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WEED MAPPING USING A MACHINE VISION SYSTEM1

Mapeamento de Plantas Daninhas Utilizando um Sistema de Visão Artificial
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ABSTRACT - Weed mapping is a useful tool for site-specific herbicide applications. The objectives
of this study were (1) to determine the percentage of land area covered by weeds in no-till
and conventionally tilled fields of common bean using digital image processing and
geostatistics, and (2) to compare two types of cameras. Two digital cameras (color and infrared)
and a differential GPS were affixed to a center pivot structure for image acquisition. Sample
field images were acquired in a regular grid pattern, and the images were processed to estimate
the percentage of weed cover. After calculating the georeferenced weed percentage values,
maps were constructed using geostatistical techniques. Based on the results, color images
are recommended for mapping the percentage of weed cover in no-till systems, while infrared
images are recommended for weed mapping in conventional tillage systems.

Keywords:  precision agriculture, geostatistic, common bean.

RESUMO - Mapeamento de plantas daninhas é uma ferramenta útil em aplicações localizadas de
herbicidas. Os objetivos deste trabalho foram: determinar o percentual da cobertura vegetal de plantas
daninhas em uma lavoura de feijão sob os sistemas de plantio direto e convencional, usando
processamento digital de imagens e geoestatística; e comparar dois tipos de câmera. O sistema de
visão artificial era composto por duas câmeras digitais (colorida e infravermelha), acopladas à estrutura
móvel do pivô central, e um DGPS. As imagens adquiridas representavam amostras da área, em uma
malha regular de pontos, e elas foram processadas para estimar a porcentagem da cobertura das
plantas daninhas. De posse desses valores georreferenciados, foi possível construir mapas usando
técnicas de geoestatística. Com base nos resultados, as imagens coloridas foram as mais adequadas
para o mapeamento da cobertura vegetal de plantas daninhas em plantio direto, enquanto as imagens
infravermelhas foram mais adequadas para o mapeamento em plantio convencional.

Palavras-chave: agricultura de precisão, geoestatística, feijão.

INTRODUCTION

In Brazil, common beans (Phaseolus
vulgaris), which are cultivated in all regions,
are a staple in the diet and an important
source of protein for poor people. Common
beans are typically grown by small producers,
but several large producers have also grown
the crop since the mechanical harvests
availability. Generally, the larger producers
use advanced technologies that allow them to

achieve higher yields than the smaller
producers.

According to Kozlowski et al. (2002), weed
infestation can reduce common bean
production by 15 to 80%. Herbicide use is the
most common method used to control weeds
because of its high efficiency and ease of
application (Concenço et al., 2006). However,
farmers tend to apply a uniform dose of
herbicides over entire areas, regardless of the
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prevalence of weeds. To improve the
efficiency of herbicides, farmers should apply
the product only where necessary. Thus,
weed mapping, which identifies infestations
throughout a production area, has been
pointed as one of the tools for the site-specific
application of herbicides (Singh et al., 2011).

Site-specific herbicide applications not
only enable a higher efficiency of weed
control but also result in higher grain yields
(Machado et al., 2006). This technique
optimizes herbicide use and reduces the
environmental impacts of the product.
According to Shiratsuchi & Christoffoletti
(2002), several experiments have
demonstrated that site-specific herbicide
applications are economically feasible.

According to Lamb & Brown (2001),
although weed mapping can be performed with
different techniques, one of the most
promising is remote sensing. These authors
state that one of the main advantages of
remote sensing is the speed at which weed
infestation maps can be generated. This
process relies on the extraction of information
from digital images instantaneously acquired
by platforms attached to farm machinery.

Spectral bands or indices aid in plant
mapping by minimizing variations in external
factors and by enhancing the objects of
interest. Moreover, with image processing and
analysis of techniques, important information
can be extracted to more easily discriminate
between crops and weeds (Sartori et al., 2005).

Most of the systems proposed for acquiring
spatial weed data have used two approaches,
namely continuous and discrete area sampling
(Rew & Cousens, 2001). In continuous weed
sampling, data are collected over the entire
field by using visual or remotely sensed
imagery by an expert. Weed remote sensed
images can be acquired by aircraft and satellite
platforms (Bajwa & Tian, 2001; Casady et al.,
2005; Cuneo et al., 2009) or tractor-based
systems, known as machine vision systems
(Lee et al., 1999; Lamm et al., 2002). In
discrete weed sampling, data are collected only
from pre-defined sites throughout the field and
interpolation method is used to estimate weed
infestation for the entire field (Expósito et al.,
2003).

