro region 1 (MRS 103 and MRS 104) the 
following characteristics were established: G1 - short cycle, with NDM ≤ 130 days and GRM ≤ 6.3; 
G2 - average cycle, with 131 ≤ NDM ≤ 145 and 6.4 ≤ GMR ≤ 7.4; G3 - long cycle with NDM ≥146 
and GRM ≥ 7.5. For macro region 2 (MRS 201, MRS 202, MRS 203) these characteristics were 
established as follows: G1 (NDM ≤ 125 days and GRM ≤ 6.7), G2 (126 ≤ NDM ≤ 135 and 6.8 ≤ 
GMR ≤ 7.6) and G3 (NDM ≥ 136 and GRM ≥ 7.7). The following soybean seeding periods were  
established : Oct/21 to Nov/30 (MRS 103), Oct/21 to Dec/10 (MRS 104), Oct/01 to Nov/30 (MRS 
201) and Nov/10 to Nov/30 (MRS 202 and 203).The cluster0 had 19 municipalities with a 
vegetative peak between 01_Dec05 and 03_Dec05 and with NDVI values at the beginning of the 
crop, ranging from 0.25 to 0.45 (Figure 4). It is possible to observe in Figure 11 that they are 
grouped in the western region of the state (MRS 201), more specifically, in the Lakes Region (Lake 
Itaipu), municipalities which has the characteristic of plant off-season maize, which explains the 
early planting and, consequently, the fact that the vegetative peak (or MVD related to the phases R1 
to R3 of soybean) occur before in comparison to other regions, supporting the recommendations of 
planting dates from 10/01 given by KASTER & FARIAS (2011) and with the results found by 
ARAÚJO et al. (2011) who mapped the areas with summer crops in state of Paraná, using images 
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