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ABSTRACT 

The objective of this study was to develop artificial neural networks (ANNs) for 
predicting animal thermal comfort based on temperature and relative humidity of the air 
for each day of the year. The data on temperature and relative humidity for a 25-year 
historical series collected at the Padre Ricardo Remetter Conventional Meteorological 
Station, located in the city of Santo Antônio de Leverger - Mato Grosso (Brazil), were 
retrieved from the website of the National Institute of Meteorology. According to the day 
of the year, the temperature and humidity index was determined as a function of the 
climatic variables. Therefore, the day of the year was the input variable of the neural 
networks, and the temperature and humidity index (THI) was the output variable. The 
number of layers and neurons used for establishing different architectures was variable. 
Data were adjusted on the basis of mean square errors, performance and efficiency 
indexes, and normality tests. The values estimated by the networks and those obtained 
from the historical series did not differ significantly. The networks with the best 
performance were selected for graphical analysis of residuals. The ANNs developed in 
this study predicted animal thermal comfort with adequate reliability and precision. 

 
 
INTRODUCTION 

Thermal comfort is one of the main criteria for 
evaluating animal welfare because it characterizes the 
environmental and micrometeorological conditions of 
animal facilities. Some studies revealed that the productive 
and reproductive performance of animals was significantly 
decreased by thermal stress (Bertoncelli et al., 2013; 
Manteca et al., 2013; Viana et al., 2013; Coutinho et al., 
2014; Cecchin et al., 2016; Navas et al., 2016; Silva et al., 
2016; Fialho et al., 2018; Neto & Bittar, 2018; Oliveira et 
al. 2018). It is known that the temperature and relative 
humidity of the air significantly affect the stress level of 
animals. Another relevant factor to be considered is the 
location of most of the Brazilian territory within a tropical 
climate zone, where environmental variables fluctuate 
substantially throughout the year, limiting predicting these 
parameters with adequate accuracy. 

The effects of the conditions of animal facilities have 
been evaluated using several thermal comfort indexes, 
including the temperature and humidity index (THI) 
proposed by Thom (1959), the black globe THI (BGTHI) 
developed by Buffington (1981), and the radiant heat load 
proposed by Esmay (1982). Among them, the THI has been 
widely used because it assesses the effect of temperature 

and relative humidity, which are easily accessible in 
databases, to characterize the environment quantitatively. 
Therefore, the THI can be measured on the basis of the 
temperature and relative humidity data, which are obtained 
directly from databases or by performing measurements in 
animal facilities, and the obtained results can serve as the 
basis for decision-making to alleviate animal heat stress. 

The prediction of values of meteorological variables 
is based on the adjustment of empirical models using 
probabilistic distributions, i.e., stochastic generators of 
climatic conditions. Bayer et al. (2012), Arroio Júnior & 
Mauad (2015), Sousa et al. (2015), Andrade et al. (2016), 
and Machado et al. (2017) have shown that simulation 
models have several applications. However, the main 
deficiency of these models is the inability to recognize real 
data, i.e., they ignore or do not consider the instability of the 
duration of environmental conditions. These difficulties 
were overcome by Bilgili & Sahin (2010), Wu et al. (2010), 
Yasar et al. (2012), and Depiné et al. (2013) using artificial 
neural networks (ANNs). However, these authors 
emphasized that models used to estimate meteorological 
variables required a high amount of observable data to be 
reliable. 
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The application of ANNs has been proposed to 
model biological processes. Santos et al. (2016) used these 
computational resources to monitor pigs and obtained 
accurate results with adequate reliability. Similarly, Miguel 
et al. (2015) applied neural networks using satellite data to 
model the volume of wood and biomass of a semi-deciduous 
seasonal forest. Borges et al. (2017) proposed the use of 
architectures to estimate the fuel consumption of tractors as 
a function of performance parameters of mechanized 
assemblies. Multilayer perceptron networks were used in 
these studies. Negrete (2018) also used this modeling 
technique and confirmed the feasibility of applying neural 
networks and their ability to predict information based on 
previous data. 

