
 

Engenharia Agrícola 
 

ISSN: 1809-4430 (on-line) 

www.engenhariaagricola.org.br 
 

 

 

1 Universidade Federal de Viçosa/ Viçosa - MG, Brasil. 
Received in: 2-14-2019 
Accepted in: 7-24-2019 

Engenharia Agrícola, Jaboticabal, v.39, n.5, p.676-683, sep./oct. 2019 

Doi: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v39n5p676-683/2019 
 
MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES 
 
Marco A. Zanella1*, Daniel M. de Queiroz1, Domingos S. M. Valente1, Francisco de A. de C. Pinto1, 

Nerilson T. Santos1 
 

1*Corresponding author. Universidade Federal de Viçosa/ Viçosa - MG, Brasil.  
E-mail: marco.a.zanella@gmail.com | ORCID ID: https://orcid.org/0000-0001-7306-7976 

 
 
KEYWORDS  

precision agriculture, 
vegetation index, 
yield map. 

ABSTRACT 

The delimitation of management classes is critical for successful precision agriculture. 
This process involves choosing the variables to use and analyzing the spatial variability 
of the variables. Thus, the objective of this study was to analyze the correlation between 
management class maps generated from orbital images and yield maps. A 95-hectare area 
of rainfed grain was evaluated. Yield maps were obtained for the 2015/2016 and 
2016/2017 soybean crops. Orbital images were used from two dates for each crop to 
generate vegetation index maps. The spatial correlation between the vegetation indices 
and the yield maps was obtained using a bivariate Moran index. The delineated 
management classes were compared using the Kappa index. This study demonstrated that 
the Kappa values resulting from the comparison between the management class maps 
generated from the soybean yield and the vegetation index ranged from 5% to 67% 
depending on the number of delineated classes. The highest Kappa values were observed 
when the area was delineated into three classes. 

 
 
INTRODUCTION 

Among the recommended management strategies in 
precision agriculture, management class delimitation (CM) 
is one of the most frequently used approaches. The use of 
CMs allows for significant advances in the management of 
field variability by farmers and agronomy specialists, and it 
facilitates operation by agricultural machines (Leroux et al., 
2017). Once defined, the number of soil samples needed to 
characterize the variables in the production system is 
reduced (Valente et al., 2014). The crop yield, topographic 
data, soil apparent electrical conductivity and remote 
sensing multispectral index are the most frequently used 
variables when defining the CMs by cluster analysis 
(Martínez-Casasnovas et al., 2018). 

Orbital images are a source of information used in 
the delimitation of CMs because of their easy acquisition, 
wide coverage area and broad range of available spectra. 
One of the advantages of this type of information is that a 
historical series of data can be used, providing greater 
robustness to the analysis process. Through the Landsat 7 
and Landsat 8 platforms, the Landsat program provides the 
largest collection of remote sensing images at moderate 
resolution at no cost to the user. These platforms provide 
high quality multispectral images at a 30-meter resolution. 
Haghverdi et al. (2015) were successful at using Landsat 8 

imagery and the apparent soil electrical conductivity for 
generating irrigation management classes. 

Another program that provides free orbital images is 
the Copernicus Program. Multispectral images are provided 
by two satellites, Sentinel-2A and Sentinel-2B, which are 
equipped with identical multispectral instruments (MSI), 
and it is possible to acquire data in 13 bands at different 
spatial resolutions (between 10 m and 60 m) using this 
program. Martínez-Casasnovas et al. (2018) used an NDVI 
(Normalized Difference Vegetation Index) derived from 
Sentinel-2A images, soil apparent conductivity data, and a 
digital elevation model for delimiting the management 
classes in an irrigated maize crop. The authors established a 
model to complement the automated process of delimiting 
CMs by aggregating farmer knowledge and thus obtaining 
better results. 

The spectral bands of orbital images can be 
combined to create vegetation indices. A vegetation index 
(VI) is a number generated by some combination of bands 
from a remote and/or quantitative sensing image about 
vegetation in a given image pixel (Ortega-Blu & Molina-
Roco, 2016). Kuiawski et al. (2017) used the combination 
of terrain elevation data and vegetation indices to delimit 
the management classes in a soybean crop, and those classes 
differed in terms of their phosphorus, clay and silt contents. 
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Producing yield maps can be considered as the first 
step to adopting precision agriculture. These maps represent 
the crop response to management practices and to biotic and 
abiotic factors, and they provide valuable insights about 
spatial and temporal variabilities. Thus, remote sensing data 
collected at different stages of plant growth that correlate 
with crop yields may be a feasible way to facilitate 
management class delimitation and the adoption of 
precision farming techniques. Thus, the objective of this 
study was to evaluate the vegetation indices obtained using 
orbital data to delimit management classes in soybeans 
cultivated without irrigation. 

