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ABSTRACT 

The least limiting water range (LLWR) is a soil physical quality indicator that receives 
much attention. It has been criticized and put to the test regarding mathematical models 
that compose it since they describe the behavior of soil physical attributes in a simplified 
way. This study aimed to assess the efficiency of some pedofunctions proposed in the 
literature and artificial neural networks on the accuracy in predicting soil water retention 
at potentials equivalent to field capacity (θFC) and permanent wilting point (θPWP). In 
other words, to apply the best models to LLWR of two soil types (Oxisol and Ultisol) and 
verify changes in their structure. The results indicated that pedofunctions using sand, silt, 
clay, bulk density, and soil organic matter contents are more efficient in estimating θFC 
and θPWP. However, the use of multiple linear regression models to predict θFC values 
below 0.20 m3 m−3 may present a slight tendency to overestimate it, which is not observed 
in the neural networks. As in R2, equations from neural networks were more efficient in 
estimating θFC and θPWP. Pedofunctions used to calculate LLWR differ in the 
establishment of the critical soil bulk density, exposing the limitations of the model. 

 
 
INTRODUCTION 

Soil physical quality cannot be measured directly, 
but it is assessed through attributes such as porosity, bulk 
density, penetration resistance, and water content available 
to plants (Guimarães et al., 2013). Soil physical quality was 
better investigated by Letey (1985), who proposed the 
concept of 'non-limiting water range', which integrates the 
relationships between soil attributes and water content 
available to plants. Silva et al. (1994) improved this concept 
when assembling mathematical models for estimating soil 
moisture in the field capacity, permanent wilting point, air-
filled porosity, and soil penetration resistance, originating a 
soil structural quality indicator known as least limiting 
water range. Tormena et al. (1998) later introduced this 
indicator in Brazil as Intervalo Hídrico Ótimo. 

The least limiting water range (LLWR) has been 
received much attention in Brazil and applied in several 
studies. Among them, Freddi et al. (2009) assessed 
compaction levels of an Oxisol and its physical quality 
reduction processes, as well as yield reduction of two maize 
hybrids as a response to compaction. The authors verified 

that, at certain levels of soil bulk density, water content 
should be above the field capacity to avoid limitations due 
to soil penetration resistance and meet the water 
requirements of hybrids. In this case, the intense machinery 
traffic led to soil structural degradation. In addition, the 
authors proposed soil decompaction actions when bulk 
density reached 1.46 Mg m−3, considered as critical in 
LLWR. Betioli Junior et al. (2012) analyzed an Oxisol after 
30 years of no-tillage and observed a decrease in LLWR due 
to an increase in bulk density, regardless of the used critical 
soil penetration resistance, which was 2 MPa. 

Despite the studies that consolidate LLWR as a soil 
physical quality indicator, it has been criticized and its 
validity put to the test by several authors (Gubiani et al., 
2013, Jong Van Lier & Gubiani, 2015; Cecagno et al., 
2016). These studies have questioned the efficiency of the 
linear mathematical model used to determine LLWR since 
the relationships between soil attributes are not linear and 
describe them in a relatively simple way is still one of the 
challenges of soil physics (Klein et al., 2016; Jong Van Lier 
& Gubiani, 2015). 
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Over the years, researchers have been proposing 
mathematical models to estimate soil water retention using 
attributes that correlate directly with one another, such as 
clay, silt, sand, soil organic matter content, and bulk density 
(Barros et al., 2013; Medrado & Lima, 2014; Medeiros et 
al., 2014). These models are also known as pedofunctions 
or pedotransfer functions (PTF) and can be applied to 
LLWR. 

Most models currently available were developed for 
temperate regions (Gupta & Larson, 1979; Rawls et al., 
1982; Saxton et al., 1986), where edaphoclimatic properties 
and soil mineralogical characteristics are different from 
tropical regions. For Brazil, some models have already been 
established (Reichert et al., 2009, Barros et al., 2013, 
Medeiros et al., 2014), but their validity in soils submitted 
to agricultural management different from those of the 
original database may make them unsuitable for use. 

In the case of complex systems, mathematical 
modeling techniques may be more efficient in predicting 
soil water content, such as artificial neural networks (ANN) 
(Jana et al., 2012; Jana & Mohanty, 2012; Nguyen et al., 
2017). ANNs have shown high performance due to factors 
such as robust and parallel distributed structure (layers of 
neurons), generalization and learning efficiency that make 
them capable of solving complex problems (Leal et al., 
2015). In addition, they are tolerant to outliers, in which 
they are normalized in the layers of neurons, allowing the 
modeling of distinct variables and their non-linear 
relationships. This computational technique simulates the 
neural structure of intelligent organisms, which acquire 
knowledge through the experience and acquisition of 
punctual information. 

