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Purification and characterization of a phytoalexin elicitor from
spores of the saprobe Mucor ramosissimus1
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ABSTRACT – (Purification and characterization of a phytoalexin elicitor from spores of the saprobe Mucor ramosissimus).
Plants accumulate antimicrobial compounds (phytoalexins) in response to a wide variety of microorganisms. Mucor ramosissimus
Samutsevitsch is a saprobe capable of inducing phytoalexin production in soybean cotyledons and in the leaves of tropical
Rubiaceae on whose surface it has been found. In the present study, the elicitor from M. ramosissimus was partially purified
and the activity compared to that of a glucan elicitor isolated from Phytophthora sojae. Optimal isolation of the elicitor (based
on fungal growth, yield of spores and elicitor activity) was achieved by autoclaving spores obtained from nine day-old
cultures of the fungus. The elicitor was precipitated with ethanol and purified by chromatography on an anion exchange
column, which retained the elicitor, and a Concanavalin A-affinity matrix, to which the elicitor did not bind.  The purification
resulted in a considerable increase (six-fold) in the specific activity of the elicitor. Neutral sugar composition, analyzed by
HPLC, revealed the predominance of mannose, followed by glucose and galactose, whereas colorimetric quantification showed
the presence of uronic acids. GC-MS analysis of the elicitor revealed the predominance of glucuronic acid and mannose.  These
results suggest that fragments of mucoran-type polysaccharides are the phytoalexin elicitors present in the spores of the
saprobe M. ramosissimus. Our results also indicate for the first time that soybean cotyledon tissues can recognize fragments
of glucuronic-acid heteropolymers as phytoalexin elicitors.
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RESUMO – (Purificação e caracterização de um eliciador de fitoalexinas de esporos do fungo sapróbio Mucor ramosissimus).
Plantas acumulam compostos antimicrobianos (fitoalexinas) em resposta a uma grande variedade de microorganismos. Mucor
ramosissimus Samutsevitsch é um fungo sapróbio capaz de induzir a produção de fitoalexinas em soja e em Rubiaceae nativas,
sobre a superfície das quais ele é encontrado. Neste estudo, o eliciador de esporos de M. ramosissimus foi parcialmente
purificado e sua atividade comparada ao glucano isolado de Phytophthora sojae. O ótimo de isolamento do eliciador (baseado
no crescimento do fungo, no rendimento dos esporos e na atividade eliciadora) foi obtido a partir de esporos autoclavados de
culturas do fungo com nove dias de idade. O eliciador foi precipitado com etanol e purificado por cromatografia de troca iônica,
a qual reteve o eliciador, e por uma matriz de afinidade em Concanavalina-A, à qual o eliciador não se ligou. A purificação
resultou em  considerável aumento (seis vezes) de  atividade específica do eliciador. Análises de açúcares neutros por HPLC
revelaram a predominância de manose, seguida de glucose e galactose, enquanto que a quantificação por colorimetria mostrou
a presença de ácidos urônicos. Análises do eliciador por GC-MS indicaram a predominância de ácido glucurônico e manose.
Esses resultados sugerem que fragmentos de um polissacarídeo do tipo mucorano são os eliciadores de fitoalexinas presentes
nos esporos de M. ramosissimus. Os resultados também indicam, pela primeira vez, que os tecidos de cotilédones de soja
reconhecem fragmentos de heteropolímeros de ácidos urônicos como eliciadores de fitoalexinas.
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Introduction

The synthesis of antimicrobial compounds named
phytoalexins is one of the best-studied defensive

responses of plants to pathogens (Dixon & Lamb 1990).
Phytoalexin production is observed not only after
microbial infection, but also after diverse biotic and
abiotic stresses. In addition, cell-free extracts of
microbial and plant origin, as well as inorganic and
organic substances can trigger the synthesis of these
compounds in plant species. The inducing molecules are
referred to as elicitors, the term being commonly used
to describe molecules capable of stimulating any plant
defensive mechanism (Côté et al. 1995, Nürnberger
1999).