 

MATERIAL AND METHODS 

The study area was part of a farm located in the 
municipality of Iepê, in the southwestern part of the state of 
São Paulo, Brazil, which is situated between the geographic 
coordinates at a latitude from 22 ° 39'28.33 "S to 22 ° 
40'3.5" S and a longitude from 51 ° 02'21.15 " W to 51 ° 
02'35.23" W. The studied field area measures 95 hectares, 
and it is used for grain production under no-tillage, without 
any irrigation system. This field is cultivated with a 
succession of corn and soybean crops. The study was 
performed using data from the soybean crop. 

 

FIGURE 1. Geographic location of the soybean field used in this study, which was located in Iêpe, SP, Brazil. 
 
The soybean yield data were taken during the 

2015/2016 and 2016/2017 crop seasons and were 
georeferenced using a yield monitor that had a GNSS 
(Global Navigation Satellite System) that recorded one 
measured point every second. Yield data processing was 
performed using the R 3.3.4 computer program (R Core 
Team, 2015). The identification and removal of outliers 
from the soybean yield data were performed by applying a 
three-step filtering process (Taylor et al. 2007). 

The first step of the filtering process was the removal 
of yield data with extreme values far above or below the 
mean soybean yield value, in which the threshold used for 
the acceptable minimum yield value was 100 kg ha-1 and the 
acceptable maximum yield value was 8400 kg ha-1. During 
the second stage of the filtering process, the global outliers 
were identified. During the third and last stages of the 
filtering process, the univariate Moran spatial correlation 
index (Ii) was used as a tool to identify local outliers, in 
accordance with recommendations by Córdoba et al. 
(2016). 

The interpolation of the filtered yield data was 
performed using the block kriging method and local 
semivariograms; a minimum of 90 and a maximum of 100 
neighboring yield data points were used to interpolate each 
point in the grid. This process was performed with VESPER 

(Variogram Estimation and Spatial Prediction plus Error) 
software (Minasny et al., 2005). A grid measuring 30 by 30 
m was used for the interpolation process. Images from the 
Sentinel-2 platform were also resampled to this scale (30 m 
x 30 m) using the nearest neighbor method. 

Images were acquired from different platforms, with 
images selected from the middle to near the end of the crop 
cycle. The presence of clouds during the cultivation period 
was the primary impediment to obtaining images from a 
single sensor. Images from the Landsat satellites were taken 
from the USGS (United States Geological Survey) 
EarthExplorer image catalog and were part of the Landsat 
Collection 1 Level-2 dataset. At this level of processing, the 
images are orthorectified and subjected to a 6S atmospheric 
correction. The Sentinel-2A satellite images (product: 
Level-1C) were taken from the European Space Agency 
(ESA) Copernicus Open Access Hub (SciHub) platform, 
and these images were subsequently corrected 
atmospherically (level-2A) using the Sen2Cor algorithm 
(http://step.esa.int/main/third-party- plugins-2/sen2cor). 

Each year, a different soybean cultivar was used, 
with one early cultivar (with a cycle of 120 days) and one 
late cultivar (with a cycle of 140 days). Table 1 presents the 
sowing and harvest information for each crop and the 
imaging dates. 
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TABLE 1. Dates of sowing, harvesting and image acquisition, satellite platform and days after sowing when the image was 
generated for the analyzed soybean crops. 

Crop season Sowing date Harvesting date Platform Imaging date Number of days after sowing

2015/16 10/26/2015 03/02-04/2016 
Landsat-8 12/17/2015 52 

Landsat-7 01/26/2016 92 

2016/17 10/29/2016 03/23-24/2017 
Sentinel-2 01/08/2017 77 

Sentinel-2 02/17/2017 111 

 
The near infrared, blue, green, red and SWIR bands 

were used to generate the vegetation indices selected for the 
management class delimitation. Band 8A of Sentinel-2A 
was selected instead of band 8, because the spectral 
response for band 8A is similar to that of band 5 in Landsat-
8 (Skakun et al., 2017). To obtain the vegetation indices, 

Sentinel-2A band 8A was used instead of bands 5, 6 7 and 8 
because it was found to be more stable, even when 8A was 
replaced by band 5 in Landsat 8. Table 2 presents the 
characteristics of each band for the satellites used in this 
study. These bands allow for calculations of the most 
commonly used vegetation indices in crop mapping. 