As an example of the application of ANNs in 
agricultural research, Leal et al. (2015) reported their 
efficiency to estimate maize grain yield through soil 
attributes such as particle size distribution, soil organic 
matter content, cation exchange capacity, and base 
saturation. Ebrahimi et al. (2019) compared the efficiency 
of mathematical models in the estimates of the biological 
parameters of soil microbiota from their attributes and 
verified that ANN was more efficient than multiple linear 
regressions. 

Based on these observations, this study aimed to 
assess the efficiency of some PTFs proposed in the literature 
and ANNs on the accuracy in predicting soil water retention 
at potentials equivalent to field capacity (θFC) and 
permanent wilting point (θPWP). In other words, to apply 
the best models to LLWR of two soil types (Oxisol and 
Ultisol) and verify changes in their structure. 
 
MATERIAL AND METHODS 

The data were obtained from two representative soils 
of the Mato Grosso State, Brazil, classified according to the 
Brazilian Soil Classification System (Embrapa, 2013) as a 
Dystrophic Red-Yellow Latosol and Dystrophic Red-
Yellow Argisol, located at the geographical coordinates 
59°11′59.0″ W and 12°35′49″ S and 56°01′16.8″ W and 
9°54′04″ S, with an altitude of 350 and 283 m, respectively. 

According to the U.S. Department of Agriculture (Soil 
Survey Staff, 2014), the soils are classified as Oxisol and 
Ultisol, respectively. We will use in this study the USDA 
classification for standardization purposes. 

These soils were sampled from October 2015 to 
August 2016. The Oxisol was under integrated crop-
livestock systems, with an intense crop rotation consisting 
of soybean as main crop and maize as the second crop 
intercropped with forage species of the genus Urochloa. In 
some situations, millet or sorghum was chosen instead of 
maize as the second crop. The forage crops subsidized 
livestock farming during the dry season until the beginning 
of rains. The mean annual stocking rate was 2 animals of 
450 kg ha−1 year−1. 

The Ultisol was under Brachiaria brizantha cv. 
Marandu for more than ten years managed for extensive 
livestock farming, which was not subjected to any soil 
tillage. The mean annual stocking rate was 1.5 animals of 
450 kg ha−1 year−1. 

Soil physical and chemical attributes were 
determined from 156 undisturbed and 30 disturbed soil 
samples. Disturbed soil samples were collected at depths of 
0–0.10 and 0.10–0.20 m with a Dutch auger. Undisturbed 
soil samples were taken using stainless steel volumetric 
rings with 5 cm high × 5 cm in diameter (98.17 cm3) from 
trenches at depths of 0–0.10 and 0.10–0.20 m. 

Disturbed soil samples were taken to the laboratory, 
air dried, and sieved in 200 mm diameter stainless steel 
mesh sieves. Thus, particle size distribution was determined 
by the pipette method and organic matter contents (OM) by 
potassium dichromate oxidation (Embrapa, 2011). 
Undisturbed soil samples were saturated with water in 
plastic trays and subjected to tensions of 0, 30, 60, and 100 
hPa in a sandbox and 300, 600, 1000, 5000, and 15000 hPa 
in pressure chambers with a porous plate. After each 
potential had reached moisture balance, the samples were 
weighed in order to find the water content. Subsequently, 
they were subjected to penetration resistance (PR), 
determined by a bench electronic penetrometer. The 
penetrometer had the following characteristics: load cell of 
20 kg, penetration pin of 3 mm with 4 mm tip in a cone 
shape with 30° angle, and tip base area of 7.06 mm2. The 
constant penetration rate was 10 mm min−1, with two 
replications per sample, totaling 180 readings per 
replication. Therefore, the PR data taken from the first 
centimeter at the top and bottom of the rings were discarded. 
Thus, each microprofile consisted of PR readings recorded 
along a vertical transect of 3 cm, acquired from 1 to 4 cm 
deep, within a core of 5 cm of soil height, in accordance 
with the representative elementary volume theory. The PR 
value of each soil sample was obtained from the overall 
mean of records. 

