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ABSTRACT 

This study aimed to evaluate the spatial dependence between agrometeorological 
variables and upland cotton yield the microregion of Cariri Oriental, Paraíba state 
(Brazil), using weighted spatial modeling system. In this study, we used the historical 
agricultural production data from the Brazilian Institute of Geography and Statistics 
(IBGE), observed rainfall data from the Executive Water Management Agency of Paraíba 
State (AESA), and air temperature averages estimated by the Estima_T software. Spatial 
regression models (classical - CR, autoregressive - SARM, and spatial error - SEM) were 
used to correlate the dependent variable (upland cotton yield) with covariates 
(agrometeorological variables). Fitted model parameters were estimated using the 
Maximum Likelihood method. Model performance was evaluated based on coefficient of 
determination (R2), maximum likelihood function logarithm (AIC), and spatial residue 
analysis. Moreover, an exploratory spatial analysis allowed us to verify spatial 
autocorrelation between upland cotton yield and agrometeorological elements, using 
statistical tools such as Moran's index I.  

 
 
INTRODUCTION 

Cotton (Gossypium hirsutum L. var. latifolium 
Hutch) is one of the most grown crops worldwide due to the 
extensive use of its fiber in the textile industry. According 
to the United States Department of Agriculture (USDA), the 
global lint cotton production in the 2018/19 harvest season 
was estimated at about 26 million tons. In Brazil, it 
represents 55.7% of the raw materials and is the main 
natural fiber used in the textile industry (ABRAPA, 2018).  

Brazil is the third largest producer (27,258.000 tons) 
and the second largest exporter of cotton (847,500 tons) in 
the world (ABRAPA, 2018). Northeast Brazil, in turn, is the 
second largest producer of cotton in the country and 
contributes by 26% to the national production. Moreover, 
the textile park in this region is one of the largest centers for 
purchase of manufactured cotton in Latin America (Oliveira 
et al., 2012).  

The world's population is estimated to grow from 
two to three billion people by 2050. Such population 
growth, combined with middle-class expansion, will 

increase food, energy, and fiber demands significantly 
(Foley et al., 2011).  

Agricultural crop management has become 
gradually data-driven and data-enabled, with large and 
diverse amounts of potential information available from 
crop and soil samplings, sensors, spatial mapping, historical 
yield measurements, remote sensing products of soils and 
crops, and weather measurements (Wolfert et al., 2017). 

Crop yield spatial variability is affected by multiple 
factors including soil, terrain, plant properties, weather-
related factors, environmental impacts, as well as human 
intervention type and extent (Scudiero et al., 2013). The 
influence of these factors on crop water status and yield can 
support management decisions and help develop irrigation 
systems and more efficient methods to increase productivity 
(Masseroni et al., 2017; Rocha Júnior et al., 2019).  

However, according to IPCC (2013), signatures of 
climate change are already evident in observations of 
natural and human systems, which suggests that society will 
face altered weather conditions in the future. Thus, cotton 
breeding has become a priority in Northeast Brazil to obtain 
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productive cultivars, resistant to pests and diseases, and 
adapted to local edaphoclimatic conditions, as well as with 
special, fine, and resistant fibers of varied colors (Echer et 
al., 2010; Gilio et al., 2017).  

Silva et al. (2012; 2020a) evaluated climate change 
impact on upland cotton (Gossypium hirsutum L. latifolium 
Hutch) in northeastern Brazil through arable-land 
availability for rainfed crops. Silva et al. (2012) verified 
climate monitoring and agricultural production in the states 
of Paraíba, Rio Grande do Norte, and Ceará over the last 
twenty years, comparing the interannual variability of 
agricultural production and rainfall, and obtained 
significant results. According to Silva et al. (2020b), several 
agrometeorological models have pointed out significant 
reductions in rainfall and increases in temperature, and 
hence an increasing trend of evapotranspiration in a future 
projection (2020-2080). 

The climate and crop yield relationship widely 
reported in the literature is based on global estimates, as it 
varies with space (Lobell & Burke, 2010). These estimates 
can help mitigate effects and adapt crops to climate at 
spatial scales, but can be misleading in site-specific 
programs, particularly those aimed at adapting farmers. 
Therefore, knowing climate impacts on crop yields at a local 
scale can provide useful information to policy makers. 

