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ABSTRACT 

In agricultural areas with a historical of systematic soil sampling, alternative 
methodologies such as directed sampling design based on management zones (MZ) have 
been proposed to reduce sampling costs. The aim of this study was to evaluate the 
technical and economic impacts of replacing a dense systematic soil sampling design (cell 
size of 0.5 ha) by a systematic sampling with a smaller number of samples (cell size 
ranging from 1 to 4.5 ha), directed or conventional sampling design on the mapping of 
soil plant-available phosphorus (P), exchangeable potassium (K), and pHwater. The study 
was carried out in an agricultural area of 120 ha with soil classified as an Oxisol. The 
directed sampling designs were based on MZ delimited from data of elevation and 
overlapping of crop yield maps. Our finding revealed that systematic samplings with grids 
larger than 2 ha were not efficient to detect the spatial variability of soil P, K and pHwater. 
Larger systematic grid sizes, directed and conventional sampling design resulted in more 
generalist thematic maps, losing information about spatial variability of the soil attributes. 
Thus, from a technical point of view, soil sampling designs with a low density were little 
efficients, particularly for mapping P and K, due to their higher spatial variability. 
However, because soil P and K contents were close to or above critical levels and soil 
acidity was low (average pH close to 5.5), the different sampling designs presented little 
influence on fertilizer and liming recommendations. Therefore, we concluded that 
systematic soil sampling design may be replaced by soil sampling directed based on MZ 
or even by conventional sampling in soils with high fertility to reduce sampling costs. 
Nevertheless, crop responses must be monitored to validate fertilization management 
based on these simplifications on soil sampling procedure.  

 
INTRODUCTION 

Historically, soil fertility management has been 
performed based on conventional soil sampling design, 
which does not consider the spatial variability of soil 
attributes (CQFS-RS/SC, 2016). However, the 
modernization of agriculture and implementation of 
precision agriculture (PA) tools have shown that soil 
nutrient levels, nutrient amounts removed by plants, and 
nutrient losses are not uniformly distributed in the field 
(Molin, 2002, Mallarino & Wittry, 2004, Santi et al., 
2012). Thus, geo-referenced soil sampling for recognizing 

the spatial variability of soil attributes and application of 
variable rates of fertilizers and correctives has been widely 
adopted in Brazil (Corá & Beraldo, 2006, Soares Filho & 
Cunha, 2015, Baio et al., 2017). Soil fertility mapping can 
optimize the use of agricultural inputs, increase crop yield, 
promote higher profitability for farmers and mitigate 
environmental impacts derived from agriculture (Mallarino 
& Wittry, 2004, Baio et al., 2017). 

Systematic soil sampling by grid sampling is the 

most widespread methodology for mapping soil fertility 

attributes (Cherubin et al., 2016). However, some 
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methodological procedures remains unclear (Siqueira et 

al., 2014), such as the size of cells and consequently the 

number of soil samples per hectare (Nanni et al., 2011, 

Souza et al., 2014, Bottega et al., 2014, Cherubin et al., 

2014, 2015). The difficulty in defining the dimension of 

the grid cells is associated with the different patterns in the 

spatial variability of each of the soil chemical properties 

within the field and between fields (Mallarino & Wittry, 

2004, Nanni et al., 2011, Souza et al., 2014, Cherubin et 

al., 2014, 2015). Under contrasting soil conditions in 

Brazil, studies that considered only technical aspects have 

suggested the adoption of grid sampling with cells smaller 

≤ 1 ha (Nanni et al., 2011, Souza et al., 2014, Cherubin et 

al., 2014, 2015). However, the high number of samples 

and its costs associated with sampling and laboratory 

analysis have been the main obstacles to expand the 

adoption of systematic soil sampling in Brazil (Souza et 

al., 2014, Oliveira et al., 2015). 
The economic viability of using systematic soil 

sampling designs with a high density of samples is 
maximized in fields with high spatial variability of soil 
attributes and nutrient contents below the critical levels for 
suitable crop development (Schmidt et al., 2002, Nanni et 
al., 2011, Cherubin et al., 2014, Siqueira et al., 2014). In 
high-fertility areas (contents above the critical level), as 
expected for areas with long-term management using PA 
tools, crops usually present a low responsiveness to 
fertilization (CQFS/RS-SC, 2016) and, therefore, 
alternative and simplified soil sampling designs may be 
economically attractive to farmer. Among these alternative 
designs, directed soil sampling stands out based on the 
establishment of management zones (MZ), defined as 
subareas of the field with similar characteristics, which 
allows carrying out an uniform management of soil 
fertility within each MZ (Molin, 2002, Molin et al., 2015). 