 
TABLE 2. Band characteristics of each satellite platform. 

Generic band name 
Platform 

Landsat-7 Landsat-8 Sentinel-2 

Green 2 (520-600) 3 (530–590) 3 (543–578) 

Red 3 (630-690) 4 (640–670) 4 (650–680) 

Near Infrared (NIR) 4 (770-900) 5 (850–880) 8A (849–882) 

Short Wave Infrared (SWIR) 5 (1550-1750) 6 (1570–1650) 11 (1565–1655) 

* The values in parentheses (in nanometers) correspond to the spectral width of each sensor band. 
 
The vegetation indices used here are shown in Table 

3. They were chosen because they are the most common in 
studies involving spatial variability analyses of crop 
development. The use of six indices allows us to explore the 
potential use of orbital images for identifying the spatial 
variability of vegetation, because each of them may be 
sensitive to certain factors that can interfere with the crop  

yield. Within the delimitation of the management classes, 
the vegetation indices were used separately for each 
analyzed date to uncover the date when the indices had the 
highest correlation with the crop yield. Table 3 presents the 
indices used in this study and the equations that define each 
vegetation index used here. 

 
TABLE 3. Vegetation index equations used to characterize soybean crop development. 

Vegetation Index Equation Author 

Green Chlorophyll Vegetation Index (GCVI) 
𝜌

𝜌
− 1 (Gitelson et al., 2003) 

Shortwave Infrared Water Stress Index (SIWSI) 
𝜌 − 𝜌

𝜌 + 𝜌
 (Fensholt & Sandholt, 2003) 

Two band Enhanced Vegetation Index (EVI2) 2.5
𝜌 − 𝜌

1 + 𝜌 + 2.4𝜌
 (Jiang et al., 2008) 

Normalized Difference Vegetation Index (NDVI) 
𝜌 − 𝜌

𝜌 + 𝜌
 (Tucker, 1979) 

Soil-Adjusted Vegetation Index (SAVI) 
(𝜌 − 𝜌 )

(𝜌 + 𝜌 + 𝐿)
(1 − 𝐿) (Huete, 1988) 

Modified Simple Ratio (MSR) 

𝜌
𝜌

− 1

𝜌
𝜌

+ 1

 (Chen, 1996) 

Where, ρSWIR, ρNIR, ρgreen and ρred are the wavelength reflectances of the short wavelength, near infrared, green band and red band bands, 
respectively. L is the canopy background adjustment factor, and it was assumed to be equal to 0.5. 
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The pixels located at the border of the field were 
removed from the analysis to avoid edge effects that could 
contaminate the spectral signatures. Then, to evaluate the 
spatial correlation between each vegetation index and the 
soybean yield maps, the Moran Global Bivariate Index (Ixy) 
was used. The significance analysis of the index was 
obtained using a pseudo-significance test, in which random 
permutations of the point values were performed to obtain 
an empirical distribution. Thirty random samples containing 
50 data points were taken from the dataset to test the 
significance of the Moran index. 

The significance of the spatial correlation test can be 
influenced by the sample size, since each analyzed pixel 
corresponds to a sample. Thus, in large samples, the p-value 
approaches zero rapidly (Lin et al., 2013). For that reason, 
the small mathematical differences between the value 
assumed in the null hypothesis (an autocorrelation index 
equal to zero) and the estimated value of the Moran index 
will become significant. When using samples with smaller 
sizes (50 data points), only the expressive differences were 
significant. The vegetation indices that showed a significant 
spatial correlation in 90% of the tests were used in the 
cluster analysis. 

The vegetation indices that presented significant 
spatial correlation on each date with the soybean yield from 
each analyzed crop season were used in the fuzzy k-means 
cluster analysis to delimit the management classes. Because 
the NDVI is one of the most frequently used indices in 
agronomic research and technical studies, a cluster analysis 
using only this index was also performed using only this 
vegetation index. Management classes using vegetation 
indices were compared to those generated only with the 
yield maps. This comparison was made using Kappa 
statistics (Cohen, 1960) to calculate the degree of agreement 
of all the pixels in the maps. The Kappa coefficient value 
determines the similarity between a reference map and 
another map. Management classes using data from both 
crop seasons were also evaluated using the Fuzziness 
Performance Index (FPI) and the Modified Partition 
Entropy (MPE). The ideal number of classes is the one in 
which both indices are minimal. 