Peeters et al. (2015) suggested a multivariate spatial 
clustering by the Getis-Ord Gi* statistic to characterize 
spatial variability. The study of Goldstein et al. (2018) 
stands out among the studies using machine learning to 
analyze multivariable effects on crop yield. In this context, 
studies addressing the spatial relationships of soil traits, 
climate, and plant conditions with crop yields in a 
multivariate way are still incipient, which may neglect 

management properties that directly influence production 
efficiency. 

Fotheringham et al. (2015) stated that geographically 
weighted regression (GWR) is a statistical method for 
spatial modeling of heterogeneous processes and enables 
relating response variables with a set of independent 
variables. Given its greater analytical capacity and detail 
level, this approach has higher accuracy and efficiency of 
estimation (Ahmadi et al., 2018). A major component of the 
GWR is spatial weight, through which spatial relationships 
are delineated. The spatial weights are usually defined by 
spatial nuclear functions such as the Gaussian 
(Fotheringham et al., 2015), in which weights are related to 
the closest observations. Several studies have explored 
GWR models (Di Leo et al., 2016; Luo & Peng, 2016; Zhao 
et al., 2018; Andrade et al., 2021, and Silva et al., 2021). 
Among them, many have used one or more methods using 
biophysical variables as independent variables to explain 
the spatial variability of various physical phenomena            
of nature. 

Therefore, the present study aimed to evaluate the 
spatial dependence between agrometeorological variables 
and upland cotton yield in the microregion of Cariri 
Oriental, Paraíba state (Brazil), using weighted spatial 
modeling system. 

 
MATERIAL AND METHODS  

Study area 

The study area is in the microregion of Cariri Oriental, 
in Paraíba state, Brazil (Figure 1), which encompasses 12 
municipalities. According to the census of IBGE (2015), the 
microregion has an area of 4,219.150 km², with an estimated 
population of 63,704 inhabitants (IBGE, 2015).  

 

FIGURE 1. Location of the microregion of Cariri Oriental, Paraíba state, Brazil. 
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The region is characterized by high temperatures 
(annual averages around 26 °C), low thermal amplitudes 
(Nascimento & Alves, 2008), and rain scarcity. Annual 
rainfall varies greatly in both time and space and has an 
average of about 587 mm, with standard deviation of ± 230 
mm (Sena et al., 2012). According to Alvares et al. (2014), 
the microregion of Cariri Oriental in Paraiba state has a BSh 
climate type.  

Database 

We used rainfall data from a monthly rainfall series 
(2000-2017) provided by the Executive Agency for Water 
Management of the State of Paraíba (AESA). Weather data 
were acquired from rain gauge stations located in the 
municipalities within the microregion of Cariri Oriental 
(Figure 1). Average air temperatures were estimated for the 
time series from January 2000 to December 2017, using the 
Estima_T software (Cavalcanti et al., 2006). Finally, we 
used data from the IBGE Automatic Recovery System 
(SIDRA) for upland cotton yield analysis. 

The Thornthwaite monthly ETP is determined by the 
equation proposed by Thornthwaite (1948) for a 30-day 
month and 12-h photoperiod days, using the monthly mean 
temperature (in °C) as follows (Equation 1): 

𝐸𝑇𝑃 = 16 × 10 ×
𝑇𝑚

𝐼
 (1)

where:  

Tm is the average monthly temperature;  

I is the annual thermal index, and  

a is a function of I. 
 
In sequence calculated and water storage in the soil 

(ARM), due to the monthly water deficit in the municipality, 
in the months when there was no water deficit in the region, 
the following procedure was adopted: the positive value of 
monthly precipitation (PPT) subtracted the monthly 
evapotranspiration (ETP) was added to the storage of the 
previous month, obtaining storage in the referred month. 
This procedure was adopted while “P - ETP” was positive. 
However, the maximum storage value is the CAD itself, 
which cannot be exceeded. The value of the storage column 
(ARM) for months with negative P - ETP is calculated using 
the (Equation 2): 

𝐴𝑅𝑀 = 𝐶𝐴𝐷 × 𝑒  (2)

 
For months with soil water storage deficit, real 

evapotranspiration (ETR) was estimated as in (Equation 
3), but it was the same as ETP for months when soil water 
storage was the same as Water Capacity Available (WCA). 