In a study conducted in Iowa, the United States, 
Mallarino & Wittry (2004) compared the use of systematic 
soil sampling with MZ delineated by soil type surveys and 
found that systematic sampling design showed higher 
accuracy on detecting spatial variability of soil attributes 
in most of fields. Although the adoption of soil sampling 
based on MZ is consistently supported by the theory 
(Molin, 2002, Suszek et al., 2011, Santi et al., 2012, Molin 
et al., 2015), no studies have been conducted in Brazil to 

prove its efficiency in guiding soil samplings. In this 
sense, we conducted a study in a commercial field with 
long-term soil fertility management based on PA 
principles to evaluate the technical and economic viability 
of replacing a dense systematic soil sampling design (cell 
size of 0.5 ha) by a systematic sampling with a lower 
sampling density (cell size ranging from 1 to 4.5 ha), 
directed or conventional sampling design for mapping soil 
phosphorus (P), potassium (K), and pHwater. 
 
MATERIAL AND METHODS 

The study was conducted in an area of 120 ha 

located in Boa Vista das Missões, RS (central coordinates 
of 27°43′12″ S and 53°20′13″ W). The area has a soft 
wavy relief with a Rhodic Acrudox (Oxisol) according to 
Soil Taxonomy (Soil Survey Staff, 2014) and “Latossolo 
Vermelho distrófico típico” according to the Brazilian 
System of Soil Classification (Santos et al., 2013) with 

clay texture (> 600 g kg−1). The experimental area has 
been managed under the no-tillage system for more than 
20 years using PA tools since 2009, such as autopilot use, 
systematic soil sampling using a grid sampling of 1 ha 
(2009 and 2012), variable rate applications of fertilizers 
and correctives, and crop yield mapping. 

First, the field perimeter was demarcated using a 

GPS (Garmin®, Legend model) portable navigation device 

(accuracy of 3–5 m). Subsequently, a grid sampling with 

cells of 0.5 ha was overlaid on the area and soil samples 

were collected in May 2015, using a quadricycle equipped 

with a screw auger at a depth of 0.00–0.10 m. Fourteen 

soil subsamples, collected in the perimeter from a radius of 

10 m from the central point of each cell were combine to 

compose a sample. After sampling, these samples were 

identified and sent to the laboratory for analyzing the 

available P and exchangeable K (Mehlich 1) contents and 

pHwater values. 
The systematic point elimination technique was 

used from the initial grid sampling design of 0.5 ha (cell 
sizes of 70.71 × 70.71 m, 243 points) to simulate larger 
grids of 1 ha (141.42 × 70.72 m, 119 points), 2 ha 
(141.42 × 141.42 m, 60 points), 3 ha (212.14 × 141.42 m, 
42 points), and 4.5 ha (212.14 × 212.14 m, 29 points) 

(Figure 1). 
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FIGURE 1. Location of sampling points for mapping soil fertility defined through different sampling designs, such as 
systematic sampling with grids of 0.5, 1, 2, 3, and 4.5 ha, directed sampling based on management zones (MZ) established by 
crop yield maps (yield) and elevation data (elevation), conventional, and simplified conventional (simplified) sampling. 
 

The MZ were delimited using two criteria: 
overlapping grain yield maps and field elevation data 
(Figure 1). Each MZ was represented by the mean of 
points, arranged one every 4.5 ha, approximately. The 
delimitation of MZ from grain yield was carried out based 
on data from the follow crop seasons: black oat (2010), 
soybean (2010/11 and 2014/15), and wheat (2013). First, 
yield data were filtered to remove errors and then, the data 
of each map were relativized by their mean value (Suszek 
et al., 2011). The temporal stability of grain yield in the 
area was confirmed by the coefficient of temporal 
variation of grain yield (Molin, 2002, Suszek et al., 2011), 
which averaged 12.3%. Subsequently, the relativized maps 
were overlapped and three MZ were defined: low (i.e. 
yield value lower than 95% of the mean yield of the field), 
medium (95–105%), and high yield (>105%), as described 
by Santi et al. (2012). The field elevation data were 
obtained from DGPS integrated with a Case® harvester. 
The field presented elevation ranging from 518 to 560 m, 
being this amplitude subdivided into four MZ (i.e., <530 
m, 530-540 m, 540-550 m and >550 m).  

For the simulation of conventional sampling, the 
area was divided into five plots so that a sample 
represented less than 30 ha. A sampling point was 
demarcated every 4.5 ha within each 30-ha plot to create a 
composite sample. In addition, the use of a simplified 
conventional  sampling was simulated, in which a sample 
composed of the mean of 12 sampling points arranged in a 
zig-zag scheme represented the entire field (120 ha). 

The data were subjected to statistical analysis, 
obtaining measurements of position (minimum, mean, and 
maximum) and dispersion (coefficients of variation, CV). 
CV values were classified as of low (<10%), medium (10–
20%), high (20–30%), and very high (>30%) variability 
(Pimentel-Gomes & Garcia, 2002). Descriptive statistical 

analysis was performed using the Statistical Analysis 
System – SAS 9.3 software (SAS Inc., Cary, USA). 