Machine vision systems have been
usually proposed for real-time herbicide
application by scanning the entire field. The
premise of this research is that the farmer
can use the center-pivot irrigation system as
a machine vision platform for sensing the
weed. However, designing a system for
scanning the entire field under the center-
pivot structure could be a complex task that
could require an expensive solution. Sampling
images in some points of the center-pivot field
could be a feasible option. To create a weed
infestation map from sample images,
geostatistics can be used to calculate values
for areas where information is not available.

Site-specific herbicide applications can
help farmers optimize their production,
improve the quality of their crops, and reduce
environmental problems. Thus, the objectives
of this work were (1) to map the percentage of
weed cover using a machine vision system and
(2) to test two types of cameras, color and near
infrared.

MATERIALS AND METHODS

This study was conducted in a 0.8-hectare
experimental field irrigated by a center pivot
system and planted in common beans. The
field was divided in half and equally cultivated
under no-till and conventional agricultural
practices.

Image Acquisition System

The image acquisition system consisted
of two 1/3" CMOS cameras, one monochrome
and one color, that were controlled by a portable
microcomputer via a 10 m cable and an image
acquisition board (PCMCIA IEEE 1394). The
cameras used C-mount lenses with 2.8 mm
focal lengths and captured two images of the
same scene simultaneously. An infrared
longpass filter with a cut-off wavelength of
695 nm was coupled to the monochrome
camera to acquire near infrared images (NIR).
The color camera acquired R (red), G (green),
and B (blue) image bands. The images were
saved in bitmap (BMP) format with dimensions
of 480 x 640 pixels.

The system was attached to the center-
pivot structure and pointed down to focus the
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crop rows. While the center-pivot structure
was running on its circular trajectory, the
cameras were manually moved on the center-
pivot structure to acquire sample images over
the entire field. Using this setup, each image
represented 4.9 x 6.5 m of the field for both
types of images, color and NIR.

Wooden flag stakes, georeferenced with a
Trimble® Pathfinder Pro XRS DGPS, were
placed in the field in a regular grid pattern.
The stakes were arranged in circular sections
and the distance between stakes in the same
section was approximately 6.5 m. The distance
between sections was also 6.5 m. When a
stake was observed near the center of the
camera’s field of view, an image was acquired.
In total, 75 and 82 georeferenced images were
acquired in the conventionally tilled and no-
till fields, respectively.

All images were taken under cloudy sky
conditions at 25 days after emergence (DAE)
of the plants.

Image processing and analysis

An image processing algorithm was
developed in the NI LabView® environment to
output the percentage of weed cover in each
georeferenced image. This percentage was
estimated for both color and NIR images of the
same scene.

The main idea implemented in the
algorithm was to assume that plants between
two crop rows were weeds. Firstly, plants in
the image were discriminated from the
background. Then, the identified plants were
classified as crop and weed by detecting the
crop row location. Finally, once the crop rows
were identified, the other segmented plant
pixels were summed to estimate the weed
cover in each image.

Color and NIR images were tested. In color
image, the color differences between plant and
other objects in the scene could favor the plant
discrimination in images by enhancing the
green information. In NIR images, the spectral
response differences between plant and soil
could favor plant discrimination using only one
NIR band instead of three RGB bands used in
color image.

To enhance the contrast between the
plants and the background, image processing
began with the transformation of color images
(Figure 1A) into excess green index images
(Figure 1B). No contrast transformation was
performed on the NIR images.

The excess green index (ExG) was
calculated according to Woebbecke et al. (1995)
from equation 1 as follows:

BGR

BRG
ExG





2

   (1)

where R, G, and B are the values of each pixel
of the color image in the red, green, and blue
bands, respectively.

The NIR and ExG images were then
automatically segmented by the iterative
method proposed by Yang et al. (2001) in which
a single-threshold classifies the pixels into
plants (crops and weeds) and background (soil,
straw, etc.). After segmentation, opening and
closing morphological operations were applied
for noise reduction (Figure 1C).