𝐸𝑇𝑅 = 𝑃𝑃𝑇 + [𝐴𝐿𝑇] (3) 
where:  

PPT is the monthly rainfall, and  

ALT is the modulating soil water storage. 
 

Water deficit (WD) is calculated as the difference 
between ETP and ETR, and it can only occur in months with 

negative P - ETP. In months with excess water (EXC), the 
maximum storage is reached, and its value is equal to P - 
ETP minus the storage change (Pereira & Vicente, 2010). 

Aridity index (Ia) expresses WD as a percentage in 
relation to Thornthwaite’s ETP and ranges from 0 to 100. 
This index was determined as in (Equation 4).  

𝐼𝑎 =
𝐷𝐸𝐹

𝐸𝑇𝑃
× 100 (4)

 
Humidity index (Ih) is the relationship between 

water surplus (SUR) and potential ETP and expressed as a 
percentage (Cunha & Martins, 2009). It was determined as 
in (Equation 5). 

𝐼ℎ =
𝑆𝑈𝑅

𝐸𝑇𝑃
× 100 (5)

 
After calculating Ia and Ih, we estimated moisture 

index (Im), which relates the two indexes above and is 
responsible for determining the local climatic type (Cunha & 
Martins, 2009). It was estimated according to (Equation 6). 

𝐼𝑚 =
(𝑆𝑈𝑅 − 0.6 ∗ 𝐷𝐸𝐹)

𝐸𝑇𝑃
× 100 (6)

 
Vegetation drought index (Ivd) indicates drought 

presence and severity during plant vegetative stages and is 
determined as the vegetation index, considering only the 
points (months) corresponding to crop vegetative stages. 
These points may fit in subhumid, dry, or arid sectors, i.e., 
characterize the studied crop. 

Moran’s Index I (I) 

Moran’s Index I (I) is a statistical mechanism for 
verifying the spatial dependence of a given variable. This 
index is one of the most used and is estimated as in 
(Equation 7) (Almeida et al., 2008): 

𝐼 =  
∑ ∑ 𝑤 (𝑦 − 𝑦)(𝑦 − 𝑦)

∑ (𝑦 − 𝑦)
  (7)

where:  

n is the number of observations;  

wij is the element in the neighborhood matrix for the 
pair i and j;  

W is the sum of the weights of the matrix;  

yi and yj are mean deviations, and  

𝑦 is the mean 
 

This index measures the spatial autocorrelation from 
the product of deviations in relation to the mean, that is, 
Moran’s Index I is a global measure of spatial 
autocorrelation, as it indicates the degree of spatial 
association present in a data set. This index varies within a 
range (-1 to 1): if there is spatial independence its value is 
zero (0); positive values (between 0 and +1) indicate direct 
correlation, that is, perfect association with spatial 
dependence; and negative values (between 0 and -1) indicate 
inverse correlation, that is, it refers to perfect dispersion. 
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Spatial Regression Models 

Classical Regression (CR) 

A regression model (Equation 8) is based on the 
interest in evaluating the relation of a variable (Y) in 
relation to independent variables or covariates (X), that is, 
the relation between two or more variables so that one of 
them can be explained or have its value predicted through 
other variables (Bivand & Piras, 2015). In the case of spatial 
data, if there is spatial autocorrelation, the generated model 
should incorporate the spatial structure, since the 
dependence between observations affects the capacity of the 
model for explanation (Bivand & Piras, 2015). 

𝑌 = 𝛽 + 𝛽 𝑋 + 𝛽 𝑋 + . . . +𝛽 𝑋 + 𝜀   (8)

where:  

Yi is an observation of the dependent variable; 

X1, X2..., Xn are the independent variables;  

β = (β0, β1, β2..., βn) are termed as corresponding 
regression coefficients, and  

𝜀  is the error associated with the observations of the 
dependent variable. 

 
The assumption that observations are independent 

simplifies the model, but in the context of area data, such 
simplification is unlikely to happen because of the 
possibility of spatial dependence between the terms of the 
error. An alternative is to use a mixed spatial autoregressive 
model (Spatial Lag Model), which assigns to the response 
variable yi the spatial autocorrelation ignored. Another 
alternative is to apply a spatial error model, which considers 
spatial effects as a noise, that is, as a factor to be removed 
(Bivand & Piras, 2015). 