These studies allow inferring that ANNs constitute a 
useful and powerful computational tool for processing 
meteorological data and that their use may be feasible to 
estimate the temperature and relative humidity of the air 
based on climatic information of historical series recorded 
near animal facilities. Therefore, the present study is based 
on the hypothesis that these models can provide the 
necessary elements to characterize the thermal environment 
of these facilities, helping decision-making for adequate 
animal husbandry. Problems related to animal heat stress 
motivated the elaboration of this study. The objective of this 
study is to predict animal thermal comfort using ANNs for 
each day of the year according to two meteorological 
variables: air temperature and relative humidity. 

 
MATERIAL AND METHODS 

This study evaluated hourly data on dry-bulb 
temperature and relative air humidity for a 25-year 
historical series collected at the Padre Ricardo Remetter 
Conventional Meteorological Station (code OMN 83364, in 
operation since January 1, 1986), which is located at the city 
of Santo Antônio de Leverger (latitude of –15.7833°, 
longitude of –56.0667°, and altitude of 140 m), in Mato 
Grosso state (Brazil). These data were available at the 
Meteorological Database for Teaching and Research of the 
National Institute of Meteorology and had been collected 
from January 1, 1992, to December 31, 2017, at 12:00 a.m., 
12:00 p.m., and 6:00 p.m. The climate of the region is 
classified as Aw (tropical climate) according to Peel et al. 
(2007), with an annual mean temperature of 26.1 °C and 
annual mean rainfall of 1267 mm (INMET, 2018). 

 The obtained data were stored in text files and 
spreadsheets. The maximum THI values on each day of the 
year were obtained using the filtering and classification 
tools available in the spreadsheets. The THI was estimated 
using the equation proposed by Thom (1959): 

THI = Tdb + 0.36 ∙ Tdp + 41.5                                 (1) 

Where:  

THI - Temperature and humidity index (dimensionless); 

Tdb - Dry-bulb temperature (oC), 

Tdp - Dew point temperature (oC). 
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Where: 

Tdp - Dew point temperature (oC); 

Tdb - Dry-bulb temperature (oC), 

RH - Relative humidity (%). 

 
The THI values on each day of the year in the Julian 

calendar were input and processed using the statistical 
program R to define the possible architectures of artificial 
neural networks – ANNs (R CORE TEAM, 2018). Taking 
as a reference the studies by Binoti et al. (2014a, b), Valente 
et al. (2014), and Borges et al. (2017), multilayer perceptron 
ANNs were chosen for predicting this index as a function of 
the day of the year. After that, several network architectures 
were defined using the Julian day as the independent input 
variable and the THI as the dependent output variable, in 
addition to one or two intermediate layers with up to 25 
neurons each. The input and output variables were 
normalized between 0 and 1 to avoid saturation and 
consequently errors in the estimated result and then 
denormalized by applying the equation: 

  
    V - V    

 V - V   
V

minmax

min ori
nor                             (3) 

Where: 

Vnor - Normalized value (dimensionless); 

Vori - Original value (dimensionless); 

Vmin - Minimum value of the dataset (dimensionless), 

Vmax - Maximum value of the dataset (dimensionless). 
 

  V  )V - (V V V minminmaxnordnor        (4) 

Where:  

Vdnor - Denormalized value (dimensionless); 

Vnor - Normalized value (dimensionless); 

Vmin - Minimum value of the dataset (dimensionless), 

Vmax - Maximum value of the dataset (dimensionless). 
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Cansian et al. (2014), Georgens et al. (2014), Valente 
et al. (2014), and Borges et al. (2017) reported that the 
dataset was randomly divided into two subsets for network 
training and data validation, corresponding to 75% and 
25%, respectively. In all architectures, the logistic function 
was used to activate the networks, and initial weights 
between –0.5 and +0.5 were randomly generated. The layers 
were interconnected by complete synapses, i.e., each neuron 
of layer i was connected to all neurons of the next layer (i + 
1), and each synapse was oriented only forward 
(feedforward). Moreover, the back propagation of the error 
was used as a learning algorithm. The learning rate was 0.2, 
and the momentum rate was 0.8. The stopping criterion of 
network training was defined as an error rate of less than 
0.05. Since the values of the dependent variable ranged 
between 0 and 1, the chosen function for transfer in the 
output layer was sigmoid. These procedures were 
performed in software R using tools for ANNs (R CORE 
TEAM, 2018). 