Different eliciting substances isolated from fungi
have been shown to induce phytoalexin accumulation in
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several plant species (Hahn 1996, Shibuya & Minami
2001, and references therein). Among them, the β-1,3
β-1,6 branched glucan isolated from mycelial cell walls
or cultures filtrates of Phytophthora sojae - a natural
soybean pathogen – has been considered the most
potent elicitor described (Ayers et al. 1976a, Cheong
et al. 1991, Hahn 1996). Besides glucans, fragments of
chitin and chitosan have also been characterized as
elicitors of fungal origin (Shibuya & Minami 2001,
Agrawal et al. 2002). The extent of biochemical
information available on elicitor signals and on cellular
response resulting in the biosynthesis and accumulation
of phytoalexins in soybean make this system particularly
attractive for studies of signaling mechanisms in plants
(Côté et al. 1995).

The phytoalexins from soybean (glyceollins) are
pterocarpans derived from the phenylpropanoid pathway
and occur as a series of isomers (I-IV) (Paxton 1995).
The isoflavone daidzein is the immediate precursor of
the glyceollins (Paxton 1995) and genistein (tri-
hydroxylated isoflavone) is another anti-microbial
isoflavone that is accumulated in soybean tissues in
response to fungal elicitors (Rivera-Vargas et al. 1993,
Graham & Graham 2000). Both daidzein and genistein
are present as large pools of pre-formed conjugates in
soybean seedling tissues, being released by hydrolysis
in response to incompatible interaction with pathogens
or treatment with fungal or plant elicitors (Graham et al.
1990, Graham 1995).

Some saprobe fungi such as Heterobasidion
annosum can induce defensive responses in plants even
though they are not capable of invading their tissues
(Asiegbu et al. 1994). Other saprobe fungi have been
described as inducers of phytoalexin accumulation in
wild dicotyledonous plants as well as in soybean (Braga
et al. 1986, Braga & Dietrich 1991, Cordeiro Neto &
Dietrich 1992), the inducing activity being comparable
to that of pathogenic species (Costa & Dietrich 1996,
Garcéz et al. 2000). Included among these fungi is
Mucor ramosissimus Samutsevitsch, a filamentous
Zygomycete commonly found in soil, litter, or on plant
surfaces (Ellis 1997).

Spores of M. ramosissimus are found on the leaf
surface of Rubiaceae species in tropical environments
during the autumn and winter periods (Cordeiro Neto
& Dietrich 1992). Live and autoclaved spore
suspensions of M. ramosissimus were shown to be
potent inducers of phytoalexin production in detached
leaves of these Rubiaceae and in soybean cotyledons
(Cordeiro Neto & Dietrich 1992, Goméz et al. 1994,
Pelicice et al. 2000). Garcéz et al. (2000) compared

the phytoalexin-eliciting activity of this fungus with a
saprobe Rhizopus species and observed that only spores
of M. ramosissimus were capable of inducing
phytoalexin response in soybean cultivars susceptible
to frog-eye spot and stem canker disease. In spite of its
potent phytoalexin-inducing activity, the elicitor isolated
from spores of M. ramosissimus has not yet been
characterized.

In the present work, we report the purification and
partial characterization of the elicitor from ungerminated
spores of M. ramosissimus and the comparison of its
phytoalexin-eliciting capacity with that of the widely
known β-glucan from P. sojae.

