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ABSTRACT: This study aimed to compare thematic maps of soybean yield for different sampling 
grids, using geostatistical methods (semivariance function and kriging). The analysis was performed 
with soybean yield data in t ha-1 in a commercial area with regular grids with distances between 

points of 25x25 m, 50x50 m, 75x75 m, 100x100 m, with 549, 188, 66 and 44 sampling points 
respectively; and data obtained by yield monitors. Optimized sampling schemes were also 

generated with the algorithm called Simulated Annealing, using maximization of the overall 
accuracy measure as a criterion for optimization. The results showed that sample size and sample 
density influenced the description of the spatial distribution of soybean yield. When the sample size 

was increased, there was an increased efficiency of thematic maps used to describe the spatial 
variability of soybean yield (higher values of accuracy indices and lower values for the sum of 

squared estimation error). In addition, more accurate maps were obtained, especially considering 
the optimized sample configurations with 188 and 549 sample points.  
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MAPAS DA PRODUTIVIDADE DA SOJA USANDO CONFIGURAÇÕES AMOSTRAIS 

REGULARES E OTIMIZADAS PELA TÊMPERA SIMULADA  

 
RESUMO: Neste trabalho, teve-se o objetivo de estudar e comparar mapas temáticos da 
produtividade da soja para diferentes grades amostrais, utilizando métodos geoestatísticos (função 

semivariância e krigagem). A análise foi realizada com dados da produtividade de soja em t ha -1 
numa área comercial com grades regulares e distâncias entre pontos de 25x25 m, 50x50 m, 75x75 m 

e 100x100 m, com 549; 188; 66 e 44 pontos amostrais, respectivamente, e dados obtidos pelo 
monitor de colheita. Também foram gerados esquemas amostrais otimizados, com o algoritmo 
chamado Têmpera Simulada, usando a maximização da medida de acurácia exatidão global, como 

critério de otimização. Foi verificado que fatores como o tamanho da amostra e a densidade 
amostral influenciaram na descrição da distribuição espacial da produtividade da soja feita por meio 

dos mapas temáticos. Quando se aumentou o tamanho amostral, houve aumento da eficiência dos 
mapas temáticos quanto à descrição da variabilidade espacial da produtividade da soja (maiores 
valores dos índices de acurácia e os menores valores para a soma quadrada do erro de estimação). 

Além disso, os mapas mais acurados foram obtidos considerando as configurações amostrais 
otimizadas com 188 e 549 pontos amostrais.  

 

PALAVRAS-CHAVE: grades amostrais, índices de acurácia, otimização, variabilidade espacial. 
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INTRODUCTION 

With the advance of mechanized technologies and the growth of worldwide agricultural 

production, many researchers have been investigating the production process searching for 
sustainable farming practices that can radically improve agricultural production, for instance by 
reducing the use of agricultural inputs. In particular, soybean production is of extreme economic 

importance to Brazil. In the 2010/11 crop-year, global soybean yield was 263.7 million tonnes, with 
a planted area of 103.5 million hectares, where Brazil is the second largest soybean producer 

(USDA, 2011). In the same year, Brazil had an average yield of 3.125 t ha-1 over an area greater 
than 24 million hectares, totaling a yield of 75 million tonnes (CONAB, 2011).  

Research on the spatial dependence structure of agricultural georeferenced variables, such as 

chemical and physical soil properties and crop yield, is an analysis tool which provides information 
to support a decision in favour of better management of production areas (BORSSOI et al. , 2011; 

GREGO et al., 2011; URIBE-OPAZO et al., 2012; NESI et al., 2013; ASSUMPÇÃO et al., 2014; 
BERNARDI et al., 2014). This can be accomplished by means of geostatistical techniques that 
retrieve from a set of sample elements, information about the spatial variation of the phenomenon in 

the whole area through the construction of thematic maps of variability (DIGGLE & RIBEIRO 
JUNIOR, 2007). 

The number of sample elements available to conduct research on the spatial dependent 
variables and their respective sample configuration, may affect the description of the spatial 
dependence structure, or more, the spatial estimates of non-sampled values obtained by the kriging 

interpolation technique, and consequently the reliability of the results shown by the thematic map 
(URIBE-OPAZO et al., 2007; COELHO et al., 2009; ODA-SOUZA et al., 2010; GUEDES et al., 
2011; RIFFEL et al., 2012; SOUZA et al., 2014).  