Spatial autoregressive model (SARM) 

The spatial autoregressive model allows 
observations of the dependent variable yi in the area i (i = 
1..., n) to depend on observations in neighboring areas with 
j ≠i (Bivand & Piras, 2015), assuming the following form 
(Equation 9): 

𝑌 = 𝜌 𝑊 𝑦 + 𝑋 𝛽 + 𝜀  , (9)

where:  

𝜀  is the error,  

Wij is the (i, j)-th element of the spatial matrix with 
order n (that is, n by n). The scalar ρ is a parameter 
(to be estimated) that will determine the intensity of 
the autoregressive spatial relation between yi and ∑j 
Wijyj, and this parameter has as interpretation the 
average effect of the dependent variable relative to 
the spatial neighborhood in the region in question. 
The vector Wy is known as spatial lag, the matrix X 
contains the observations of the independent 
variables, and the vector β has coefficients for the 
independent variables. 
 
 

 Spatial error model (SEM) 

In a spatial error model, spatial dependence is 
obtained through an error process, in which the errors of 
different areas may present spatial covariance (Bivand & 
Piras, 2015). It was determined as in (Equation 10): 

𝜀 = 𝜌 𝑊 𝜀 + 𝑢  , (10)

where:  

ρ is the autoregressive parameter that indicates the 
intensity of spatial autocorrelation between the 
residuals of the observed equation and measures the 
average effect of errors in the neighbor points 
relation to the residual of the region evaluated, and  

ui is the random error term assumed to be i.i.d. 
Thus, spatial autocorrelation in SEMs appears in 
the error terms. 

 
In matrix notation, it can be written as in (Equation 11): 

𝜀 = 𝜆𝑾𝜀 + 𝒖 (11)
 

Assuming |λ| < 1 leads to the following expression 
(Equation 12): 

𝜀 = (𝑰 − 𝜆𝑾) 𝒖 (12)
 
Inserting the above expression into the classical 

regression model generates the following SEM (Equation 13): 

𝒚 = 𝑿𝜷 + (𝑰 − 𝜆𝑾) 𝒖 (13)
 

With E[uu´] = σ²I, and the matrix of variances and 
covariances is defined as follows (Equation 14): 

𝐸[𝜀𝜀′] = 𝜎 (𝑰 − 𝜆𝑾) (𝑰 − 𝜆𝑾′)  (14)
 
SEM is characterized as a combination between a 

classical regression model and a spatial autoregressive 
model in the terms of ε error. Therefore, the expected value 
is equal to that of a classical regression model. 

Model selection 

According to Dobson & Barnett (2011), the fitting 
algorithm must be applied not only to one model but to 
several that are relevant to the nature of the observations to 
be analyzed. If potential alternative models are disregarded, 
the ones best suited to the data may not be obtained. As in 
usual regression models, a sub-model for which the quantity 
below is minimal must be found by the Akaike criterion 
(Equation 15): 

𝐴𝐼𝐶 = 𝐷(𝑦; �̂�) + 2𝑝 , (15)

where:  

𝐷(𝑦; �̂�) is the distance between the logarithm of the 
likelihood function of the saturated model (q 
parameters) and of the model under investigation (p 
parameters) evaluated in the estimation of maximum 
likelihood 𝛽. A small deviation function indicates 
that the fit of the model with fewer parameters is as 
good as that of the saturated model. 
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RESULTS AND DISCUSSION 

Figure 2 shows the spatial distribution of 
accumulated crop yield of upland cotton in the microregion 
of Cariri Oriental over 17 years. The municipalities with 
the highest yields were Gurjão (maximum of 48 tons per 
year) and Santo André (maximum of 40 tons per year). On 
the other hand, the lowest yields were found in Caraúbas 
and Barra de São Miguel. These lowest cotton yields may 
have been due to several factors such as unfavorable 
climatic conditions, soil depletion, improper crop 
management, among others.  