Next, the angle of the crop rows in the
binary images was determined using the
Hough Transform (Duda & Hart, 1972). Since
the cameras were fixed on the center pivot
structure, crop rows had different directions
in different images. Once the crop row angle
was established, the image was rotated until
the crop rows were vertical (Figure 1D). A block
of 320 (V) x 480 (H) pixels was cut in the center
of the rotated image to ensure that the crop
rows had the same length in all image blocks
(Figure 1E). Summing each column of the
image block, the algorithm identified the
position and the width of the crop rows and
removed them, leaving only plants identified
between the crop rows (Figure 1F). Having
image blocks with the same crop row length
was essential for identifying the crop row
position and width; on the other hand, the
image column summing would be too different
for each crop row. Finally, based on the number
of pixels representing plants between crop
rows, the percentage of weed cover was
estimated for each georeferenced image.

Each image generated a georeferenced
weed cover sampling. Thus, at the ending of
the image processing and analysis, a grid
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Figure 1 - Images processing steps for estimating the percentage cover of weeds between crop rows (A) the original color
image, (B) the excess green index image, (C) the thresholded and filtered image, (D) the rotated image, (E) the image block,
and (F) the  plant between crop rows image.

(A) (B)

(C) (D)

(E) (F)

sample of the weed cover was obtained
with 75 and 82 sampling points in the
conventionally tilled and no-till fields,
respectively.

Mapping the percentage cover of weeds

The GS+ software (version 9.0) was used
for geostatistical analysis of the georeferenced

data. The objective of this analysis was to
determine if the data points were spatially
dependent and to build a map by interpolation.
Analyses were performed for both no-till and
conventional tillage systems and for both color
and NIR cameras.

Geostatistical analysis consisted of
calculating summary statistics, fitting
predefined semivariogram models, choosing
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the semivariogram model and interpolating by
kriging.

The GS+ uses nonlinear regression for
fitting the predefined semivariogram models:
spherical, Gaussian, linear, and exponential.
According to Isaaks & Srivastava (1989), these
are the most common semivariogram models
and, in the fitting process, the following
semivariogram parameters are evaluated: the
nugget effect, the sill, and the range.
Interpolation by ordinary kriging was
performed using each of these models. The
criterion for choosing the best semivariogram
model was based on parameters obtained in
the cross-validation analysis. These
parameters were the correlation coefficient
and standard error between measured and
estimated values. Therefore, the model with
correlation coefficient closer to 1 and standard
error closer to 0 was selected.

Although the quality of the weed map
generated by geostatistical techniques is very
sensitive to the sampling strategy, this study
did not aim to discuss this issue. Further
details of the weed map quality generated by
geostatistical interpolation can be found at
Clay et al. (1999) and Cousens et al. (2002).

To validate the weed maps, images with
dimensions of 2304 (V) x 3072 (H) pixels were
captured at a height of 1.60 m with a digital
camera (CASIO EX-Z75) and saved in JPEG
(Joint Photographic Experts Group) format.
Using this setup, each image represented 1.0
x 1.4 m of the field. The resolution of those
images was much higher than the resolution
of the images used by the proposed system
since the camera had a smaller field of view
and used a greater number of pixels.

The geographic coordinates of each
validation image, acquired by the Trimble
Pathfinder Pro XRS DGPS, were assumed to
be in the center of the camera’s field of view.

The high-resolution validation images
were transformed to ExG and segmented using
the same algorithms described above.
However, to obtain the percentage of weed
cover, crop rows were manually removed in the
computer. Using the geographic coordinates,
the manual segmentation values were
compared to the map values.

For the map validation process, 100 high-
resolution images were randomly acquired at
26 DAE in the no-till and conventionally tilled
fields.

RESULTS AND DISCUSSION

Summary statistics

The summary statistics obtained by
analyzing the percentage of weed coverage
between the rows are presented in Table 1.
The values obtained with the color camera
in no-till field were not significant at the 5%
level in the Shapiro-Wilk normality test.
According to Cressie (1993), when the normal
distribution is rejected, as happened with the
conventional tillage data, the non-normality
must not compromise the continuity of
analysis.