When financial resources are limited, the definition of the shape and size of sampling 
strategy to be used to study the spatial dependence structure are crucial, in an effort to both 

minimize operating costs and maximize the results of spatial prediction. Thus, it is necessary to 
study how the sampling strategy used in the study area affects the estimation of the parameters of 
the spatial model that describes the spatial dependence structure of the georeferenced variable, the 

spatial estimation of this variable in non-observed locations and, as a consequence, the thematic 
maps to be generated for such estimation (SPOCK & HUSSAIN, 2012).  

In this context, the aim of this study was to evaluate the influence of different sampling grids 
on the description of the spatial dependence structure of soybean yield. The configurations used in 
this study were regular grids and optimized configurations by the optimization method called 

Simulated Annealing, both with different sample densities.  
 

MATERIAL AND METHODS 

The soybean productivity (t ha-1) data used in this study were collected in a commercial area 
of 57.16 ha, located in Cascavel city, in western region of Paraná State, Brazil. The area has 

approximate geographic coordinates of 24.95° S and 53.57° W, with an average elevation of 650 m 
above sea level (Figure 1). The soil of the region is classified as Oxisols with clayey texture and 

deep soils with good water storage capacity, porosity and permeability. The climate in the region is 
very wet and classified as mesothermal, Cfa (Köeppen), with average annual temperature of 21ºC 
(IAPAR, 2007). 

Regular sampling grids used in this study measured 25x25 m, with 549 sampling points, 
50x50 m with 188 sampling points, 75x75 m with 66 sampling points, and 100x100 m with 44 

sampling points (Figure 2), obtained from a database generated by harvest monitors, totaling 7588 
points (Figure 1). Therefore, this database with a large number of sample points represents a 
discretization of the spatial distribution of the yield in the study area. 
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FIGURE 1. Location of the commercial area and database generated by harvest monitors totaling 
7588 points. 

 

(a) (b) 

(c) (d) 

FIGURE 2. Location of sampling points of regular grids with (a) 44, (b) 66, (c) 188 and (d) 549 

sampling points. 
 
First of all, analysis was made on the data sets of soybean yield in t ha-1, obtained in different 

sampling grids and by the harvest monitor. They underwent descriptive statistics (measures of 
location, dispersion and shape). Then models that represent the spatial dependence structure were 

fitted by maximum likelihood method (ML), which determines the estimated nugget effect 

parameters  0C , sill  10 CC   and range  a  of the model, in order to maximize the log-likelihood 
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function. The criteria for model selection were cross-validation and maximum value of the log-
likelihood function (LML). 

These estimates also allowed to obtain the relative nugget effect 

, which represents the intensity of spatial dependence 
(CAMBARDELLA et al., 1994). 

Considering the locations of the original mesh (7588 points), yield values in these locations 
were estimated by ordinary kriging method, using values as the results of each regular grid (44, 66, 

188 and 549 sampling points) and estimating the parameters selected by the models selection 
criteria. 

The estimated yield values for the grids 100x100 m, 75x75 m, 50x50 m and 25x25 m were 

compared with the actual yield values obtained by the harvest monitor, using the sum of squared 
errors (SQE) of the spatial estimation and the accuracy measures described in Table 1.  

 
TABLE 1. Accuracy measures. 
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To calculate the accuracy measures shown in Table 1, the error matrix (Table 2) as described 

by DE BASTIANI et al. (2012) was adapted in this study, considering ten classes of intervals of 

values (m = 10). Each element of the error matrix ( ) represents the number of estimations 

classified into class i ( ) of the model map (set of estimated values at the locations of the 

original mesh, obtained through the sampling points of the study grids) and class j ( ) of 

the reference map (values of the original mesh, obtained by the harvest monitor).  

This study also developed optimized sample configurations with the same sample sizes used 
in regular grids, for its efficiency in spatial prediction at locations not sampled by the method called 

Simulated Annealing (SA) (RUIZ-CÁRDENAS et al., 2010), using the accuracy measure called 
Overall accuracy as an objective function to be maximized (Table 1). 

The algorithm that determined the optimal sample configuration by Simulated Annealing was 
implemented through the following steps: 

Step 0: From i = 0, some measures of the algorithm were pre-determined, based on initial 

testing to ensure that the process avoids optimal locations and searches for more promising regions 
of the solution space. These measures are: stopping criterion equal to 1000 interactions, value for 

initial temperature equal to 800 t , and a geometric cooling schedule equal to ii tt  98.01 . 
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TABLE 2. General error matrix. 