Sousa & Menezes (2013), Binoti et al. (2014a, b), 
Georgens et al. (2014), and Borges et al. (2017) indicated 
that the number of obtained networks could be reduced, and 
the most appropriate ones should be selected by calculating 
the coefficient of determination (R2), mean absolute error 
(MAE), mean square error (MSE), root mean square error 
(RMSE), and mean percentage absolute error according to 
the following equations: 
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Where:  

R² - Coefficient of determination (dimensionless); 

N - Total number of observations (dimensionless); 

THIobsi - Real THI for observation i (dimensionless); 

THIMobs - Real mean THI (dimensionless), and 

THIesti - Estimated THI for observation i 
(dimensionless). 
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Where:  

MAE - Mean absolute error (dimensionless); 

N - Total number of observations (dimensionless); 

THIobsi - Real THI for observation i (dimensionless), 

THIesti - Estimated THI for observation i (dimensionless). 
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Where:  

MSE - Mean square error (dimensionless); 

N - Total number of observations (dimensionless); 

THIobsi - Real THI for observation i (dimensionless), 

THIesti - Estimated THI for observation i (dimensionless). 
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Where:  

RMSE - Root mean square error (dimensionless); 

N - Total number of observations (dimensionless); 

THIobsi - Real THI for observation i (dimensionless), 

THIesti - Estimated THI for observation i (dimensionless). 
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Where, 

MAPE - Mean absolute percentage error (dimensionless); 

N - Total number of observations (dimensionless); 

THIobsi - Real THI for observation i (dimensionless), 

THIesti - Estimated THI for observation i (dimensionless). 
 
The normality of residuals of the neural networks 

with the best indexes was assessed using the Kolmogorov-
Smirnov, Lilliefors, and Shapiro-Wilk tests, and the 
adjustment between the observed and estimated values was 
confirmed using the Student’s t-test, as suggested by Borges 
et al. (2017). Moreover, taking as reference the studies of 
Binoti et al. (2014a, b), Georgens et al. (2014), Soares et al. 
(2014), and Borges et al. (2017), the correlation coefficients 
(r), Willmott’s index of agreement (Iw), and performance 
index (Id) were calculated, and the latter index measures the 
proximity between the observed and estimated values. Dai 
et al. (2014), Rodrigues et al. (2015), Sousa et al. (2015), 
Brighenti et al. (2016), Chaves et al. (2016), Lopes et al. 
(2016), and Machado et al. (2017) recommend evaluating 
the efficiency of the networks using the Nash-Sutcliffe 
coefficient (NSC) (Nash & Sutcliffe, 1970) according to 
equation:
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Where:  

r - Correlation coefficient (dimensionless); 

N - Total number of observations (dimensionless); 

THIobsi - Real THI for observation i (dimensionless); 

THIesti - Estimated THI for observation i (dimensionless); 

THIMobs - Real mean THI (dimensionless), 

THIMest - Estimated mean THI (dimensionless). 
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Where:  

Iw - Willmott’s index of agreement (dimensionless); 

N - Total number of observations (dimensionless); 

THIobsi - Real THI for observation i (dimensionless); 

THIesti - Estimated THI for observation i (dimensionless); 

THIMobs - Real mean THI (dimensionless), 

THIMest - Estimated mean THI (dimensionless). 
 