Subsequently, the undisturbed soil samples were 
oven-dried at 105 °C for 24 hours. The total porosity (TP), 
bulk density (BD), and soil water content at each tension 
were calculated (Embrapa, 2011). 
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For LLWR construction, the model proposed by 
Busscher (1990) was used to build the PR curve. The water 
content in which soil penetration resistance is limiting to 
root growth was obtained by [eq. (1)]: 

θPR= ቀ
PRc

exp
β1

× (BD
β2

)
ቁ

1
β3

                                                (1) 

Where:  

θPR is the volumetric soil water content in which PR 
reaches the critical value (m3 m−3); 

BD is the soil bulk density (Mg m−3); 

PRc is the critical PR value, and  

β1, β2, and β3 are the adjustment parameters of the 
equation. The PRc value of 2 MPa proposed by 
Taylor et al. (1966) was used. 

 
The water content in which aeration porosity is 10%, 

i.e., air-filled capacity (θAFC), was found through [eq. (2)]: 

θAFC = TP - 0.1                                                    (2) 

Where:  

TP is the total porosity (m3 m-3). 
 

For the other LLWR curves corresponding to θFC 
and θPWP, the pedofunctions proposed by several authors 
were used, as shown in Tables 1 and 2, respectively. 

The multilayer perceptron ANN was also tested. For 
this, 75% of the data were used for ANN training and 25% 
for validation. The supervised learning was used with       
two sets of values, i.e., input and output values. Training  
consisted of a parameter optimization problem (synaptic 
weights) to respond to the inputs as expected until the error 
between observed and estimated values generated by   
ANNs reached the desired minimum value, i.e., close to 
zero (Leal et al., 2015). 

The ANNs consisted of entries (inputs) 
corresponding to the soil attributes sand (SD), silt (SIL), 
clay (CL), BD, and OM. Outputs (response variables) were 
the respective soil water contents equivalent to θFC and 
θPWP. We chose the composition of two hidden layers, one 
with seven neurons and other with five neurons, 
respectively. Thus, the ANN architecture could be 
described as 5-7-5-2 (Figure 1). The activation function 
used was the hyperbolic tangent, as described in [eq. (3)]: 

TanH = 
ୱ୧୬୦(୶)

ୡ୭ୱ୦ (୶)
                                                         (3) 

Where:  

TanH is the hyperbolic tangent; 

sinh is hyperbolic sine, 

cosh is hyperbolic cosine. 

 
 

TABLE 1. Source of pedotransfer functions used to estimate soil water content in the field capacity (θFC). 

Source Soil Model1 R2 

  Oxisol  

Silva et al. (1994) CAN   θFC = exp -0.873* BD 0.511* 100 -0.115 0.96* 

Gupta & Larson (1979) USA   θFC = 0.001* SD + 0ns ST + 0ns CL + 0ns OM + 0.179* BD 0.99* 

Rawls et al. (1982) USA   θFC = – 0.588* + 0ns SD + 0ns ST + 0.027* CL + 0ns OM + 0ns BD 0.74* 

Saxton et al. (1986) USA   θFC = exp[( – 1.335* – ln A)/ B] 0.57* 

Ritchie et al. (1999) USA   GM = 0.169* (CL/SD) 0.405*  →  θFC = GM × BD 0.47* 

Arruda et al. (1987) BRA   θFC = 0.040* + 0ns (CL+ST) + 1.22×10-4* (CL+ST)2 0.74* 

van den Berg et al. (1987) TRP   θFC = -1.752* + 0.053* CL + 0ns ST + 0.132* OM 0.74* 

Oliveira et al. (2002) BRA   θFC = 0.015* ST + 0.003* CL 0.99* 

  Ultisol  

Silva et al. (1994) CAN   θFC = exp -0.951* BD -0.163* 100 -0.124* 0.34* 

Gupta & Larson (1979) USA   θFC = 0ns SD + 0ns ST + 0ns CL + 0.017* OM + 0.109* BD 0.99* 

Rawls et al. (1982) USA   θFC = 0.382 – 0.003* SD + 0ns ST + 0ns CL + 0ns OM + 0ns BD 0.72* 

Saxton et al. (1986) USA   θFC = exp[(– 0.665* – ln A)/ B] 0.60* 

Ritchie et al. (1999) USA   GM = 0.255* (CL/SD) 0.167*  →  θFC = GM × BD 0.01* 

Arruda et al. (1987) BRA   θFC = 0.107* + 0.003* (CL+ST) + 0ns (CL+ST)2 0.72* 

van den Berg et al. (1987) TRP   θFC = 0ns + 0ns CL + 0ns ST + 0ns OM - 

Oliveira et al. (2002) BRA   θFC = 0.004* ST + 0.006* CL 0.97* 
1 CAN: Canadian soils, BRA: Brazilian soils, USA: American soils, TRP: Tropical soils; CL: clay (dag kg-1), ST: silt (dag kg-1), SD: sand (dag 
kg-1), BD: bulk density (g cm-3), OM: organic matter (dag kg-1), GM: gravimetric moisture at -100 or -15000 hPa (kg kg-1); A = exp[ – 4.396 
– 0.0715 CL – 4.88×10-4 (SD2) – 4.28×10-5 (SD2) CL]; B = – 3.14 – 0.002 (CL2) – 3.48×10-5 (SD2) CL. 
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TABLE 2. Source of pedotransfer functions used to estimate soil water content in the permanent wilting point (θPWP). 