Material and methods

Microorganism and culture conditions – Mucor ramosissimus
Samutsevitsch (URM 3106 - Universidade Federal de
Pernambuco, Recife, PE, Brazil) was cultivated in SMA
(Synthetic-Mucor-Agar) containing (g.L-1): glucose (40.0),
asparagine (2.0), K2PO4 (0.5), MgSO4 (0.25), thiamine
(0.05 mg.L-1) and agar (10.0) (Schipper 1973). Cultures were
grown in Petri dishes containing 20 mL of SMA medium in
darkness at 28 ºC for different periods.
Growth curve and sporulation – Mycelial samples of six mm
diameter were taken from ten-day-old actively growing,
sporulating cultures of  M. ramosissimus and placed in the
center of Petri dishes (three plates for each day), on SMA
medium. The plates were incubated as described above and
the diameter of each colony was measured daily. Spores were
harvested by adding 20 mL of sterile distilled water to the
plate and gently scraping the spores from the culture surface
into the solution using a fine brush.  Samples of the spore
suspension were used for spore counting in a Newbauer
chamber.
Elicitor extraction – Spore suspensions of M. ramosissimus
from six to 11-day old cultures obtained as described above
were filtered in cheesecloth. After filtration, the suspensions
were centrifuged 10 min at 318 g and the supernatant was
discarded. Spores were resuspended in distilled water and
autoclaved for 30 min at 121 ºC at 1.5 atm. The supernatant
was collected by centrifugation at 6,000 g for 30 min at 5 ºC
and stored at -20 ºC. The pellet was discarded. All these
procedures were performed under asseptic conditions. The
β-glucan elicitor was obtained from mycelium cell walls of
Phytophthora sojae as described by Hahn et al. (1992).
Assay of eliciting activity – The phytoalexin eliciting activity
was evaluated by the soybean cotyledon assay (Ayers et al.
1976b) using Glycine max L. cultivar IAC-18 (Instituto
Agronômico de Campinas, SP, Brazil). Soybean seeds were
germinated under controlled conditions as described by
Pelicice et al. (2000). The cotyledons were detached from
9-day-old plantlets and soaked in 10% commercial sodium
hypochlorite for 15 min, and subsequently washed
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thoroughly with distilled water. A sterilized cork borer of 0.8 cm
diameter was used to delimitate the area of the 1 mm-deep
well that was created with a sterile scalpel. The wounded
surface was treated with 50 µl of one of the following solutions:
distilled water (control), elicitor extracted from spores of
M. ramosissimus (50 µg glucose equivalents.mL-1), or the
β-glucan elicitor from mycelial walls of Phythophthora sojae
(2 µg.mL-1). For all experiments, 2.5 µg glucose
equivalents.cotyledon-1 were used, except for the dose-
response curve in which the amount of the M. ramosissimus
elicitor ranged from 0 to 10 µg.cotyledon-1. Groups of five
cotyledons in triplicate were used per each treatment. The
cotyledons were kept in a Petri dish containing water-
absorbed filter paper in the dark at 26 ºC for 20 h. The
cotyledons were washed with deionized water (1 mL per
cotyledon) to collect the diffusates, which were used to
estimate phytoalexin production by spectrophotometry at
286 nm and for quantification by High Performance Liquid
Chromatography (HPLC) as described below.
Quantification of phytoalexins – Diffusates from the soybean
cotyledon assay (15 cotyledons) underwent liquid-liquid
extraction with ethyl acetate, as described by Keen (1978).
Organic fractions were evaporated to dryness, and the
residues then solubilized in methanol and analyzed by HPLC
in a Shimadzu chromatograph fitted with a UV-VIS detector.
The samples were run on a 4.6 mm × 250 mm Shimadzu CLS
ODS C18 column with a linear gradient from 20% to 60%
acetonitrile in 0.1% trifluoroacetic acid (0.8 mL.min-1)
according to Pelicice et al. (2000). Peak area versus compound
concentration was plotted for various concentrations of
available standards. Daidzein and genistein were identified
by calibration with authentic standards (Sigma; St. Louis,
MO), whereas diffusates from β-glucan elicitor-treated
cotyledons of the Williams 82 soybean cultivar (from Illinois
Foundation Seeds, Inc., USA) were used as the glyceollin
standard. The compounds were monitored at 286 nm.
Elicitor fractionation – The supernatant obtained from
autoclaved spore suspensions of 9-day old M. ramosissimus
cultures (15 × 109 spores.mL-1) was concentrated to 1/10 of
its original volume and precipitated with 5 volumes of ethanol
at 5 ºC for 72 h. The precipitate recovered by centrifugation
(10,000 g, 5 ºC, 30 min) was washed twice in ethanol, and
resuspended in deionized water to 1 mg total sugar per mL,
determined by the phenol-sulfuric procedure (Dubois et al.
1956). The solution was subjected to Fast Performance Liquid
Chromatography (FPLC) anion exchange chromatography in
a 1 mL Q-trap column (Pharmacia) and eluted using an initial
wash with 10 mM ammonium bicarbonate (10 min), followed
by a linear gradient of 10-500 mM ammonium bicarbonate for
50 min, and a final wash with 1 M ammonium bicarbonate for
another 10 min at a flow rate of 1 mL.min-1. Fractions of 1 mL
were collected and analyzed for carbohydrate and protein
(see below) and eliciting activity. The active fractions were
lyophilized and resuspended (1 mL) in 100 mM Tris buffer pH
7.4 containing 100 mM sodium acetate, 150 mM NaCl, 1mM