To verify if the classes were able to discriminate 
among the areas of different yield potentials, an analysis of 
variance (ANOVA) was performed to compare the soil clay 
content in each cluster. For this purpose, 30 points were 
sampled in the field for the soil clay content determination. 

  
RESULTS AND DISCUSSION  

The Modified Simple Ratio (MSR) and Green 
Chlorophyll Vegetation Index (GCVI) obtained 52 days 
after sowing during the 2015/16 crop year showed a 
significant correlation with the soybean yield. For 92 days 
after sowing, only the SIWSI (Shortwave Infrared Water 
Stress Index) showed a significant correlation with the crop 
yield. Regarding the indices analyzed for the 2016/17 crop, 
only the SIWSI obtained at 111 days after sowing showed a 
significant correlation with the crop yield. 

For the data from the middle of the soybean cycle, 
there were indices that presented significant correlations 
with the crop yield only for the first crop year; they were the 
GCVI and MSR indices. The MSR index is related to the 
plant biophysical characteristics (Vescovo et al., 2012), and 
the GCVI is more resistant to saturation (Lobell & Azzari, 
2017). The different stages of plant development for each 

crop year may have caused the lack of significant correlation 
on one of the analyzed dates. Although the imaging dates are 
from the same period, close to the middle of the cycle for each 
crop year, the cultivars were different and thus may display 
differences in some agronomic characteristics. 

Burke & Lobell (2017) achieved good results by 
applying the GCVI to smallholder farmer areas in Africa. 
The authors used different spatial resolutions and observed 
that the green band reflectance responded better to 
variations in the leaf chlorophyll concentration compared to 
the red band reflectance, which was used in the NDVI and 
EVI (Enhanced Vegetation Index) indices. Therefore, the 
GCVI is likely to capture differences in nutrient 
deficiencies that correlate with the yield. In the present 
study, vegetation indices that did not use the red band were 
able to better detect the crop yield variability. The 
reflectance of the red band becomes insensitive in the 
presence of moderate to high chlorophyll contents, while 
the green band is more sensitive due to the lower 
chlorophyll absorption coefficient, which prevents 
reflectance saturation and allows for the greater penetration 
of light inside the leaves and canopy (Kira et al., 2017). 

The SIWSI vegetation index differs from the NDVI 
in that it uses the shortwave infrared band (SWIR) instead 
of the red band. The most significant absorption of the 
SWIR band occurs when water is present in the leaves of 
the plants (Fensholt & Sandholt, 2003). This index showed 
a significant spatial correlation with the crop yield for the 
two crop seasons on the dates closest to the harvest. Despite 
the variation in the rainfall, the accumulated precipitation 
for the first crop season was 2096.7 mm and 836.4 mm 
during the second crop season, and there was no significant 
correlation between the SIWI and the soybean yield, which 
may indicate that there was enough rainfall for the 
development of the soybean plants. According to Embrapa 
(2013), the total water required to reach the maximum yield 
of the soybean crop varies from 450 to 800 mm per crop 
cycle. However, this need may vary according to the 
climatic conditions, cycle length and crop management. 

The senescence process of the plants may have 
influenced the variability detected in the SIWSI index, and, 
consequently, the significant correlation of this index to the 
crop yield. Thus, in areas where the soybean yield was 
lower, it is possible that the plants reached the end of the 
production cycle earlier, probably due to some limitations 
in these areas. This result may justify the significant 
correlation between the soybean yield and the SIWSI. Xiao 
et al. (2014) used modeling to study the sensitivity of the 
reflectance activity on variations in biochemical and 
biophysical plant variables at different scales, and thus they 
concluded that at the canopy scale, the variation in the 
reflectance in the visible region, NIR (Near infrared) and 
SWIR (Short Wave Infrared) is controlled by chlorophyll a 
+ b, dry matter and water content, respectively. 

After the spatial correlation was analyzed between 
the vegetation indices and the soybean yield, the indices 
with significant correlations (significant at pseudo p-value 
= 0.05) were selected on each analyzed date for each crop 
to delimit the management classes. Table 4 shows the 
results of the Kappa agreement analysis between the 
management classes delineated with the crop yield maps 
(reference map) and the delimited classes using the 
vegetation indices that presented a significant correlation 
with the crop yield and the management classes delimited 
using the NDVI. 
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TABLE 4: Kappa index between management classes delimited using crop yield maps and management classes delimited using 
vegetation indices.  