Source Soil Model1 R2 

  Oxisol  

Silva et al. (1994) CAN   θPWP = exp -0.873* BD 0.511* 15000 -0.115 0.96* 

Gupta & Larson (1979) USA   θPWP = 0ns SD – 0.017* ST + 0.010* CL + 0ns OM + 0ns BD 0.99* 

Rawls et al. (1982) USA   θPWP = 1.034* + 0ns SD – 0.099* ST + 0ns CL + 0ns OM + 0ns BD 0.95* 

Ritchie et al. (1999) USA   θPWP = θpwp
* – 1.35×10-10* exp (0.285* SD) 0.90* 

Arruda et al. (1987) BRA   θPWP = – 0.382* + 0.013* (CL+ST) 0.94* 

van den Berg et al. (1987) TRP   θPWP = 1.034* + 0ns CL – 0.099* ST 0.95* 

Oliveira et al. (2002) BRA   θPWP = 0ns SD – 0.017* ST + 0.010* CL + 0ns BD 0.99* 

  Ultisol  

Silva et al. (1994) CAN   θPWP = exp -0.951* BD -0.163* 15000 -0.124* 
 

0.34* 

Gupta & Larson (1979) USA   θPWP = 0ns SD + 0ns ST + 0.003* CL + 0.019* OM + 0.020* BD 0.99* 

Rawls et al. (1982) USA   θPWP = 0.293* – 0.002* SD + 0ns ST + 0ns CL + 0ns OM + 0ns BD 0.70* 

Ritchie et al. (1999) USA   θPWP = θpwp
* – 2.51×10-5* exp (0.087* SD) 0.78* 

Arruda et al. (1987) BRA   θPWP = 0.088* + 0.002* (CL+ST) 0.70* 

van den Berg et al. (1987) TRP   θPWP = 0.088* + 0.002* CL + 0.002* ST 0.70* 

Oliveira et al. (2002) BRA   θPWP = 0ns SD + 0.003* ST + 0.005* CL + 0ns BD 0.97* 
1 CAN: Canadian soils, BRA: Brazilian soils, USA: American soils, TRP: Tropical soils; CL: clay (dag kg-1), ST: silt (dag kg-1), SD: sand (dag 
kg-1), BD: bulk density (g cm-3), OM: organic matter (dag kg-1), GM: gravimetric moisture at -100 or -15000 hPa (kg kg-1), θpwp*: mean water 
content at the permanent wilting point (m3 m-3). 
 

 

FIGURE 1. Artificial neural network architecture (5-7-5-2) used to estimate θFC and θPWP in an Oxisol (A) and Ultisol (B). 
Circles with letter B indicate the biases assigned to each layer of neurons, and I, H, and O indicate input attributes, neurons, and 
outputs of θFC and θPWP, respectively. 
 

The data were submitted to the Shapiro & Wilk 
normality test (p> 0.05) using the software R (R 
Development Core Team, 2015). Outliers with values 2.5 
times higher than the interquartile range were removed, 
respecting the limit of 10% of the total observations of each 
treatment (soil type). Subsequently, a descriptive analysis 
was performed by calculating the mean, median, minimum,  
and maximum, standard deviation, coefficient of variation 
(CV), skewness, and kurtosis. The proposed pedofunctions 
were adjusted for the respective data sets. The neuralnet 

package was accessed for ANN training following the 
previously described criteria for assembly of its structure, 
using the “plotnet” function for network plotting. 

The highest coefficient of determination (R2) and 
lowest mean square error (MSE), root mean square error 
(RMSE), and mean absolute percentage error (MAPE) were 
used in order to compare the efficiency of pedofunctions in 
predicting values. 

MSE=
1

n
∑ (ei-mi)

2n
i=1                                               (4) 
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RMSE=ට
1

n
∑ (ei-mi)

2n
i=1                                          (5) 

 

MAPE=
∑ (ei-mi)

n
i=1

∑ mi
n
i=1

×100                                           (6) 

Where:  

n is the number of sampling points;  

ei is the value estimated by the pedofunctions, and 

mi is the measured value (observed). 
 