IwrId                          (12) 

Where:  

Id - Performance index (dimensionless); 

r - Correlation coefficient (dimensionless), and 

Iw - Willmott’s index of agreement (dimensionless). 
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Where: 

NSC - Nash-Sutcliffe efficiency coefficient (dimensionless); 

N - Total number of observations (dimensionless); 

THIobsi - Real THI for observation i (dimensionless); 

THIesti - Estimated THI for observation i (dimensionless), 

THIMobs - Real mean THI (dimensionless). 
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Although the presented analytical criteria confirmed 
the accuracy of the networks in predicting the THI, Borges 
et al. (2014, 2017) recommend graphically evaluating the 
characteristics of the residuals to assess the presence of 
inadequate trends in their distribution. For this purpose, 
different graphs should be prepared, including the 
histogram of residuals, a quantile-quantile plot with 
confidence intervals, a graph with the values of the residuals 
as a function of the estimated values, a graph with the values 
of the residuals according to the day of the year 
(independent variable), and a scatter plot with the observed 
values and values estimated by each selected network for 
each day of the year. 

RESULTS AND DISCUSSION 

In this study, 62 artificial neural network 
architectures were tested. Each network contained an input 
layer, one or two intermediate layers (hidden), and one 
output layer. The increase from one intermediate layer to 
two increased the accuracy of the results. However, the 
increase in the number of neurons in these layers did not 
improve the performance of the networks. The results of 10 
ANNs with satisfactory coefficients are shown in Table 1. 
The best indexes were obtained using architectures 2, 4, 6, 
and 7, evidenced by the highest coefficient of 
determination (R²) and the smallest values for MAE, MSE, 
RMSE, and MAPE. 

 
TABLE 1. Indexes of the studied artificial neural network architectures. 

ANN Architecture 
R2 

(-) 
MAE 

(-) 
MSE 

(-) 
RMSE 

(-) 
MAPE 

(%) 
1 MLP 1:1-3-3-1:1 0.6955 0.0734 0.0089 0.0943 7.3358 

2 MLP 1:1-3-5-1:1 0.7064 0.0728 0.0086 0.0929 7.2754 

3 MLP 1:1-3-7-1:1 0.7056 0.0729 0.0087 0.0932 7.2928 

4 MLP 1:1-5-3-1:1 0.7067 0.0721 0.0087 0.0932 7.2121 

5 MLP 1:1-5-7-1:1 0.6889 0.0738 0.0090 0.0949 7.3784 

6 MLP 1:1-7-3-1:1 0.7125 0.0722 0.0085 0.0924 7.2207 

7 MLP 1:1-7-5-1:1 0.7141 0.0723 0.0085 0.0921 7.2288 

8 MLP 1:1-9-3-1:1 0.7010 0.0732 0.0088 0.0938 7.3212 

9 MLP 1:1-9-5-1:1 0.6767 0.0744 0.0094 0.0969 7.4415 

10 MLP 1:1-9-7-1:1 0.6830 0.0746 0.0092 0.0959 7.4647 
 

The obtained coefficients of determination (>0.9) 
were lower than those estimated by Binoti et al. (2014a, b), 
Georgens et al. (2014), and Borges et al. (2017). These 
differences may be due to the high daily oscillation of 
temperature and humidity values over the years, resulting in 
differences between the observed and estimated values. 
However, these four architectures presented coefficients of 
determination higher than 0.7, which is the minimum value 
accepted in this study to indicate adequate adjustment. 

The Kolmogorov-Smirnov, Shapiro-Wilk, and 
Lilliefors tests applied to the residuals of these four 
networks showed a probability higher than 0.05 (Table 2), 
indicating that the hypothesis of normality of data 
distribution can be accepted. No significant difference was 
found between the observed values and the values estimated 
by these four networks according to Student’s t-test 
considering the high probability value obtained (>0.99) 
(Table 2). These results are essential to obtain an adequate 
adjustment between observed and estimated values.

 
TABLE 2. Results of normality tests and adjustment of four artificial neural networks. 