The data from the systematic sampling in grids 
were analyzed using geostatistical procedures. The 
semivariogram adjustment was performed by GEOEST 
software (Vieira et al., 2002) where spherical, exponential, 
and Gaussian theoretical models were tested. The choice 
between models was based on the highest coefficient of 
determination (R2) and the lowest sum of squares of 
residuals (SSR) obtained by the cross-validation technique. 
From the models, the geostatistical parameters range (a), 
nugget effect (C0), contribution (C1), and sill (C) were 
obtained. The degree of spatial dependence (DSD) was 
estimated from equations developed by Seidel & Oliveira 
(2014) and classified as strong, moderate, and weak 
according to the suggestions for each theoretical model 
presented by Seidel & Oliveira (2016). Thematic maps 
were elaborated using the software Surfer 9 (Golden 
Software, Inc.). The ordinary kriging was used as an 
interpolator for the data with defined spatial structure 
(Vieira, 2002) and inverse-square distance for the data 
with no satisfactory adjustment to any of the tested 
theoretical models (i.e. pure nugget effect). 

To evaluate the influence of soil sampling schemes 
on the accuracy of mapping, two methods were used: the 
Pearson’s simple linear correlation matrix (p<0.01) and 
coefficient of relative deviation (CRD). In order to have 
only estimated values in all sampling designs, a grid with 
cell sizes of 0.16 ha (40 × 40 m) was initially overlaid 
under the area, resulting in 722 points, and then, estimated 
values were extracted from each soil map elaborated based 
on different sampling designs. CRD expresses the 
dissimilarity of two maps, in module, existing between the 
sampling points on each map, according to Equation (1) 
(Cherubin et al., 2015). 
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CRD = ∑ [(Ncij − Nciref) / Nciref] × (100 / n)     (1) 

Where,  

n is the number of interpolated points (n = 722 points);  

Ncref is the nutrient reference content at point i 
obtained on the map generated by the grid sampling 
with cell sizes of 0.5 ha (reference), and  

Ncij is the nutrient content at point i in the different 
soil sampling methods. 

 
Fertilizer recommendation was performed only for 

correcting nutrient contents to critical levels (correction 
fertilization), being 9 mg dm−3 of P and 90 mg dm−3 of K 
for this soil (CQFS-RS/SC, 2016). Soil clay contents and 
cation exchange capacity (CEC) values at pH 7.0, 
auxiliary parameters used to interpret P and K contents, 
respectively, were higher than 60% and between 7.6 and 
15 cmolc dm−3 in the entire field.  Liming was 
recommended based on the SMP index (data not shown) 
(CQFS-RS/SC, 2016), which presented a mean value of 
5.74 (minimum and maximum value of 5.2 and 6.2, 
respectively) and CV of 3.3% in the sampling grid of 0.5 
ha. Fertilizer and liming rates were defined according to 
soil fertilization guidelines for the Rio Grande do Sul and 
Santa Catarina states (CQFS-RS/SC, 2016). 

Rates of fertilizers and liming obtained from data 
collected using the different sampling designs were 
compared to those obtained from the grid with cell sizes of 
0.5 ha, which was considered as a reference. Therefore, the 
area in which the recommended rates were above and 
below those recommended for the reference was calculated 
for all other sampling design. Subsequently, the total 
deviation on fertilizer and lime rates (kg) and its associated 
costs (R$) were calculed. For this, the mean market costs 
practiced during 2016 (CONAB, 2016) were used for 
triple superphosphate (41% of P2O5) (R$ 1.63 kg−1) and 
dolomitic limestone with an effective calcium carbonate 

equivalent of 75% (R$ 123.75 Mg−1). Since soil K 
contents were above the critical level (90 mg dm−3) in all 
points evaluated, the field did not require fertilization. 
Costs associated with soil sampling and analysis were 
determined according to values practiced by service 
providers in the studied region. The established values 
were R$ 70.00 per soil sample for the grid of 0.5 ha, R$ 
80.00 for the grid of 1 ha, R$ 90.00 for the grid of 2 ha, R$ 
95.00 for the grid of 3 ha, R$ 100.00 for the grid of 4.5 ha, 
R$ 150.00 for the conventional sampling and MZ based on 
the elevation and R$ 200.00 for the MZ based on crop 
grain yield and simplified conventional sampling. 
 
RESULTS AND DISCUSSION 

The mean values of P and K at all sampling 
schemes were close to 13 and 190 mg dm−3, respectively 
(Table 1), being classified as high and very high by 
CQFS/RS-SC (2016). These results showed that the 
different sampling designs would not result in significant 
differences in the fertilizers recommendations, if fixed 
rates were applied. 

However, a high difference was observed in the 
minimum and maximum values between the sampling 
designs, mainly between directed and conventional 
samplings compared to systematic sampling designs. 
According to increase the size of grid cells the amplitude 
of data decreases (Table 1). This reduction in data 
amplitude leads to the underestimation of the real spatial 
variability in the area, causing errors of interpretation and, 
consequently, negatively affecting the fertilizer 
recommendations. Our results were in accordance with 
those reported by Cherubin et al. (2015), who concluded 
that grids with smaller cell sizes and consequently, larger 
number of samples allowed detecting subareas with soil P 
and K contents very low, which may potentially reduce 
crop yields.  