Some studies (Sena et al., 2012; Alves et al., 2015) 
have reported that the rainy season in the Cariri Oriental is 
concentrated in the months of March, April, and May, while 
the dry season lasts from September to November. Sena et 
al. (2012) pointed out that the few rains during these months 
must ensure that the annual rainfall does not exceed 1.5%. 
The authors also warned that such a climate instability poses 
risks to rainfed farming. In this region, numerous crops are 
often grown but little is harvested, with even higher 
economic losses in El Niño years. 

 

 

FIGURE 2. Accumulated cotton yield (in tons) between 2000 and 2017 in the microregion of Cariri Oriental, Paraíba state, Brazil. 
 

Once the spatial distribution of upland cotton 
accumulated yield in the microregion of Cariri Oriental was 
known, Moran's index was used to estimate autocorrelations 
between municipalities within the area. Figure 3 shows the 
Moran’s Scatter plot for standardized cotton yield per 
municipality (horizontal axis) and cotton yield in the entire 
microregion (vertical axis). By analyzing global spatial 
autocorrelation, the Moran’s index remained with positive 
autocorrelation, which may be associated with yield 

concentrated within a single area (few producing 
municipalities). The municipalities of Gurjão and Santo 
André showed high cotton yields and are surrounded by 
other municipalities with high yields. The opposite 
occurred for municipalities with low cotton yields. Based 
on this autocorrelation degree, we can infer that the 
municipalities of High-High (HH) typologies (1st 
quadrant) have great relevance in fiber production if 
compared to the other municipalities.  

 



Madson T. Silva, Antônia S. de Andrade, Edivaldo A. de O. Serrão, et al.  614

 

 
Engenharia Agrícola, Jaboticabal, v.41, n.6, p.609-618, nov./dec. 2021 

 

FIGURE 3. Moran’s Index I scatter plot for cotton yield in the microregion of Cariri Oriental, Paraíba state, Brazil. 
 

Spatial clusters must be delineated for edaphoclimatic 
risk zoning in semiarid regions. As highlighted in other 
studies, these spatial analyses are crucial due to their potential 
applications for environmental health (Wang & Hu, 2012), 
heat risk (Ho et al., 2015), water balance (Liu et al., 2016), 
and power generation (Tyralis et al., 2017). 

Geospatial analysis techniques help detect          
cotton cultivation weaknesses and define more favorable areas  

with greater adaptive capacity. By analyzing the prediction 
of independent variables (Table 1), we found that mean 
temperature (T_Mean) and moisture index (Im) had 
negative contributions (i.e., cotton yield decreased as they 
increased). This result may be related to temperature and 
moisture influences on cotton phenological stages, as 
highlighted by Silva et al. (2012).  

 
TABLE 1. Regression models fitted to cotton yield data as a function of climatic variables in the microregion of Cari Oriental, 
Paraíba state, Brazil. 

Covariate CR SARM SEM 

Intercept 1279.89 1288.81 1563.81 
Ivd 
Ia 
Im 
Ih 
T_Mean 

65.1366 
352.633 
-561.02 
574.283 
-82.7993 

56.0455 
373.536 
-608.96 
612.334 
-74.1927 

64.1285 
384.292 
-611.279 
627.637 
-92.7132 

R2 0.918737 0.924157 0.949506 

AIC 110.276 111.586 107.194 

ρ - 0.188864 -0.811411 

Ivd (Vegetation drought index); Ia (Aridity index); Im (Moisture index); Ih (Humidity index); T_Mean (Mean air temperature (ºC). 
 

Canopy temperature is a strong indication of water 
stress, because when stomatal conductivity decreases, 
temperature increases, thus indicating stress. According to 
Munitz et al. (2017) and Netzer et al. (2019), prolonged 
water stress can negatively affect crop production. These 
authors emphasized that, during cotton growth and 
emergence, these water relations are even more relevant since 

emergence speed depends mainly on temperature (~32 ºC). 
Moreover, soil moisture is essential for germination, 
beginning of seedling development, and between the 
formation of the first flower buds and beginning of fruit 
opening (35 to 120 days). 