ANN and Architecture 

Statistics and probabilities of the tests performed 

Normality of residuals Adjustment 

Kolmogorov-Smirnov Shapiro-Wilk Lilliefors Student’s t-test 

2) MLP 1:1-3-5-1:1 
D = 0.0283 

p = 0.9320 (ns) 
W = 0.9966 

p = 0.6362 (ns) 
D = 0.0283 

p = 0.6795 (ns) 
t = 0.0036 

p = 0.9971 (ns) 

4) MLP 1:1-5-3-1:1 
D = 0.0308 

p = 0.8797 (ns) 
W = 0.9963 

p = 0.5683 (ns) 
D = 0.0308 

p = 0.5470 (ns) 
t =0.0045 

p = 0.9964 (ns) 

6) MLP 1:1-7-3-1:1 
D = 0.0288 

p = 0.9217 (ns) 
W = 0.9975 

p = 0.8676 (ns) 
D = 0.0288 

p = 0.6501 (ns) 
t = 0.0001 

p = 0.9999 (ns) 

7) MLP 1:1-7-5-1:1 
D = 0.0293 

p = 0.9130 (ns) 
W = 0.9974 

p = 0.8295 (ns) 
D = 0.0293 

p = 0.6268 (ns) 
t = 0.0052 

p = 0.9958 (ns) 

Legend: D, W, and t, statistics; p, p-value; ns, not significant. 
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In this study, the results of the three normality tests 

were similar. Nonetheless, the Shapiro-Wilk test was very 

efficient for all data distributions and sample sizes, as 

reported by Amador et al. (2011) and Pino (2014). Student’s 

t-test provided higher data reliability considering the 

assumption of normality of residuals, although this test was 

robust to small variations in data distribution. The results 

indicate that the values of the residuals follow a symmetrical 

distribution, and the estimated values were not significantly 

different from the observed values. 

Table 3 shows a summary of determination 

coefficients and performance and efficiency indexes. A 

good performance and excellent efficiency were 

demonstrated by the high NSC. These values were 

similar for the four neural networks, indicating that they 

were satisfactorily predicted the THI and might yield 

similar results with high accuracy. However, the results 

of the architecture of neural network seven were better 

(Table 3). 

 
TABLE 3. Summary of the results of performance and efficiency of the artificial neural networks. 

ANN and Architecture 

Correlation coefficients and performance and efficiency indexes 

Performance Efficiency 

Correlation coefficient Willmott’s index of agreement Performance index Nash-Sutcliffe coefficient 

2) MLP 1:1-3-5-1:1 0.8800 0.7675 0.6754 0.9641 

4) MLP 1:1-5-3-1:1 0.8792 0.7695 0.6765 0.9639 

6) MLP 1:1-7-3-1:1 0.8813 0.7692 0.6779 0.9645 

7) MLP 1:1-7-5-1:1 0.8822 0.7690 0.6784 0.9648 

 

The Pearson correlation coefficient (r) values for the 

four selected neural networks were lower than those 

obtained by Binoti et al. (2014a, b), Georgens et al. (2014), 

and Borges et al. (2017). These differences may be due to 

the initial data on temperature and relative air humidity used 

in this study, which were affected by variations in the 

climatic conditions of the region. In contrast, the obtained 

NSC values were higher than those estimated by Sousa et 

al. (2015), Brighenti et al. (2016), Chaves et al. (2016), 

Lopes et al. (2016), and Machado et al. (2017). These 

differences may be because of the high number of 

observations used in the present study, which increased the 

efficiency of the networks. Moreover, the architectures 

defined in this study may have contributed to an adequate 

approximation between estimated and observed values and, 

consequently, to the increased efficiency of these 

architectures.  

The results of the analytical tests confirmed the 

normality of the residuals of the neural networks, and their 

adequate adjustment, performance, and efficiency. 

However, the graphical analysis allowed visualizing the 

distribution of the residuals for the assumptions of 

normality and independence, and the presence of values 

significantly different from observed values (outliers). In 

this respect, the premise of data normality was assessed 

using a histogram of the probability density corresponding 

to the standardized residuals and a normal probability plot 

of the standardized residuals with 95% confidence intervals 

(Figures 1 and 2). 
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FIGURE 1. Histogram of the probability density of the standardized residuals for each network. 
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FIGURE 2. Normal probability plot of the standardized residuals with 95% confidence intervals. 
 