The kurtosis coefficient (Ck), which
describes the degree of flattening of the
frequency distribution curve, showed values
greater than 0.0 for all cropping systems and
cameras tested. This indicated that the
distributions were leptokurtic. However,

Table 1 - Descriptive statistics of the percentage of weed cover using color (RGB) and infrared (NIR) cameras for conventionally
tilled (CT) and no-till (NT) fields

CV = coefficient of variation (%); s = standard deviation; Cs = skewness coefficient; Ck = kurtosis coefficient; W = Shapiro-Wilk normality
test; * = non-normal distribution in the Shapiro-Wilk test at 5% probability; ns = normal distribution in the Shapiro-Wilk test at 5%
probability.

Mean Median Minimum Maximum CV s Cs Ck W

CT-RGB 6.73 6.34 1.90 16.85 42.83 2.88 0.89 1.22 *

CT-NIR 8.49 8.24 3.11 19.92 35.54 3.02 0.79 1.83 *

NT-RGB 6.97 7.02 1.34 10.88 29.21 2.04 -0.47 0.15 ns

NT-NIR 8.33 8.40 1.87 12.76 28.02 2.33 -0.59 0.35 *
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values of Ck for the no-till system were close
to zero, indicating a mesokurtic distribution.

In all cases, the mean and median values
were similar, indicating a trend in the data
toward a symmetrical distribution. This was
also confirmed after analyzing the skewness
coefficients, all of which were close to zero.

According to Cressie (1993), data normality
is not a requirement for geostatistical
analysis; the only requirement is that the
distributions do not have very long tails, which
could compromise the analysis. Thus,
according to the summary statistics analysis,
the shapes of the distribution curves of the
collected data were assumed to have no effect
on the geostatistical analysis.

Geostatistical analysis and map building

The semivariogram models, their
parameters, and the cross-validation results
are presented in Table 2. The range represents
the distance above which the variables do not
have spatial dependence between sampled
values. All range values recorded did not
surpass the maximum distance between
sampling points and were not below the
smallest sampling distance, thus validating
the chosen sampling grid. According to Silva
et al. (2010), points located in a circular area
with a radius less than or equal to the range
are spatially dependent and can be used to
estimate values for locations that were not
sampled.

The nugget effect (Co) represents the
sampling errors and miscalculations of the

variable, which causes discontinuity at the
origin of the semivariogram. Therefore, Co is
the component of spatial variability that cannot
be related to a specific cause. Rather, it can
be attributed to random variability, and smaller
random variations are indicative of more
accurate estimates (Vieira, 2000). The values
of Co for the color camera in both tillage
systems were the smallest ones and were
close to zero.

In general, in the cross-validation
analysis, all regression coefficient (RC) values
were close to 1.0, especially the values from
the color camera in the no-till system and from
the NIR camera in the conventional tillage
system. Both had RC values of 1.01. In all
cases, the determination coefficient (R²)
values were relatively low (less than 0.50). In
contrast to the estimated values, the sampled
values were more clustered and were    closer
to the ideal line in the conventional tillage
system (Figures 2A and 2B) than in the no-till
system (Figures 2C and 2D). This indicated
that the estimated values in the conventional
tillage system may have been more accurate
than estimates in the no-till system.

Based on semivariogram models, values
were interpolated using ordinary kriging to
create a map of weed cover percentage
between the common bean plant lines (Figures
3-6). Since the weed cover percentage ranged
from 1.34 to 19.92%, these maps were
arbitrarily created using five classes with
intervals of 5% weed coverage for both planting
systems and both types of cameras. By
analyzing the four maps, the weed coverage

Table 2 - Fitted semivariogram models and parameters from the cross-validation results for the percentage of weed cover using color
(RGB) and infrared (NIR) cameras for conventionally tilled (CT) and no-till (NT) fields

n = number of data points in geostatistical analysis; SDI = Spatial Dependence Index; RSS = residue sum of squares; RC = regression
coefficient; SE = standard error.

Semivariogram models and parameters
Parameters from cross-

validation results

Model n
Nugget

effect
Sill Range R2 SDI (%) RSS RC R² SE

CT-RGB Spherical 75 1.70 7.62 20.80 0.96 78 0.30 1.10 0.49 0.13

CT-NIR Spherical 75 3.40 8.57 27.14 0.91 60 0.84 1.01 0.33 0.17

NT-RGB Exponential 82 0.95 3.99 22.50 0.75 76 0.54 1.01 0.23 0.21

NT-NIR Gaussian 82 3.28 7.01 54.04 0.95 53 0.71 0.87 0.28 0.16
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was predominant in the 5-10% class in all
maps.