 Reference map 

Model map 1 2  m  Total 

1 
11n  

12n   mn1
 

1n  

2 
21n  

22n   mn2
 

2n  

            

m  1mn  
2mn   mmn  

mn  

Total 
1n  2n   mn

 n  

: number of estimations classified into to class i of the model map and class j of the reference map; : number of estimations 

classified into class i of the model map; : number of estimations classified into class j of the reference map; : number of 

estimations classified into the same class in both maps; : total values in the original mesh (harvest monitor); : number of classes  
of error matrix.  

 

Step 1: A random sampling configuration 
iS with reduced size d0 (44, 66, 188 and 549 

sampling points) was selected from the initial mesh.  

Step 2: For this sample configuration, a spatial model was fitted by maximum likelihood 
method, and spatial estimation was performed of yield values  at the locations of the original mesh, 

using the geostatistical interpolation technique called kriging. Next, the objective function was 

calculated for
iS . 

Step 3: A new random sampling configuration 
1iS  was obtained, from the original mesh, and 

the objective function was calculated for 
1iS . 

Step 4: The variation of the objective function that occurred between the two sampling 

schemes was calculated, expressed by )()( 1 iii SfSf   . The new solution 
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Step 5: The optimization process was completed if the stopping criterion was met. Otherwise, 

the value of the current temperature was decreased by the cooling schedule described in step 0, 

1 ii was calculated, and step 3 was followed again.   

For optimized sample configurations, a spatial model was fitted, following the criteria of 

cross-validation and LML. Then, based on the estimation of the spatial model and the optimized 
sample configuration, the soybean yield value was estimated at the locations of the original mesh by 
the ordinary kriging method. 

The estimated yield values for optimized grids were compared with the actual yield values, 
obtained by the harvest monitor, using the SQE of the spatial estimation and by the accuracy 

measures described in Table 1. 
Regular sampling grids with different sample densities were compared with the sampling 

grids generated by the optimization process, considering the same sample sizes of regular grids. 

These sample configurations were compared for the following measures: estimates of accuracy 
measures described in Table 1, the SQE of spatial estimation and estimates of the parameters of the 

spatial model. 

The software R (R DEVELOPMENT CORE TEAM, 2013) and its geoR package (RIBEIRO 
JR. & DIGGLE, 2001; DIGGLE & RIBEIRO JR., 2007) were used as computational tools for the 
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estimation, fitting of models, spatial estimation and development of the optimization routine. This 
software program is open source and have GPL (General Public license).  

 
RESULTS AND DISCUSSION 

Figure 3 shows the locations of the sampling configurations optimized for Simulated 

Annealing, considering the same sampling densities of regular grid (Figure 2). Comparing the 
arrangement of the points, between the regular and optimized grids, it is noted that the arrangement 

of sampling points in the optimized sampling settings shows that there is an attempt of the 
optimization process to distribute the points to gain a better coverage of the study area. The same 
results were observed in simulated datasets and chemical soil properties by GUEDES et al. (2011). 

Moreover, it is observed that with increasing sample size, there is a similarity between optimized 
sampling settings and regular grids as for the arrangement of the points.  

 
 

(a) (b) 

(c)  (d) 

FIGURE 3. Location of sampling configurations obtained by optimization with (a) 44, (b) 66, (c) 

188 and (d) 549 sampling points. 
 

Table 3 shows descriptive statistics of the variable soybean yield in t ha-1, for the different 

sampling grids analyzed, for the optimized sample configurations and for data from the harvest 
monitor. 

It is important to note that some of these descriptive statistics were similar for all sampling 
grids and for the harvest monitor. The results show that soybean yield, at the different sampling 
grids, obtained by the harvest monitor showed low dispersion (SD) and homogeneity in the 

frequency distribution of data from different sampling grids, with low (CV ≤ 10%, GOMES, 2000) 
and medium (10 % < CV ≤ 20%, GOMES, 2000) dispersions.  

Table 4 shows the estimated parameters of the model fitted to the semivariance fucntion by 
ML. According to the results presented, the model chosen according to the criteria of cross-
validation, was the model of the Matérn family (parameter k = 2), for configurat ions with 44, 66 

and 188 sampling points, and the exponential model was chosen for sampling configurations with 
549 points. 
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The estimates presented for these models showed that there is a similarity in the estimates of 
the nugget effect and their standard deviations in all sample configurations and densities. It was also 

observed that most models fitted to different sampling patterns showed moderate spatial 
dependence (25% ≤ RNE ≤ 75%; CAMBARDELLA et al, 1994), with the exception of the model 
fitted to the data of the regular grid with the lowest sample size (44 points), which showed weak 

spatial dependence (RNE  > 75%; CAMBARDELLA et al, 1994).  
 