CaCl2, 1mM MgCl2. This solution was applied to a 1 mL column
of Con A Sepharose (Pharmacia) previously washed with the
same buffer in an FPLC system. The column was eluted with
10 mL of the buffer while collecting 2 mL fractions, and
subsequently eluted with 5 mL of 100 mM α-methyl-D-
mannopyranoside (Sigma) in the same buffer. The elicitor
material without affinity for the Con A Sepharose was
quantified for carbohydrate and protein contents (as
described below), pooled, and dialyzed (MW cut off of 1,000
Daltons) exhaustively against deonized water. The Con A
binding material was also dialyzed under the same conditions.
The elicitor material without affinity for the Con A Sepharose
was subsequently applied into a 1.0 × 20.0 cm column of Bio
Gel P-2 (Bio Rad) equilibrated with distilled water.
Maltoheptaose, maltotetraose, and sucrose were used as
standards for column calibration. The amounts of total
carbohydrates and proteins in each fraction were determined
as described below.
Determination of carbohydrate and protein contents – The
amounts of total carbohydrates were determined by the
phenol-sulfuric acid method (Dubois et al. 1956) using
glucose as standard. Uronic acid content was determined
using a modification of the m-hydroxibiphenyl procedure
(Filisetti-Cozzi & Carpita 1991) using galacturonic acid as
standard. Proteins were monitored by absorbance at 280 nm
and quantified by the procedure described by Bradford (1976)
with bovine serum albumin as standard.
Analysis of sugar composition and glycosyl linkages – The
neutral sugar composition of elicitor-active fractions were
determined by hydrolysis in 2 M trifluoroacetic acid at 121 ºC
for 2 h. The resulting monosaccharides were separated and
quantitated by High Performance Anion Exchange
Chromatography with a Pulsed Amperometric Detector
(HPAEC/PAD) in a Dionex DX-500 system on a Carbo-Pac
PA-1 column using isocratic 12 mM NaOH as eluent. The flow
rate through the column was 1 mL.min-1. The elution time of
each sugar was compared to those of monosaccharide
standards.

The elicitor-active material without affinity for Con A
Sepharose was hydrolyzed as described above, trimethyl-
silylated (TMS) with Tri-Sil, and analyzed by gas
chromatography coupled with mass spectrometry (GC-MS)
(York et al. 1985). The following temperature conditions were
used: 160  ºC for 3 min and increased to 260  ºC at 10  ºC .min-1.
Myo-inositol was used as an internal standard.
Periodate and protease treatments – Periodate oxidation of
the elicitor was carried out according to the procedure modified
from De Wit & Roseboom (1980). Briefly, 50 µg glucose
equivalents were incubated with 70 mM sodium periodate
(Merck) for 24 h at 30 ºC in the dark. Excess of periodate was
eliminated by addition of 100 µl of ethylene glycol. Protease
treatment was performed by incubation of the elicitor with
protease IV (Sigma) (4.1 units. mL-1) in 10 mM sodium
phosphate buffer, pH 7.0 for 24 h at 30 ºC. The reaction was
stopped by boiling the extracts for 2 min. Controls were



K. Simões et al.: Elicitor from Mucor ramosissimus738

performed with elicitor without treatments and with samples
containing distilled water instead of the elicitor incubated in
the same conditions. The eliciting activity was evaluated in
soybean cotyledons as described above.