Table 1 shows the results of the spatial regression 
models. The SEM results improved significantly and 
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explained 95% of the variability in the influence of climatic 
variables on cotton yield according to AIC value, that is, a 
strong to very strong correlation. For Azevedo & Silva 
(2007), the ideal mean air temperature range for satisfactory 
cotton yields is between 20 and 30 °C. Bibi et al. (2008) 
reported that cotton plants are expected to have a high 
photosynthetic rate at 32 °C, but net photosynthetic rate 
starts to decrease from 22 °C. Also in this context, Silva et 
al. (2012) claimed that temperature is also important for a 
proper reproductive development (flowering and shoot 
formation). The other variables had positive coefficients, 
hence the opposite of mean temperature and the Im. Thus, 
cotton yield is higher as variables have higher values. 

Our results (Table 1) confirmed that including 
spatial dependence indicators among variables improves the 
predictive power of a model and rules out spatial 
autocorrelation. In other words, such inclusion allows 
generating randomly distributed residues within the study 
area. The superiority of alternative models (SARM and 

SEM) over the traditional (CR) can be seen in Figure 4 (A-
C). This figure shows the residual spatial distribution and 
predictive capacity of each model. The SEM (Figure 4C) 
had a larger number of municipalities with negative 
residues. This model, therefore, tends to underestimate 
cotton yields in the micro-region of Cariri Oriental between 
2000 and 2017. 

Residual variability (Figure 4D) was determined as 
the difference between the observed and model-estimated 
data. For this variability, the SEM had the best fit, showing 
a distribution pattern close to normal. For all models (CR, 
SARM, and SEM), cotton yields were overestimated within 
the transition areas between the most productive 
municipalities. However, overestimates and underestimates 
are relatively low when considering the interquartile 
difference. This may be directly associated with rainfall 
distribution and regularity, and thermal amplitude in        
each municipality. 

 

 

FIGURE 4. Maps of residuals from the classical regression - CR (A), spatial autoregressive model - SARM (B), and spatial error 
model – SEM (C), and of the variability of residuals (D) for cotton yield in the microregion of Cariri Oriental, Paraíba state, Brazil. 
 

Quantitative and qualitative aspects of upland cotton 
yield are influenced by climate, which is composed of 
several parameters such as rainfall, temperature, humidity, 
wind speed, and light intensity. Therefore, knowing the 
study area comprehensively allows us to identify which are 
the climatic conditions most favorable for cotton planting, 
as unfavorable conditions can result in significant yield 
losses. In this context, Costa et al. (2020) carried out a study 
in northeastern Brazil and observed that the spatial patterns 

of accumulated degrees show reductions, but with a positive 
trend for extreme events within a short period. 

Given the climate change scenario, Silva et al. 
(2012) analyzed upland cotton cultivation in rainfed 
conditions in northeastern Brazil and found that, for 1.5 ºC 
increments in mean air temperature, the availability of areas 
favorable to cotton cultivation is directly related to 
increased water supply from rainfall. According to Rocha 
Júnior et al. (2020), Northeastern Brazil presents climate 
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vulnerability as it is the most populous dry region 
worldwide, with accentuated climate variability; therefore, 
the local population is exposed to the risk of droughts with 
strong environmental and social impacts. In this sense, 
drought studies using advanced research methods, 
especially in the climate change context, is critical to 
improving crisis management in long dry spells. 

Overall, climate-related factors are commonly used 
to determine irrigation water amounts both in time and 
space (Masseroni et al., 2016; Haghverdi et al., 2019). 
Moreover, the spatial variability of effects from multiple 
climatic variables on crop yields may be modeled to predict 
the yield spatial variability itself. Therefore, crop planting 
should be carried out after significant climate studies and 
analyses, combined with knowledge on soils, so that 
positive interventions could be made in crops in the most 
favorable periods for each region (Echer et al., 2010).  

 
CONCLUSIONS  

The spatial autocorrelation of cotton yield and 
agrometeorological elements can be verified through an 
exploratory analysis of spatial variability in the areas, using 
statistical techniques such as Moran’s I index. 

Two spatial regression models (MEAR and MEE) 
with global effects can be applied to incorporate the 
observed spatial dependence, showing a moderate to very 
strong correlation intensity. These regression models have 
better results than the classic model. Therefore, the 
inclusion of spatial dependence in these models improves 
cotton yield estimates for the microregion of Cariri 
Oriental, Paraíba state, Brazil. 
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