RESULTS AND DISCUSSION 

Both soils showed a high BD, with mean values of 
1.356 and 1.505 Mg m−3 for the Oxisol and Ultisol, 

respectively (Table 3). Variations of minimum and 
maximum values of 0.920 and 1.545 Mg m−3 for the Oxisol 
and 1.180 and 1.760 Mg m−3 for the Ultisol indicated the 
existence of potentially compacted sites and sites with a 
structure not affected by management systems. Based on 
DB for the construction of pedofunctions, this variability is 
desirable, as they perform estimates with a wide range of 
values under previously non-sampled conditions. 
According to Gomes (2000), the variability of the assessed 
attributes can be classified according to the magnitude of 
their coefficient of variation (CV), being considered low 
when CV is lower than 10%, medium when CV is between 
10 and 20%, high when CV is between 20 and 30%, and 
very high when CV is higher than 30%. Thus, BD variability 
of the Oxisol was classified as medium, and that of the Ultisol 
was considered low (14.97 and 8.63%, respectively). 

TABLE 3. Descriptive analysis of soil physical and chemical attributes of an Oxisol and Ultisol at a depth of 0.00–0.10 m.1 

Attributes2 Mean Median Min Max SD CV Kurt Asym Pw<W 

Oxisol 

SD (dag kg-1) 55.341 58.335 52.419 62.424 3.236 5.847 0.057 1.246 0.001* 

SIL (dag kg-1) 12.527 9.096 8.097 14.266 1.986 15.850 0.185 -1.287 0.001* 

CL (dag kg-1) 32.131 32.744 29.479 33.315 1.250 3.890 -0.130 -1.181 0.002* 

OM (dag kg-1) 2.554 2.411 2.333 3.087 0.244 9.553 0.045 1.242 0.001* 

BD (Mg m-3) 1.356 1.458 0.920 1.545 0.203 14.970 -0.054 -1.209 0.001* 

θFC (m3 m-3) 0.285 0.293 0.212 0.346 0.039 13.684 -0.545 -0.558 0.248ns 

θPWP (m3 m-3) 0.160 0.168 0.132 0.172 0.014 8.750 -0.170 -1.275 0.000* 

 Ultisol 

SD (dag kg-1) 65.736 64.900 50.500 81.000 7.019 10.638 0.666 0.502 0.242ns 

SIL (dag kg-1) 10.932 8.500 1.700 18.900 4.400 36.363 -0.339 -0.268 0.880ns 

CL (dag kg-1) 22.800 22.300 9.700 39.500 6.560 26.315 0.949 0.296 0.461ns 

OM (dag kg-1) 3.649 3.562 1.860 7.240 1.546 42.356 -0.289 0.776 0.046* 

BD (Mg m-3) 1.505 1.361 1.180 1.760 0.138 8.637 0.804 -0.802 0.170ns 

θFC (m3 m-3) 0.210 0.209 0.160 0.260 0.043 20.476 -2.214 -0.265 0.002* 

θPWP (m3 m-3) 0.160 0.160 0.130 0.220 0.032 20.00 0.563 0.926 0.021* 
1 Min: minimum, Max: Maximum, SD: standard deviation, CV: coefficient of variation (%), Kurt: kurtosis, Asym: asymmetry, Pw<W: p-value 
of Shapiro-Wilk’s test. 2 CL: clay, ST: silt, SD: sand, BD: bulk density, OM: organic matter, Θfc: soil water content in the field capacity, Θpwp: 
soil water content in the permanent wilting point. 
 

The texture of both soils was classified as medium, 
but the Oxisol presented a higher clay content (Table 1). The 
range of CL values varied from 29.479 to 33.315 dag kg−1 
for the Oxisol and 9.700 to 39.500 dag kg−1 for the Ultisol, 
justifying the CV values classified as low and high, 
respectively. Despite the low variability of clay content in 
the Oxisol, these values are supposed to be preponderant 
over the variation of soil water content at specific potentials, 
especially those related to permanent wilting point. 

Regarding OM content, a mean value of 3.649 dag 
kg−1 was observed for the Ultisol and 2.554 dag kg−1 for the 
Oxisol (Table 3). The maximum values indicated the 
existence of sites with a high decomposition capacity and 
stability of organic residues (3.087 and 7.240 dag kg−1). The 
highest OM variability was observed for the Ultisol 
(42.35%). 