 
TABLE 1. Descriptive statistical analysis of soil phosphorus (P), potassium (K), and pHwater sampled using different sampling 
designs, such as systematic (grids), directed by management zones (MZ) delimited by grain yield (Yield) and field elevation 
data (Elevation), conventional (Conv), and simplified conventional (Simp Conv). 

Statistical  
parameter 

---------------------Sampling grids (ha) --------------------- ---------MZ--------- 
Conv 

Simp 
0.5 1 2 3 4,5 Elevation Yield Conv 

N(1) 243 119 60 42 29 4 3 5 1 
-------------------------------------------------------------Soil P content (mg dm-3)-------------------------------------------------------------- 
Minimum 3.30 5.60 5.60 5.60 5.60 10.03 11.45 10.54 - 
Mean 12.82 13.11 12.92 12.76 12.91 12.20 13.46 12.85 14.04
Maximum 22.00 22.00 22.00 22.00 20.00 13.29 15.80 16.00 - 
CV(2) 30.90 30.12 31.46 31.27 29.74 16.61 16.31 16.76 - 
-------------------------------------------------------------Soil K content (mg dm-3)--------------------------------------------------------------
Minimum 96.00 102.00 107.00 107.00 115.00 184.13 173.86 158.40 - 
Mean 194.58 191.05 191.02 190.10 204.59 190.64 185.34 203.88 176.50
Maximum 353.00 338.00 315.00 336.00 338.00 198.57 198.33 251.80 - 
CV 27.09 26.58 27.69 30.19 28.92 3.64 6.64 18.37 - 
---------------------------------------------------------------------Soil pHwater---------------------------------------------------------------------- 
Minimum 4.50 4.80 4.80 4.90 4.80 5.29 5.28 5.26 - 
Mean 5.31 5.30 5.30 5.27 5.26 5.37 5.33 5.36 5.33
Maximum 6.10 5.70 5.70 5.80 5.60 5.46 5.38 5.44 - 
CV 4.21 3.76 3.68 4.17 4.22 1.86 0.94 1.21 - 
(1) N: Number of observations (soil samples); (2) CV (%): Coefficient of variation. 
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For soil P and K contents in all sampling grids, CVs 
were classified as high to very high (26.58 to 31.46%) 
(Pimentel-Gomez & Garcia, 2002). The high dispersion in 
the values of soil P and K contents is widely reported in 
the literature (Nanni et al., 2011, Rodrigues et al., 2012, 
Santi et al., 2012, Cherubin et al., 2014, 2015). High CV 
values are an indication of high spatial variability of 
attributes in the area (Oliveira et al., 2015), which, 
consequently, requires the use of sampling designs with a 
higher number of samples to faithfully reproduce the 
spatial variability of attributes at non-sampled sites 
(Siqueira et al., 2014). 

The mean values of soil pHwater in all sampling 
design were close to 5.30, being slightly below the value 
used as the critical limit (5.50) for liming 
recommendations in areas under no-tillage system in Rio 
Grande do Sul and Santa Catarina states (CQFS-RS/SC, 
2016). Even applying a high lime rate (5 Mg ha−1) in 2008, 
the soil presented a moderate acidity, requiring a new 
liming in practically the entire field. The reacidification of 
agricultural areas is mainly associated with leaching and 
extraction of basic cations by grain harvesting, nitrification 
of ammoniacal fertilizers, and oxidation of soil organic 
matter (Souza et al., 2007). The dispersion of soil pHwater 
values was classified as low (CV <5%) for data from all 
sampling designs. 

When data presented spatial dependence, the best 
data adjustment was provided by the Gaussian model, 
except for K data from grid of 0.5 ha (Table 2). Soil 
pHwater and soil P contents presented a defined spatial 
structure for dataset collected through grid sampling 
designs with cell sizes  ≤ 2 ha, while soil K contents data, 
spatial structure was revealed only for grids with cell sizes 
≤ 1 ha. Dataset from sampling grids with cells of 3 and 4.5 

ha present pure nugget effect (PNE) (absence of spatial 
dependence), regardless of studied attributes. In practice, 
when a given variable presents PNE is impossible to use 
interpolation methods that consider the structure of spatial 
dependence to estimate attribute values in non-sampled 
sites, such as ordinary kriging (Vieira, 2002). Cherubin et 
al. (2015) also verified PNE for soil P and K contents data 
from sampling grids with cells higher than 2.25 ha. The 
authors associated this result with an increase in the 
distance between points and the consequent reduction in 
the number of samples, generating an insufficient number 
of pairs (observations) to accurately adjust the data to a 
theoretical model. According to Webster & Oliver (2007), 
recognizing the spatial distribution pattern of a given 
variable by means of well-structured semivariograms 
requires at least 50 observations (soil samples, for 
example), which in our study was obtained only for grid 
sampling designs with cell size of 0.5 ha (243 samples), 1 
ha (119 samples) and 2 ha (60 samples). 