Crop 
season 

Date of image 
acquisition 

Indices 
2 

classes 
3 

classes 
4 

classes 

2015/2016 

52 DAS* 
GCVI - MSR 60.6% 60.8% 9.5% 

NDVI 29.9% 61.2% 13.7% 

92 DAS 
SIWSI 21.3% 47.5% 8.2% 
NDVI 19.4% 47.1% 6.4% 

Using both dates together 
GCVI - MSR - SIWSI 67.3% 35.5% 11.9% 

NDVI 29.7% 42.8% 7.4% 

2016/2017 

77 DAS 
- - - - 

NDVI 14.6% 46.8% 3.3% 

111 DAS 
SIWSI 18.6% 57.9% 15.3% 
NDVI 16.6% 56.2% 16.5% 

Using both dates together 
SIWSI 18.6% 57.9% 15.3% 
NDVI 14.6% 47.1% 8.1% 

Using both 
crop 

seasons 

- 
Vegetation that presented a positive correlation with the crop 

yield 
21.7% 46.3% 10.5% 

- NDVI obtained on the four dates of acquisition 18.5% 42.6% 20.3% 
*DAS: Days after sowing. 

 
Regarding the 2015/16 crop season, it is clear (Table 

4) that the Kappa indices obtained for the vegetation indices 
calculated for 52 DAS (days after sowing) were able to 
generate management classes that presented greater 
consistency with the management classes delimited only 
using the crop yield than those obtained on 92 DAS. For the 
2016/17 crop season, the date at 77 DAS had no vegetation 
index presenting significant correlations with the crop yield. 
For the management classes delimited using the NDVI, the 
values with the highest agreement were found for the 
classes obtained on the second date. In general, the classes 
obtained using the NDVI provided lower Kappa values 
compared to the classes delimited with the index that 
presented significant correlation indices with the crop yield. 
The NDVI has limitations at moderate and high leaf area 
index values due to the high chlorophyll absorption 
coefficient, which impairs the red band reflectance 
sensitivity (Nguy-Robertson et al., 2012). 

The Kappa index values obtained for the comparison 
between the vegetation index class maps and the crop yield 
class maps (Table 4) were higher when the vegetation 
indices were classified into three classes. With four or more 
classes, it is very likely that they have begun to lose 
continuity. The highest Kappa index value (67.3%) was 
obtained during the delimitation of two management classes 
using data from the first crop season. When the two crop 

seasons were used in the cluster analysis, the best results 
were obtained for the delimitation using three management 
classes. Bazzi et al. (2013) used the chemical and physical 
soil attributes to delineate the management classes of a 
soybean area, and they found that a subdivision into two 
management classes presented better results due to the 
greater number of attributes that differed between classes. 

When using data from the two crop seasons analyzed 
here, the highest Kappa index values were observed in the 
delineated classes using vegetation indices that presented a 
significant spatial correlation with the crop yield when the 
field was divided in two or three classes. The Kappa index 
obtained between the NDVI class map and the crop yield 
class map was higher when the four class division was 
used. However, subdividing the field into a larger number 
of classes makes the application of crop management 
practices difficult. 

Table 5 shows the values of the Fuzziness 
Performance Index and the Modified Partition Entropy 
Index, and the ideal number of classes is the one in which 
the two indices presented the minimum values. The 
management classes were delimited using data from both 
crop seasons as analyzed using the maps of soybean yield 
and vegetation indices that showed significant spatial 
correlations with the crop yield and NDVI. 

 
TABLE 5. Values of the Fuzziness Performance Index (FPI) and Modified Partition Entropy Index (MPE) for different numbers 
of management classes using the crop yield maps, and the vegetation indices that had a significant correlation with the crop yield 
and the NDVI. 

Number of classes 
Yield Map Vegetation Indices NDVI 

FPI MPE FPI MPE FPI MPE 

2 0.5543 0.6186 0.6468* 0.7122* 0.7663* 0.8158 

3 0.4942* 0.5403* 0.6926 0.7221 0.7874 0.8121* 

4 0.5679 0.5764 0.7236 0.7280 0.8271 0.8267 
* Minimum value of FPI or MPE index, representing the optimum number of management classes. 
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When using only the NDVI maps, the minimum FPI 
and MPE values occurred for two and three management 
classes (Table 5), respectively. For the other cluster 
analysis, the recommended number of classes was the same 
according to both indices, with three management classes 
when using the yield map and two management classes 
when using the vegetation index maps that had a significant 
correlation with the crop yield. Martínez-Casasnovas et al. 
(2018) obtained similar results when using the accumulated  

NDVI to generate management classes using the fuzzy c-
means algorithm. Figure 2 shows the resulting management 
class maps for the different input variable combinations. A 
map of three management classes for the crop yield is 
shown, and there is a map of two management classes for 
the vegetation indices that presented a significant 
correlation with the crop yield, and a map of two and three 
classes for the NDVI.  