Soil water content at equivalent tensions θFC and 
θPWP presented mean values of 0.285 and 0.160 m3 m−3 for 
the Oxisol and 0.210 and 0.160 m3 m−3 for the Ultisol, 
respectively (Table 3). Despite the amplitude of CL 

contents, θPWP values of both soils were very close. Klein 
et al. (2013) reported that θPWP is also related to intra-
aggregate pores, with BD being the preponderant factor in 
the amount of cryptopores in soils. The structural units of 
aggregates are disrupted as BD increases, leading to an 
increase in textural pores, responsible for water retention at 
potentials lower than −15000 hPa. In addition, clay 
increases the specific surface area of the soil matrix, and 
capillarity and adsorption phenomena determine the matric 
potential, responsible for soil water retention (Létourneau et 
al., 2015). Based on these observations, clay content and 
soil compaction (represented by BD) in these systems may 
have governed soil water retention conditions, especially in 
relation to potentials equivalent to θPWP. 

The Shapiro & Wilk test confirmed the normal 
distribution for the attributes CL, SD, and θFC (Table 3). 
Although it was significant for the other attributes, 
indicating deviations from normality, the classifications 
were considered as distribution tending to normality since 
the mean values were close to the median. 
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Tables 1 and 2 show the pedofunctions used to 
estimate soil water contents at specific potentials, 
theoretically θFC and θPWP. Their respective coefficients 
of determination showed the quality of model adjustments, 
with R2 higher than 0.90 for most cases and all of them 
significant at 1% probability. A moderate to high 
correlation was verified between the observed and 
estimated θFC data (R > 0.74), with a small tendency to 
overestimate values above 0.30 m3 m−3 and underestimate 
values below 0.20 m3 m−3 (Figure 2). Although the residuals 
of pedofunctions generated with soil data from Brazil 
(Arruda et al., 1987; van den Berg et al., 1987; Oliveira et 
al., 2002) were higher when compared to the other models, 
they presented a good performance even without taking into 

account attributes inherent to edaphology and soil 
compaction (i.e., OM and BD). 

Contrary to what was observed in this study, Bonilla 
& Cancino (2001) observed a low accuracy for Chilean 
soils. This limitation was overcome by working on a large 
database to allow a division of soils into more homogeneous 
classes. According to Reichert et al. (2009), point 
scattering is higher and water retention accuracy is lower 
when using pedofunctions generated from a database with 
characteristics that differ considerably from soils where 
the model is assessed. Pedofunctions will only efficiently 
express water retention of soils with genesis and 
mineralogy similar to that of the database that was 
generated (Mecke et al., 2002). 

 

 

FIGURE 2. Linear regressions between observed and estimated θFC values obtained from the proposed models. 
 

The estimates of θPWP presented lower point 
scattering and higher accuracy of models when compared to 
θFC (Figure 3). All tested functions were close to the 1:1 
line on a 45° slope, except for the functions of Ritchie et al. 
(1999) and Silva et al. (1994). This behavior reflected a high 
correlation of estimates with the observed data due to an R2 

higher than 0.90. In addition, the results showed that 
changes imposed on the Oxisol by agriculture led to an 
increase in water volume retained at potentials lower than 
−15000 hPa, in which θPWP values were higher than 0.16 
m3 m−3 in most cases, even in integrated production 
systems. The estimates of θPWP allowed a more detailed 
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observation of the Oxisol database, in which OM and BD 
contents were not significant in the pedofunctions of Gupta 
& Larson (1979), van den Berg et al. (1987), and Oliveira 
et al. (2002) (Table 2). On the other hand, OM and BD 
contents were significant in the adjustment of θPWP 
functions for the Ultisol. According to Rawls et al. (2003), 
the use of contents of soil organic carbon and their particle 
size distribution as predictors leads to a small improvement 
in water content predictions related to the matric potential 
of −15000 hPa when compared to functions that use only 
particle size distribution as predictors. 

Bonetti et al. (2017) studied the water retention of an 
Oxisol and Ultisol under integrated crop-livestock systems 
(ICL) and verified that changes imposed by the 
management system on soil porosity modified θFC to a 
higher degree when compared to θPWP. The adequate 

animal stocking rate and dwell time of the forage crop in 
ICL can favor the reorganization of porous space by the root 
system development. This strategy contributes to increasing 
the water content available to plants, with direct changes in 
microporosity (Bonetti et al., 2017). In this sense, the 
management system adopted for the Oxisol (ICL with an 
intensive crop rotation and high animal stocking rate) may 
not have been adequate to the maintenance of a pore 
structure with a diameter lower than 0.2 μm, which favored 
micropore disruption, directly reinforcing the effect of clay 
contents under soil compaction conditions. In this case, the 
function adjustment procedure itself is responsible for 
maintaining or excluding a certain attribute, aiming at the 
adequacy of adjustment coefficients, as well as the errors 
between the generated output patterns to reach the desired 
minimum value, i.e., close to zero. 