Range values were for P, K and pH data, ranging 
from 198 to 339 m (Table 2). They represent the limit 
distance in which there is spatial dependence between 
samples (Webster & Oliver, 2007). Some authors such as 
Souza et al. (2014) and Oliveira et al. (2015) have 
indicated the use of half the range value as the maximum 
distance between points for subsequent samplings. In this 
sense, the results obtained in the present study indicated 
the possibility of using grid sampling designs with 
maximum cell sizes, ranging from 1 to 3 ha. However, 
Cherubin et al. (2015) alerted that depend on size of field, 
this recommendation may result in sampling designs with 
reduced number of samples, compromising the reliability 
of results. 

 
TABLE 2. Geostatistical analysis of soil phosphorus (P) and potassium (K) contents, and soil pHwater values systematically 
sampled from grid sampling designs with different cell sizes.  

Grid 
(ha) 

N(1) 
Nugget  
effect 

Sill Range (m) Model R2 
SDI(2) 

 (%) 
DSD(3) 

------------------------------------------------------------Soil P content (mg dm-3)--------------------------------------------------------------- 
0.5 243 5.66 13.88 339 Gaussian  0.92 14 Moderate 
1 119 2.68 13.43 229 Gaussian  0.80 12 Moderate 
2 60 0.20 13.79 223 Gaussian  0.72 15 Moderate 
3 42 PNE(4) PNE PNE PNE PNE PNE PNE 

4.5 29 PNE PNE PNE PNE PNE PNE PNE 
-------------------------------------------------------------Soil K content (mg dm-3)-------------------------------------------------------------- 

0.5 243 859.42 2290.35 317 Exponential 0.62 8 Moderate 
1 119 1042.06 2041.12 196 Gaussian  0.31 7 Weak 
2 60 PNE PNE PNE PNE PNE PNE PNE 
3 42 PNE PNE PNE PNE PNE PNE PNE 

4.5 29 PNE PNE PNE PNE PNE PNE PNE 
---------------------------------------------------------------------Soil pHwater---------------------------------------------------------------------- 

0.5 243 0.03 0.05 245 Gaussian  0.91 7 Weak 
1 119 0.01 0.04 198 Gaussian  0.73 10 Moderate 
2 60 0.02 0.04 281 Gaussian  0.70 10 Moderate 
3 42 PNE PNE PNE PNE PNE PNE PNE 

4.5 29 PNE PNE PNE PNE PNE PNE PNE 
(1)N: Number of observations (soil samples); (2)SDI: spatial dependence index; (3)DSD: degree of spatial dependence calculated and classified 
according to Seidel & Oliveira (2014) and Seidel & Oliveira (2016), respectively; (4)PNE: pure nugget effect. 
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The data indicated that an increase in the dimension 
of the sampling grid promoted a reduction in the 
coefficients of determination (R2) of theoretical models, as 
reported by Bottega et al. (2014). The spatial dependence 
was classified as weak for grids with cell sizes of 0.5 and 1 
ha for soil pHwater and soil K content, respectively. All 
other datasets with defined spatial structure presented 
spatial dependence classified as moderate (Seidel & 
Oliveira 2016). The stronger the spatial dependence is, the 
better the attribute prediction performed by kriging in non-
sampled sites (Kravchenko, 2003) because there is less 
contribution of random components in the data variability. 

The values of soil P and K contents, and pHwater 
predicted from the data obtained in the different sampling 
designs showed significant positive correlations (p<0.01) 
with the values of reference sampling (grid of 0.5 ha), 
except for the data of soil pHwater obtained by conventional 
sampling (Table 3). In general, there was a reduction of 
the correlation coefficient as the dimension of the grid 
cells increased, which is similar to the pattern observed by 
Cherubin et al. (2015). The data obtained through 
sampling grids presented correlation coefficients above 
0.60, regardless of their dimensions. 

 
TABLE 3. Pearson’s linear correlation and coefficient of relative deviation of soil phosphorus (P) and potassium (K) contents 
and pHwater sampled using different sampling designs, such as systematic (grids), directed by management zones (MZ) delimited 
by grain yield (Yield) and field elevation data (Elevation), conventional (Conv), and simplified conventional (Simp Conv). 

Soil ---------------Sampling grids (ha)------------------ ---------------MZ------------ 
Conv 

Simpl 
 attributes 1 2 3 4.5 Yield Elevation Conv 
------------------------------------------------------------Pearson’s linear correlation------------------------------------------------------------ 
P 0.93 ** 0.89 ** 0.83 ** 0.81 **     0.27 **          0.10 ** 0.55 ** -  
K 0.91 ** 0.77 ** 0.68 ** 0.74 ** 0.16 ** 0.18 ** 0.75 ** -  
pHwater 0.79 ** 0.65 ** 0.74 ** 0.64 ** 0.20 **           0.44 **    -0.25 ** -  
-------------------------------------------------------Coefficient of relative deviation (%)------------------------------------------------------ 
P 8.07  10.78  10.24  11.19  20.74  20.06  16.32  23.68  
K 5.86  9.11  11.46  10.33  13.93  11.39  14.34  14.49  
pHwater 1.25   1.33   1.51  1.59   1.68   1.70  1.72   2.16  
**=p <0.01; n= 722 observations. 