For the four neural networks, the distribution was 

symmetrical and similar to a normal distribution, i.e., most 

values were concentrated around the mean, and few values 

were found at the extremities (Figure 1). Most of the 

coordinate points formed by the theoretical quantiles and 

residuals were close to the reference line or bisector, a few 

points were located on the tails, and all points were located 

within the 95% confidence intervals (Figure 1). This result 

indicates that the distribution of the residuals was normal, 

which increases the reliability of the estimation of THI 

values by these networks. 

The validity of the assumption of independence can 

be qualified using the scatter plot of the residuals according 

to the order of collection of the observed data. For this 

purpose, standardized residual diagrams were created as a 

function of the estimated temperature and humidity and day 

of the year (Figures 3 and 4). At the vertical axis, two 

horizontal lines, which passed through the values 

corresponding to standardized residuals –2 and +2, were 

included to facilitate the identification of the number of 

points with the largest deviations from the observed data 

(Figures 3 and 4).
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FIGURE 3. Scatter plots of standardized residuals as a function of the estimated temperature and humidity index. 
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FIGURE 4. Scatter plots of standardized residuals as a function of the day of the year. 
 

Most residuals were located near the horizontal line 

with a value of zero and concentrated predominantly in the 

range from –2 to +2, and few points in the four ANNs were 

located outside this range (Figures 3 and 4). Continuous 

sequences of positive and negative residuals were absent. 

Furthermore, patterns of signal alternation were absent, i.e., 

the residuals were randomly distributed along the horizontal 

line centered on the value 0 (Figures 3 and 4). This 

satisfactory distribution confirms the independence of the 

residuals according to the order of data collection and 

corroborates the high efficiency of the networks in 

estimating the THI with adequate precision.  

After confirming the adequate performance and high 

efficiency of these four networks selected by analytical and 

graphical analyses, a scatter plot was created to represent 

the observed and estimated THI values as a function of the 

day of the year (Figure 5). The estimated values followed 

the same trend of the observed values of the said variable 

and were not significantly different between them, and the 

corresponding curves were similar.
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FIGURE 5. Scatter plot of the temperature and humidity index as a function of the day of the year. 
 

The values estimated by the four ANNs followed the 
same trend of the observed values (Figure 5). It is worth 
noting that the existence of five well-defined stages in the 
variability in the THI throughout the year: increase in the 
index in the first 4 months, decrease in the fifth month, 
constancy in the sixth and seventh months, increase up to 
the ninth month, and decrease until the last month of the 
year (Figure 5). The THI values were higher than 78 along 
the year and reached peaks above 82 during the ninth and 
tenth months (Figure 5). According to the scale proposed by 
Thom (1959), THI values between 78 and 82 indicate a 
dangerous situation, i.e., the animals are stressed, and 
values above this range indicate a state of emergency, which 
may lead to death. Therefore, these results demonstrate the 
usefulness of the networks developed to assist farmers in 
adopting measures that guarantee the well-being of animals 
during handling. 

Furthermore, these findings indicate the excellent 
ability of ANNs to estimate or predict values with adequate 
accuracy, despite the high variability of the daily 
temperature and humidity data used in computational 
processing, and corroborate the results of Binoti et al. 
(2014a, b), Georgens et al. (2014), and Borges et al. (2017). 
It should be noted that the evaluated networks satisfactorily 
detected the climatic seasonality of the region, indicated by 
the THI, which is essential for the adequate husbandry of 
animals, especially those in confinement. 
 
CONCLUSIONS 

Multilayer perceptron artificial neural networks 
formed by two hidden layers containing three to seven 
neurons were efficient in predicting the thermal comfort of 
animals as a function of the day of the year. 

 

These networks made predictions with adequate 
reliability and precision, which justifies their use in the 
husbandry and management of animals, especially those in 
confinement. 
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