 

 

FIGURE 3. Linear regressions between observed and estimated θPWP values obtained from the proposed models. 
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As in R2, ANN showed higher efficiency in the 
estimation of θFC and θPWP. ANN, Arruda et al. (1987), 
and van den Berg et al. (1987) were the best classified for 
the MSE, RMSE, and MAPE values of the pedofunctions 
that estimated θFC (Table 4). On the other hand, ANN, 
Rawls et al. (1982), and van den Berg et al. (1987), in this 
order, were the best for those that estimated θPWP. MSE 
was a sensitive evaluator to errors of pedofunctions because 
it raised the individual differences between the observed  

and estimated squared values. This evaluator is always 
positive and, when zero, indicates the perfect model 
simulation. In addition to MSE, RMSE also expresses the 
accuracy of results, with error values under the same 
dimensions of the analyzed variable. MAPE is a less robust 
evaluator and showed the error representativeness in relation 
to the total of the measured observations. In this case, ANNs 
were classified first in the pedofunctions rank, with lower 
MSE, RMSE, and MAPE in both θFC and θPWP estimates. 

 
TABLE 4. Mean square error (MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE) calculated 
from the proposed θFC and θPWP pedofunctions. 

Fonte 
θFC  θPWP 

MSE RMSE MAPE Rank1  MSE RMSE MAPE Rank1 

Oxisol 

Silva et al. (1994) 0.0004 0.0220 0.0118 6th  1.54×10-5 0.0039 0.0075 5th 

Gupta & Larson (1979) 0.0005 0.0228 0.0485 7th  0.0001 0.0114 0.0694 6th 

Rawls et al. (1982) 0.0004 0.0202 0.0184 5th  9.08×10-6 0.0030 0.0029 2nd 

Saxton et al. (1986) 0.0009 0.0304 0.0189 8th  - - - - 

Ritchie et al. (1999) 0.0826 0.2875 0.0046 9th  0.0001 0.0135 0.0103 8th 

Arruda et al. (1987) 0.0003 0.0192 0.0021 2nd  1.17×10-5 0.0034 0.0004 4th 

van den Berg et al. (1987) 0.0003 0.0193 0.0119 3rd  9.08×10-6 0.0030 0.0029 3rd 

Oliveira et al. (2002) 0.0003 0.0194 0.0012 4th  0.0001 0.0114 0.0694 7th 

Artificial neural network 0.0002 0.0142 0.0018 1st  5.22×10-6 0.0022 0.0019 1st 

 Ultisol 

Silva et al. (1994) 0.0016 0.0411 0.0424 7th  0.0036 0.0601 0.3087 8th 

Gupta & Larson (1979) 0.0004 0.0222 0.0338 2nd  3.73×10-5 0.0061 0.0121 2nd 

Rawls et al. (1982) 0.0006 0.0256 0.0654 4th  0.0002 0.0146 0.0137 3rd 

Saxton et al. (1986) 0.0012 0.0359 0.0587 6th  - - - - 

Ritchie et al. (1999) 0.0080 0.0895 0.3519 8th  0.0006 0.0254 0.0371 6th 

Arruda et al. (1987) 0.0005 0.0229 0.0588 3rd  0.0002 0.0151 0.0170 4th 

van den Berg et al. (1987) - - - -  0.0002 0.0151 0.0170 5th 

Oliveira et al. (2002) 0.0012 0.0357 0.0989 5th  0.0008 0.0291 0.0915 7th 

Artificial neural network 4.94×10-6 0.0022 0.0043 1st  6.56×10-6 0.0025 0.0096 1st 
1 Rank: classification based in lower MSE, RMSE and MAPE. 
 

The estimates generated by these two adjustment 
categories could be considered as satisfactory and valid, but 
the use of multiple linear regression models to predict θFC 
values below 0.20 m3 m−3 may present a slight tendency to 
overestimate it, which was not observed by the neural 
network. The pedofunctions applied to LLWR showed that 
the available soil water content (AW), represented by the 
difference between θFC and θPWP, was positively 
influenced by an increase in BD between 0.69 and 1.06 Mg 
m−3 in all cases (Figure 4C, D). This behavior confirms the 

positive relationship between soil compaction and the 
available water range (without considering restrictions 
imposed by θPR), in which the water content retained at 
potentials of −100 and −15000 hPa is higher. The models 
proposed by Silva et al. (1994) and Ritchie et al. (1999) 
stood out from the other pedofunctions in both soils, 
indicating an excess LLWR of 0.02 m3 m−3 in the Oxisol 
(Figure 4A) and a deficit of 0.04 m3 m−3 in the Ultisol 
(Figure 4B) based on the estimates carried out by ANN, 
which had the best performance in both soils. 
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FIGURE 4. Variation of LLWR in the Oxisol (A) and Ultisol (B) and available water content in the Oxisol (C) and Ultisol (D) 
using the tested pedofunctions. 
 