 
The correlation coefficients of soil P, K, and 

pHwater, obtained using directed samplings at MZ and the 
reference grid sampling design, were lower than 0.45 
(Table 3). On the other hand, the correlation coefficients in 
the conventional sampling were high for soil P and K 
content, being 0.55 and 0.75, respectively. However, a 
negative correlation was observed for soil pHwater. This 
negative correlation between soil pHwater in conventional 
sampling and in reference grid sampling design is 
attributed to the lack of representativeness of plots in the 
conventional sampling. This result shows the importance 
of searching for the best possible representation of the plot 
from a higher number of subsamples when using 
conventional sampling design for soil fertility assessments. 

The low correlation coefficient between directed 
and the reference (grid of 0.5 ha) sampling designs 
suggested that directed sampling designs were not efficient 
to reproduce the spatial variability of soil attributes 
(Siqueira et al., 2014). Possibly, the limitation of MZ 
based on elevation data is on the soft wavy relief of the 
area, with an elevation variation of only 42 m (518–560 
m). This difference may have been insufficient to induce 
significant changes in the spatial distribution pattern of 
soil attributes. Similarly. the inefficiency of MZ based on 
crop grain yield may have occurred due to the high soil 
fertility of field, leading to a low or even no correlation 
between soil chemical attributes and crop yield (CQFS-
RS/SC, 2016). In that case, other factor are limiting crop 
yield, such as soil physical restrictions and water 
availability to plants (Santi et al., 2012). 

The dissimilarity analysis of maps performed using 
CDR showed that the smallest deviations occurred in maps 
generated from the systematically sampled data (grids), 
with values ranging from 8.07 to 11.19% for soil P 
content, from 5.86 to 13.93% for soil K contents, and from 

1.25 to 1.68% for soil pHwater (Table 3). Cherubin et al. 
(2015) studying grid sampling designs with cell sizes 
ranging from 0.5 to 4 ha observed higher CRD values 
when compared to those obtained in this study, reaching 
36.2 and 19.4% for the maps of soil P and K contents, 
respectively. Higher CRD values observed between maps 
by Cherubin et al. (2015), may be related to soil samples 
collected independently for each tested sampling grid 
instead of using the systematic point elimination technique 
to simulate different grid sampling designs, as we used in 
this study. The use of this technique has the advantage of 
preventing the confounding effects induced by inherent 
micro-variability soil expressed in short distances, and 
variations in laboratory results, as well as significantly 
reducing costs of the research. 

Maps elaborated from conventional and directed 
sampling designs showed CRD similar to each other, but 
higher when compared to those obtained for sampling 
grids. The lowest CRD deviations were obtained for soil 
pHwater and the highest for soil P and K contents, while the 
inverse was observed in the correlation analysis. This 
occurred because soil pHwater had a lower variation among 
the values when compared to the other attributes, resulting 
in lower correlation coefficients. The limited number of 
sampling points in directed sampling designs reduced the 
amplitude of values, making the correlation analysis an 
inefficient strategy to evaluate maps elaborated from these 
soil sampling designs. 

Figure 2 shows the thematic maps of the soil 
attributes P, K, and pHwater. In general, the three soil 
attributes presented similar pattern, confirming the results 
obtained through CRD and the linear correlation analysis. 
Increases in the cell sizes of grid sampling designs made 
the maps more generalists, causing loss of information on 
the spatial variability of attributes. A clear difference can 
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be observed in the maps interpolated by ordinary kriging 
(data with defined spatial structure) (sampling grids ≤ 2 
ha) and inverse-square distance, with the ordinary kriging 
providing a smoothing of isolines, which facilitates 
variable rate applications. 

Maps from grids of 0.5, 1, and 2 ha are visually 
similar, while those from grids of 3 and 4.5 ha partially 
lost spatial variability information. In contrast, completely 
different patterns were observed in the maps from directed 
sampling designs, regardless of the criteria used to delimit 
MZ. Soil sampling efficiency directed by MZ is possibly 
dependent on the choice of the delimitation criteria for 

subareas, being more efficient when the spatial variability 
of soil attributes is conditioned primarily by intrinsic 
factors to soil and landscape (e.g. soil type and relief) 
(Mallarino & Wittry, 2004). 

High soil P contents (i.e. above the critical content 
of 9 mg dm−3) was consistently observed in the studied 
field (Figure 2). As a result, only 8.6% of the area (10.3 
ha) had soil P contents classified as medium (6–9 mg 
dm−3) and, therefore, required P fertilization (Table 4). 
Thus, regardless of the soil sampling design, the fertilizer 
recommendations were quite similar. 