 

 

FIGURE 2. Maps of the management classes generated by fuzzy k-means method based on the (a) soybean crop yield, (b) vegetation 
indices that presented a significant correlation with the crop yield, (c) two classes of NDVI and (d) three classes of NDVI. 

 
While yield maps can highlight areas of high or low 

yield potential in the same field, vegetation indices, which 
are sensitive to different crop characteristics, can 
incorporate relevant information for crop management and 
can therefore be used to delimit management classes. 
Rabello et al. (2017) highlighted the potential use of remote 
sensing to delimit management classes, since the variability 
observed in an orbital image for maize demonstrated the 
same pattern observed for the apparent electrical 

conductivity and other soil attributes in a field that was 
explored using an integration between agriculture and 
crop-raising systems. The authors also noted that these 
results are consistent with the claim that the crop 
variability reflects the variability in soil properties in the 
area where the study was conducted. The descriptive 
statistics and ANOVA results for the clay content 
according to the different delimited management classes 
(Figure 2) are shown in Table 6. 
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TABLE 6. Summary statistics of the soil clay contents for the management classes delimited using the crop yield, the vegetation 
indices that presented a significant correlation with the soybean yield and the NDVI. 

Analyzed Class Class Type Minimum Maximum Mean Value SD CV 

Class 1 using vegetation indices Low 37.6 45.8 41.8a 2.41 0.06 

Class 2 using vegetation indices High 36.2 50.8 44.0b 3.80 0.09 

Class 1 using NDVI with 2 classes Low 37.6 45.1 41.3a 1.98 0.05 

Class 2 using NDVI with 2 classes High 36.2 50.8 44.5b 3.75 0.08 

Class 1 using crop yield Low 37.6 43.4 43.1a 1.94 0.05 

Class 2 using crop yield Average 36.2 49.7 44.0b 4.83 0.11 

Class 3 using crop yield High 37.6 50.8 43.2a 3.41 0.08 

Class 1 using NDVI with 3 classes Low 36.2 43.4 40.7a 2.27 0.06 

Class 2 using NDVI with 3 classes High  37.8 49.7 44.7b 3.30 0.07 

Class 3 using NDVI with 3 classes Average 40.7 50.8 45.1b 3.34 0.07 

Mean values with the same letters are not significantly different at 95% probability. SD: Standard Deviation. CV: Coefficient of variation. 
 
The comparison between the means of the soil clay 

content used to validate the cluster analysis showed that 
there was a significant difference among the delimited 
management classes when using vegetation indices that 
presented a significant correlation with the crop yield and 
with the management classes delimited using only the 
NDVI. The validation showed that a subdivision of the field 
into three classes did not produce significant differences in 
the soil clay content between them. Kuiawski et al. (2017) 
detected significant differences among the management 
classes for phosphorous, silt and clay when the management 
classes were delimited based on the terrain elevation and on 
the vegetation indices calculated using the reflectance 
measured using a spectroradiometer. 

The use of multiple data layers is necessary to 
adequately describe the spatial variability in a field 
(Córdoba et al., 2016). In this study, the delimitation of 
management classes was performed using the vegetation 
index data. These data were easily accessible and are 
spatially correlated with the soybean yield. There are still 
gaps that require further investigation in relation to factors 
that affect the crop yield and that can be detected by 
vegetations indices, with the aim of improving the 
management class delimitation in soybean crops. 
 
CONCLUSIONS 

The MSR, GCVI and SIWSI vegetation indices 
showed a significant correlation with the yield, and thus, we 
were able to detect crop variability that is spatially 
correlated with the soybean yield. The Kappa index values 
resulting from the comparison of the management class 
maps generated from the soybean yield with management 
class maps delimited using vegetation indices ranged from 
5% to 67%, depending on the number of classes. The 
subdivision of the plot into two management classes using 
vegetation indices as input variables was effective for 
finding areas with similar soil clay contents. 
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