Results and Discussion

M. ramosissimus grew rapidly in SMA medium,
the exponential growth phase being observed from 0 to
4 days (figure 1A). After 6 days, the mycelium
completely covered the medium surface. Sporulation
started on day 4 and maximal spore production occurred
from nine to 13 days in culture (figure 1B).  The yield
of spores on SMA medium was ca.10 times higher than
that previously described for the fungus grown on PDA
(Potato-Dextrose-Agar medium) (Cordeiro Neto 1992).

Although spore yields were quite similar from four
to nine day-old cultures, the carbohydrate content in the

elicitor extracts obtained from autoclaved spores
increased after six days of culture (figure 1B), indicating
that the components of the spores differed from early
to late sporulation stages.

The phytoalexin eliciting activity of the
M. ramosissimus spore extracts, as measured by the
soybean cotyledon bioassay, reached a maximum for
extracts of spores from eight-nine day-old cultures
(figure 1C). Quantification by HPLC also indicated that
accumulation of glyceollins is maximal on day 9 and
that the precursor daidzein is also induced by the elicitor,
while genistein accumulation remains relatively
unaffected by elicitor treatment regardless of the age
of the fungal culture (figure 1D).

Precipitation of nine-day-old culture extracts with
ethanol appeared to enrich for glyceollin-inducing
components of the elicitor preparation (figure 2). The
dose-response curve performed with the crude
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Figure 1. Growth, sporulation, and eliciting activity of Mucor ramosissimus grown in SMA medium. (A) Diameter of the fungal
colony. (B) Sporulation ( ) and carbohydrate content in the autoclaved spore suspension ( ). (C) and (D) Eliciting activity of
suspensions of autoclaved spores from cultures of different ages measured by absorbance at 286 nm and by HPLC, respectively.
( ) Genistein, ( ) daidzein and ( ) glyceollins in diffusates of soybean cotyledons assayed with distilled water (control) or
autoclaved spore suspensions. 2.5 µg of glucose equivalents of the elicitor were applied per cotyledon.  Data represent the
mean ± standard deviation of triplicates.
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precipitated elicitor of M. ramosissimus revealed that
glyceollin and daidzein accumulations increase as
increasing amounts of elicitor are applied per cotyledon
(figure 3).

The fractionation of the crude precipitated elicitor
using anion exchange chromatography is shown in figure
4A. Most of the carbohydrate-containing material eluted
from the Q-trap column in the ammonium bicarbonate
gradient. Fractions were pooled based on their
carbohydrate contents and assayed on for elicitor activity
on soybean cotyledons. Elicitor activity was detected in
all bound fractions, although the highest glyceollin
accumulations were induced by the fractions designated
as G2, G3, G4 and that eluted with 1 M bicarbonate
buffer (figure 4B). Neutral sugar composition analysis
of the elicitor-active fractions showed the presence of
mannose, glucose and galactose and small amounts of
arabinose (table 1). Mannose was the major component
in all fractions although its proportion decreased with
the increased charge of the molecules and their elicitor
activity (table 1, figure 4B).

Although the active fractions from the anion
exchange column contained Bradford-positive material
(ca. 2 µg. mL-1), treatment with protease did not reduce
elicitor activity, suggesting that this activity is not
attributable to peptide components of the fractions (data
not shown). In contrast, the elicitor activity was
completely abolished by periodate oxidation indicating
that the activity resides in the carbohydrate moiety (data
not shown). These results are consistent with the thermal
stability of the M. ramosissimus elicitor, which was
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obtained by autoclaving the spores for 30 min. Similar
results were obtained for phytoalexin elicitors obtained
from Colletotrichum spp., Phytophthora megasperma
var. sojae, Saccharomyces cerevisae, and Hemileia
vastatrix (Ayers et al. 1976a, Hahn & Albersheim 1978,
Yoshikawa et al. 1981, Guzzo & Moraes 1997).  The
binding of the M. ramosissimus elicitor to the ion-
exchange column can be attributed to the presence of
uronic acids in the extracts (table 2).