TABLE 3. Summary of statistics for the four regular grids analyzed, for the harvest monitor and for 
the optimized sample configurations. 

Statistics 
Regular grids 

Harvest monitor 
 

Optimized configurations 25x25 50x50 75x75 100x100 

Nº samples 549 188 66 44 7582 549 188 66 44 

Mean  3.25 3.27 3.22 3.28 3.23 3.29 3.30 3.26 3.38 
Median 3.26 3.28 3.19 3.32 3.27 3.31 3.32 3.21 3.41 

Q1 3.00 3.00 2.95 3.11 2.98 3.04 3.09 2.95 3.21 
Q3 3.54 3.55 3.48 3.49 3.55 3.57 3.56 3.51 3.60 

Minimum 1.56 1.63 2.09 2.26 0.68 1.55 1.95 2.69 2.03 

Maximum 4.36 4.17 4.09 3.80 4.99 4.99 4.21 4.13 4.08 
SD 0.40 0.45 0.38 0.32 0.47 0.41 0.38 0.37 0.36 

CV (%) 12.36 12.27 11.71 9.72 14.50 12.43 11.66 11.40 10.60 
Q1: 1st quartile; Q3: 3rd quartile; SD: standard deviation; CV: coefficient of variation. 

 
The weak spatial dependence obtained for the data sets with the smallest sample size may 

have been influenced by the small sample size. This result corroborates the study of URIBE-
OPAZO et al. (2007), which compared regular sampling grids with different sample densities and 

different methods of estimation of the spatial model, and found that the estimation of the parameters 
that describe the spatial dependence structure of a georeferenced variable, depends not only on the 
estimation method but also on the number of samples used for geostatistical analysis.  

 
TABLE 4. Parameters estimates for the spatial models, where the standard deviation values of such 

estimates are shown in parentheses.  

Grids (nº samples) Model C0 C1 RNE (%) a 

100x100(44) Matérn (k=2) 
0.0829 

(0.0551) 

0.0163 

(0.0509) 
83.57 

284.54 

(597.89) 

75x75(66) Matérn (k=2) 
0.0783 

(0.0396) 

0.0578 

(0.0319) 
57.53 

283.60 

(116.90) 

50x50(188) Matérn (k=2) 
0.1090 

(0.0182) 
0.0496 

(0.0083) 
68.73 

358.64 
 (51.15) 

25x25(549) Exponential 
0.0657 

(0.0112) 
0.0998 

(0.0056) 
39.70 

293.55 
 (15.05) 

Optimized (44) Matérn (k=2) 
0.0826 0.1249 

66.13 
547.01 

(0.0619) (0.0287) (49.9556) 

Optimized (66) Matérn (k=2) 
0.0513 0.1365 

37.58 
358.31 

(0.0503) (0.0239) (15.1088) 

Optimized (188) Matérn (k=2) 
0.0706 0.1487 

47.48 
427.67 

(0.0182) (0.0087) (2.8300) 

Optimized (549) Exponential 
0.0806 0.1495 

53.95 
441.95 

(0.0319) (0.0162) (21.1437) 
C0: nugget effect; C1: contribution; a:  range and RNE: relative nugget effect.  

 
In this way, the estimated models that best describe the spatial dependence structure of 

soybean yield were the models obtained for the optimized sample configurations, because these 
models had a higher estimated range, showing a larger radius of spatial dependence of yield in the 

area under study; less variability in the estimation of range (smaller standard deviations), which is 
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indicative that the range was estimated with greater efficiency in these models; higher values for 
contribution and, as a consequence, lower values for estimates of the relative nugget effect, thus 

indicating an increase in intensity for the presence of spatial dependence. 

Table 5 shows the results for accuracy measures and the SQE of spatial estimation, when 
comparing the productivity gained by harvest monitors with their estimates obtained by kriging. 