Regarding the critical BD, in which LLWR is zero, 
all the proposed models for Oxisol showed LLWR zero for 
a BD of 1.33 Mg m−3, while most of the models for the 
Ultisol presented LLWR zero for a BD of 1.38 Mg m−3 
(Figure 4A, B). In this case, the models of Oliveira et al. 
(2002) and Ritchie et al. (1999) underestimated and 
overestimated the critical BD in the Ultisol, respectively. 
For LLWR construction in the Ultisol using the 
pedofunctions proposed by Oliveira et al. (2002), the critical 
BD would be 1.35 Mg m−3, while using the pedofunctions 
proposed by Ritchie et al. (1999), the critical BD would be 
1.61 Mg m−3 (Figure 4B). Considering that LLWR accesses 
soil physical quality through BD, the main objective of its 
determination is to clarify the critical BD so that preventive 
actions are taken in agricultural systems. In the evaluated 

systems, the θPR curve was the preponderant factor in the 
establishment of the critical BD. 

Regardless of the pedofunctions used for LLWR 
construction in the Oxisol, it was not restricted by the air-
filled capacity curve (θAFC) (Figure 5). The θAFC was 
above θFC in all cases, not being a preponderant factor even 
at high BD levels. According to Gubiani et al. (2013), there 
are practically no criticisms reported in the Brazilian 
literature for the upper LLWR limits. Most crops are grown 
on soils with optimum drainage, where the period of water 
excess, i.e., soil aeration deficiency is much lower when 
compared to periods of water deficit. Under these soil 
conditions, studies have indicated a higher relationship of 
plant development with PR (Freddi et al., 2009; Kaiser et 
al., 2009), being more frequent than with θAFC. 
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FIGURE 5. LLWR construction of the Oxisol as a function of soil bulk density using the proposed pedofunctions to estimate 
θFC and θPWP. 
 

When the proposed pedofunctions are used to 
construct the LLWR concept, it is evident that the main 
changes occur on the available soil water content (AW). In 
the Oxisol, LLWRs estimated by ANN, Gupta & Larson 
(1979), Rawls et al. (1982), Ritchie et al. (1999), Arruda et 
al. (1987), Oliveira et al. (2002), and van den Berg et al. 

(1987) were similar (Figure 5). The model presented by 
Silva et al. (1994) overestimated AW values for conditions 
of lower bulk density, i.e., between 0.75 and 1.2 Mg m−3 
(Figure 5B). In contrast, the model of Ritchie et al. (1999) 
underestimated AW at low BD levels and then presented 
significant AW gains with an increase in BD (Figure 5E). 
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FIGURE 6. LLWR construction of the Ultisol as a function of soil bulk density using the proposed pedofunctions to estimate 
θFC and θPWP. 
 

Considering the results obtained for the Ultisol, it 
was evident that AW was overestimated under all BD 
conditions when the pedofunctions proposed by Silva et al. 
(1994) were used (Figure 6B). The model proposed by 
Ritchie et al. (1999), as observed for the Oxisol, 
underestimated AW at low BD levels and overestimated 
AW at high BD levels, which would restrict its use for this 
type of soil (Figure 6E). 

The results obtained in this study provided important 
information for the management of compacted and/or 
irrigated areas, demonstrating the use of the main models to 
estimate θFC and θPWP, the result on LLWR 
determination, and available water of two soils frequently 
found in Brazil. In addition, further studies using a larger 
database are needed, allowing the establishment of an 
artificial neural network that could be validated for 
Brazilian soils or tropical regions. 
 
CONCLUSIONS 

Among the evaluated pedofunctions, multilayer 
perceptron artificial neural networks are more efficient to 
estimate water contents in the field capacity and permanent 
wilting point. 

Pedofunctions that use contents of sand, clay, 
organic matter, and soil bulk density are more efficient in 
estimating water contents in the field capacity and 
permanent wilting point. 

Multiple linear regression techniques are inferior 
regarding statistics that measure the accuracy of models    
and tend to overestimate water content values in the         
field capacity. 

Pedofunctions differ in the establishment of the 
critical bulk density when they are used to calculate the least 
limiting water range, exposing the limitations of the models. 
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