The conventional tillage system maps had
higher percentages of weed cover than the no-
till system maps, as observed in the field. The
no-till system generally had lower weed
infestation than the convectional tillage
system because the layer of straw in this
system made weed seed germination difficult
(Mateus et al., 2004). The weed cover in the
conventional tillage system was more variable
than that in the no-till system.

Validation of the proposed system

For the no-till field, the weed cover
percentage was manually estimated in the
validation images to be between 0.50 and
17.20%, with an average of 3.80% and a
standard deviation of 3.01%. For the
conventionally tilled field, values ranged from
1.26-23.68%, with an average of 10.07% and a
standard deviation of 4.40%. Due to the
presence of the straw layer on the soil surface,

the no-till field tended to have less weed
infestation than the conventionally tilled field.

For the conventionally tilled field, the
average absolute errors between the manually
estimated weed cover percentages in the
validation images and those from the maps
were 4.1 and 3.4% for color and NIR cameras,
respectively. On the other hand, in the no-till
field, the color camera was more efficient than
the NIR camera, and the average absolute
errors between the manually estimated weed
cover percentages in the validation images
and those from the maps were 4.0 and 5.4%,
respectively. Thus, the excess green indexes
from the color images were more efficiently
discriminated between plant and straw than
NIR radiation. Furthermore, the performance
of the excess green index was similar in both
tillage systems.

Figure 7 shows the weed cover values
measured in the validation images versus those
estimated in the maps on the same locations,
for the conventionally tilled field. It was observed
that the points tended to be above the red line

Figure 2 - The cross-validation graphics: sampled versus kriging interpolated values of percentage cover of weeds in the conventional
tillage field using (A) color and (B) NIR cameras, and in the non-tillage field using (C) color and (D) NIR cameras.
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Figure 3 -  Map of percentage cover of weeds estimated using the color camera in the conventional tillage field.

Figure 4 - Map of percentage cover of weeds estimated using the NIR camera in the conventional tillage field.

Figure 5 - Map of percentage cover of weeds estimated using the color camera in the non- tillage field.
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y=x, which means that the measured values
tended to be greater than the estimated ones.
Thus, for the conventionally tilled field, the
proposed method underestimated the weed
cover percentage. On the other hand, the
method tended to overestimate the weed cover
percentage in the no-till system (Figure 8).
The contrast between soil and plants in the
conventionally tilled field was greater with a
higher resolution camera, and some small
weeds were not captured in the images.
This has led to an underestimation of weed
infestation. In contrast, for lower resolution
images of the no-till field, the low contrast
between straw and weeds hampered the ability
of the method to discriminate objects, and the
method incorrectly classified some straw areas
as weed areas.

The right determination of the crop row
width was the main source of error in the
proposed algorithm. The row width was defined
by summing the pixel representing plants on
each column of the binary image (Figure 1E).
Thus, the row width was assumed uniform and
equal to the distance between two image
columns. Due to the fact that the shape of the
crop row top-view is not uniform, two types of
errors can occur: crop pixel was considered as
weed pixel when the defined width was thinner
than the actual width, or weed pixel was counted
as part of the crop row when the defined width
was wider than the actual width. These two
types of errors can be seen in Figure 1F.

The thematic maps presented in this
paper show the classes of weed cover
percentage. This information alone is not
useful for determining the necessary dosage
or type of herbicide. Such decisions must be
supported by additional information, including
stage of maturity of crops and weeds, species
of dominant weeds, and dangers posed by these
species (Ferreira et al., 2007). These factors
must be determined by field verification.
These factors added to information from the
maps could assist in decision making even if weed
control methods are deemed unnecessary.
Moreover, georeferenced information from the
maps could reduce the randomness of weed
scouting.

The weed mapping methods suggested
in this paper may help monitoring weed
growth after the application of pre-emergent
herbicides. Thus, the effectiveness of herbi-
cide applications could be reviewed and
specific sites where weed control is ineffective
could be identified.

Digital image processing and geostatistical
techniques were used in this study to map
the percentage of an area covered by weeds.
Based on results obtained, color images
were determined to be the most suitable
for mapping weed infestations in no-till
fields, while NIR images were determined to
be the most suitable for conventionally tilled
fields.

Figure 6 - Map of percentage cover of weeds estimated using the NIR camera in the non- tillage field.
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