 

 
FIGURE 2. Thematic maps of soil phosphorus (P)  and potassium (K) content (mg dm−3) and soil pHwater sampled using 
different sampling designs, such as systematic (grids), directed by management zones (MZ) delimited by grain yield (yield) 
and field elevation data (elevation), conventional, and conventional (simplified).  
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Data from directed sampling designs suggested that 
P fertilization was no necessary in that field. It reveals that 
this alternative methodologies were inefficient in showing 
subareas of the field that had fertilizer application 
requirement, which can induce reductions of crop yield in 
these subareas (Bottega et al., 2014, Cherubin et al., 2015, 
CQFS-RS/SC, 2016). The cost of the triple superphosphate 

(TSP) incorrectly recommended (higher and lower doses 
than the reference) using systematic sampling with grid of 
1 ha was R$ 1,238.00 (approximately R$ 10.00 per ha). 
For the other sampling designs, the deviations in the 
recommendations resulted in extra cost ranging from R$ 
1,633.00 to 1,817.00 (approximately from R$ 14.00 to 
15.00 per ha). 

 
TABLE 4. Economic analysis of costs of sampling, inputs, and deviations of recommendations of triple superphosphate (TSP) 
and lime carried out from soil attributes systematically sampled from sampling grids and directed by management zones (MZ) 
delimited by grain yield (Yield) and field elevation data (Elevation), conventional (Conv), and simplified conventional (Simp 
Conv) in relation to the reference sample (sampling grid of 0.5 ha). 

Parameter 
-----------------Sampling grids (ha)----------------- ----------MZ--------- 

Conv 
Simpl 

0.5 1 2 3 4.5 Yield Elevation Conv 
N(1) 243 119 60 43 29 3 4 5 1
-------------------------------------------------------------------Triple superphosphate----------------------------------------------------------- 
ARRBR(2) (%) - 2.3 1.5 7.2 7.4 8.6 8.6 8.6 8.6
ARRAR(3) (%) - 4.2 7.6 1.5 2.3 0.0 0.0 0.0 0.0
TARI(4) (kg) 1,002 1,212 1,713 339 404 0 0 0 0
ARIBR(5) (kg) - 275 188 840 856 1,002 1,002 1,002 1,002
ARIAR(6) (kg) - 485 889 178 259 0 0 0 0
TSP IR(7) (R$) - 1,238 1,738 1,659 1,817 1,633 1,633 1,633 1,633
------------------------------------------------------------------------Lime(8)------------------------------------------------------------------------ 
ARRBR (%) - 20.2 18.8 19.4 15.6 41.6 39.5 47.8 36.7
ARRAR (%) - 26.3 30.4 34.8 38.9 31.2 31.6 24.7 34.0
TARI (Mg) 191.3 192.9 196.1 197.4 200.6 188.7 188.5 185.7 191.3
ARIBR (Mg) - 6.0 5.3 5.2 4.4 13.7 13.8 15.5 12.4
ARIAR (Mg) - 7.6 10.1 11.2 13.7 11.0 11.0 9.8 12.3
Lime IR (R$) - 1,681 1,907 2,033 2,242 3,054 3,065 3,127 3,053
------------------------------------------Costs of sampling, inputs, and deviations of recommendations------------------------------------ 
Total SFT (R$) 1,633 1,975 2,791 553 658 0 0 0 0
Total calcário (R$) 23,677 23,870 24,266 24,424 24,826 23,346 23,325 22,977 23,674
Calcário + SFT (R$) 25,310 25,845 27,058 24,977 25,484 23,346 23,325 22,977 23,674
Amostragem (R$) 17,010 9,520 5,400 4,085 2,900 600 600 750 200
Custo total (R$) 42,320 35,365 32,458 29,062 28,384 23,946 23,925 23,727 23,874
Saldo (R$) 0 -6,955 -9,862 -13,258 -13,936 -18,374 -18,395 -18,593 -18,446
TCIRI(9) (R$) 0 2,918 3,645 3,692 4,059 4,687 4,698 4,760 4,686
SSC(10) + TCIRI (R$)  17,010 12,438 9,045 7,777 6,959 5,287 5,298 5,510 4,886
Balance (R$)  0 -4,572 -7,965 -9,233 -10,051 -11,723 -11,712 -11,500 -12,124
(1)n: Number of observations (soil samples); (2)ARRBR= Area with recommended rates below the reference; (3)ARRAR= Area with 
recommended rates above the reference; (4)TARI= Total amount recommended inputs (fertilizer or lime); (5)ARIBR= Amount of 
recommended input below the reference; (6)ARIAR= Amount of recommended input above the reference; (7)IR= Incorrectly recommended; 
(8)Lime= Effective calcium carbonate equivalent =75%; (9)TCIRI= Total cost of incorrectly recommended inputs; (10) SSC= Soil sampling cost. 
 

Increasing cell size of sampling grid from 0.5 to 4.5 
ha and the use of directed sampling designs reduced the 
cost of soil sampling by 83 and 96%, respectively, 
compared with reference grid (Table 4).  