Using the configurations under study, it was observed that for the two types of sampling 
configuration under study (regular and optimized), spatial efficiency estimation was increased with 

increasing sample size because there was an increase of accuracy measures and a decrease in the 
SQE. This result confirms the conclusions obtained by HEDGER et al. (2001), in their study of 
regular sampling configurations as for their efficiency in the estimation of water quality; by 

SOUZA et al. (2014) in their study about the accuracy in geostatistical analysis and interpolation 
maps for precision agriculture in the sugarcane area; and by GUEDES et al. (2011), when studying 

the determination of efficient optimized sample configurations for the prediction of chemical soil 
properties in a smaller area with a much smaller number of sampling points in the initial mesh.  

 

TABLE 5. Overall accuracy ( ), Kappa’s ( ) and Tau’s ( ) concordance indices and sum of 
squared error (SQE) for the spatial estimation performed by the regular grids and 

optimized. 

Grids  

(nº sampling points) 

Accuracy Indexes 
SQE 

   
100x100 (44) 0.4598 0.0428 0.4000 0.1947 

75x75 (66) 0.5774 0.2742 0.5304 0.1658 
50x50 (188) 0.5780 0.2840 0.5311 0.1653 

25x25 (549) 0.6427 0.4069 0.6030 0.1360 
Optimized (44) 0.5975 0.3342 0.5569 0.1816 
Optimized (66) 0.6043 0.3343 0.5636 0.1529 

Optimized (188) 0.6191 0.3637 0.5803 0.1535 
Optimized (549) 0.6475 0.4141 0.6083 0.1407 

 

Moreover, the measures of accuracy showed values that were indicative of low similarity 
between the yield obtained by harvest monitors and its spatial estimate 

( ,  and , ANDERSON et al. 1976; KRIPPENDORFF, 

1980). These results are directly influenced by the low number of sampling points established in the  
present study, which respectively account for 0.58%, 0.87%, 2.48% and 7.24% of the total points 

obtained by the harvest monitor.  

Despite these low levels of accuracy, it is noted that the optimized sample configurations 
showed the best values for these measures, i.e., they showed the highest values for the accuracy 

indices and the lowest values for the SQE of spatial estimation. 

The maps that describe the spatial variability of yield in the study area also highlight the 

differences in the type of sampling configuration used and in the sampling density specified (Figure 
4). 

These maps show a difference in the formation of sub-regions that describe the spatial 

variability of yield, when compared with the maps designed through the regular sampling 
configurations (Figures 4a to 4d) with the designed maps based on the optimized sampling 

configurations (Figures 4e to 4h).  
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(a) (b) (c) (d)

(e) (f) (g)

(h) 

FIGURE 4. Thematic maps of soybean yield in the regular grids (a) 100 x 100 m (44 points). (b) 75 
x 75 m (66 points), (c) 50 x 50 m (188 points), (d) 25 x 25 m (549 points); and for the 
optimized sampling configurations with (e) 44, (f) 66, (g) 188 and (h) 549 sampling 

points. 
 

However, the most noticeable visual difference is when, in both types of sampling 
configuration, the resulting maps are compared with the sampling configurations whose  sizes are 
larger. It was observed that the increasing of sample size is related to a more detailed 

characterization of sub-regions that describes the different intervals of yields. Studies conducted by 
URIBE-OPAZO et al. (2007) and COELHO et al. (2009) using regular grids in soybean fields had 
similar conclusions about the best detailed information of the map that describes the spatial 

variability of georeferenced variables, with increasing sample size.  
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These same conclusions were also found by RIFFEL et al. (2012) in their study of the spatial 
and temporal distributions of pest insects on soybean crop. Moreover, RIFFEL et al. (2012) 

emphasized that better detailed thematic maps generates a greater amount of informations obtained 
for the study area, promoting a decision with greater scientific basis.  

 

CONCLUSIONS 

It was observed that factors such as sample size and sampling density influenced the 

description of the spatial distribution of soybean yield and consequently the information presented 
by the thematic map generated for the description of the productivity in the study area. It was also 
verified that the increasing of the sample size leads to the increasing of the spatial efficiency 

estimation (increase of accuracy measures and decrease of SQE) and a better decision regarding 
whether there is or not spatial dependence.  

Moreover, for each sample size, the best results, in terms of efficiency in the spatial 
estimation of yield, were obtained by the optimized sampling configurations.  

Thus, among the sample sizes and configurations studied, the optimized sampling 

configurations with 188 and 549 sampling points, and the regular configuration with 549 sampling 
points, showed the best results for the estimation of the spatial model that describes the structure of 

spatial dependence and the best results for the spatial estimation of soybean yield.  
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