The total cost of inputs recommended (lime and 
TSP) for the area showed little variation among the 
sampling designs, as observed by Bottega et al. (2014). 
However, the amount of inputs recommended from 
systematic samplings were slightly higher when compared 
to directed samplings. For the higher cost sampling 
scheme to be economically viable, it is necessary to reduce 
the amount of recommended inputs and/or increase crop 
yield due to a better soil fertility management (Mallarino 
& Wittry, 2004). In the present study, the use of systematic 
sampling resulted in higher expenditures on inputs because 
of the better detection of small subareas in the field with 
soil P deficiency. However, grain yield changes induced 
by contrasting recommendation from different soil 
sampling designs (CQFS-RS/SC, 2016) would not be 

expected, because of the high soil fertility (i.e. contents 
close to or above the critical level). 

The sum of the costs of sampling and costs 
resulting from erroneous recommendations (i.e. above and 
below the reference) indicated that the use of directed 
samplings was more economically viable, generating a 
mean saving of R$ 11,765.00 (R$ 98.40 per ha). The 
largest sampling grid (4.5 ha) presented a saving of R$ 
10,051.00 (R$ 84.07 per hectare) in relation to the 
sampling grid of 0.5 ha (reference), suggesting that grids 
with larger dimensions can be alternatively used when soil 
fertility is high and there is no available data or expertise 
to delimit MZ. These results are in accordance with those 
described by several authors, in which cost is the main 
limiting factor to the widespread use of systematic soil 
sampling designs that resulting in high number of samples 
(Souza et al., 2014, Oliveira et al., 2015). 

In addition, although the soil nutrient contents are 
close or above the critical level, our results showed that the 
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spatial variability of soil P and K contents remained high 
even in the area with a history of PA tools applied to soil 
fertility. Thus, systematic samplings using larger sampling 
grids (>2 ha) and directed and conventional samplings 
failed to capture this spatial variability efficiently, 
presenting a technical drawback in relation to more dense 
systematic sampling designs. 

Therefore, when spatial variability of soil attributes 
is unknown, the use of a dense systematic sampling (≤ 1 
ha) is suggested to better detecting and mapping the spatial 
distribution of attributes in the field. (Corá & Beraldo, 
2006). These results are in line with recommendations of 
several studies previously conducted in Brazil (Corá & 
Beraldo, 2006, Nanni et al., 2011, Souza et al., 2014, 
Cherubin et al., 2014, 2015). For a subsequent soil 
sampling, farmers/consultants may decide between 
repeating a systematic sampling design or changing to a 
directed sampling design based on the existing spatial 
variability and the mean nutrient contents in the previous 
sampling. Our results showed that sampling grid with a 
larger dimension should be economically more attractive if 
the farmer/consultants choose to continue using systematic 
sampling. 

When almost the entire area already has adequate 
fertility levels (contents above the critical level), periodic 
soil samplings for fertility monitoring purposes can be 
conducted in a directed manner or even from conventional 
sampling, thus saving time and financial resources. The 
use of a directed soil sampling at MZ, in addition to the 
lower cost, has as advantages the possibility of conducting 
a more complete exploratory investigation of soil attributes 
(chemical, physical, and biological) that may be limiting 
crop yield (Santi et al., 2012). Under these same soil 
fertility conditions, fertilizer recommendation can be based 
on thematic maps of nutrient removed by grains plus a 
percentage of losses to the environment (25–35% for the 
no-tillage system) (CQFS-RS/SC, 2016). 

The results of the present study help to understand 
the findings of Walton et al. (2010) on cotton fields in the 
USA. From the application of a questionnaire, they found 
that 33% of the farmers who abandoned the use of 
systematic samplings adopted MZ for fertility 
management. The correct soil fertility management based 
on systematic samplings leads to an increase in nutrient 
contents above the critical levels and directed samplings 
become more economically viable from that moment. It is 
a virtuous circle, where proper soil sampling results in a 
precise detection of spatial variability of soil variable and 
consequently suitable fertilization management. 
Afterwards, soil fertility can be monitored by MZ or larger 
grid sampling designs in a more economically way without 
impair the technical efficiency of soil fertilization 
management.  
 
CONCLUSIONS 

In an area with a history of soil fertility 
management by using precision agriculture tools, the 
spatial variability of soil P and K contents remained high. 
Therefore, conventional soil samplings at MZ or 
systematic sampling designs with reduced number of 
samples were ineffective for mapping the spatial 
variability of soil P and K contents. However, the different 
sampling designs showed no significant influence on 
fertilizer and corrective recommendations, because 

nutrient contents were close to or above critical levels 
(high soil fertility). Therefore, when soil present high 
fertility, systematic sampling with large number of 
samples can be replaced by directed based on MZ or even 
by conventional sampling designs to reduce sampling costs 
without loss efficiency on soil fertilization management. 
Nevertheless, crop responses must be monitored to 
validate fertilization management based on these 
simplifications on soil sampling procedure. 
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