Further purification of the Mucor elicitor was
achieved by Concanavalin-A (Con-A) affinity
chromatography. Non-binding material and lectin-binding
glycoconjugates were each collected as single fractions
(data not shown). About of 55% of the carbohydrate
applied to the column remained in the non-binding
fraction, which contained elicitor-active components
(figure 5). The purification of the elicitor throughout the
whole fractionation procedures led to an increase of
specific activity from 14.4 to 88.0 and a yield of 0.05%
of the initial carbohydrate content (table 2).

Uronic acids and mannose, glucose, galactose, and
traces of arabinose were found in the elicitor-active
Con-A non-binding fraction (table 2), whereas the bound,
inactive fraction was composed mostly of mannose (data
not shown).

Preliminary glycosyl linkage analysis of the active
fraction indicated the absence of 3- and 3-6 linked
glucose. According to Ruiz-Herrera (1992), glucans are
not found in mycelial cell walls of Zygomycetes, although
they can be present in spores of some species, including
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Mucorales. However, the presence of mannose and
uronic acids and the lack of 3- and 3-6 linked glucosyl
residues indicate that the eliciting activity from spores
of M. ramosissimus cannot be attributed to the presence
of branched β-glucans similar to those described for
Phytophthora sojae (Ayers et al. 1976a),
Saccharomyces cereviseae (Hahn & Albersheim 1978)
or Pyricularia oryzae (Yamaguchi et al. 2000), nor to
linear β-1,3 glucan elicitor from the brown algae
Laminaria digitata that is active in tobacco cell
suspension cultures (Klarzynski et al. 2000).
Furthermore, the Mucor elicitor differs from the
mannose-containing elicitors found in autoclaved
uridiniospores of the coffee rust (Hemileia vastatrix)
since the latter seems to be composed only of neutral
sugars (Guzzo & Moraes 1997). The composition of the
Con-A non-binding elicitor fraction determined by
silylation (table 2) is consistent with that of a fragment
of mucoran, a glucuronic-acid-containing heteropolymer
found in Mucor rouxii (Bartinicki-Garcia & Reyes 1968,
Bartinicki-Garcia & Lindberg 1972). No report of
mucoran-like molecules as phytoalexin elicitors has yet
been published.

Fractionation of the Con-A non-binding material
through a size exclusion column of Bio-gel P2 resulted
in two carbohydrate-containing peaks. The activity was
detected in a broad peak with apparent molecular mass
between 700 and 1,800 Da (data not shown), which
would be consistent with a DP of 4-10 for the Mucor
elicitor. Low molecular mass elicitors have been isolated
from fungal cell walls. Sharp et al. (1984) characterized
a branched hepta-β-glucoside from the phytopathogen
Phytophthora sojae capable of eliciting phytoalexin
accumulation in soybean cotyledons at concentrations
of 10-8 to 10-9 M. Yamaguchi et al. (2000) purified a
glucopentaose from the rice blast disease fungus that is
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Figure 4. FPLC profile of the precipitated spore extract of
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were applied per cotyledon. Data represent the mean
± standard deviation of triplicates.

Table 1. Relative proportions of neutral monosaccharides as
determined by HPAEC/PAD analysis of the pooled fractions
from the Hi Trap Q Sepharose column shown in figure 4.

Monosaccharide (%)

Fraction Arabinose Galactose Glucose Mannose

10 mM 0.5 2.0 16.5 81.0
G 1 1.0 3.0 17.0 79.0
G 2 1.0 6.0 21.0 72.0
G 3 2.0 12.0 21.0 65.0
G 4 2.0 12.0 34.0 52.0
G 5 1.5 15.5 34.0 49.0
1 M 1.5 20.0 23.5 55.0
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a highly active elicitor of phytoalexin biosynthesis in cell
suspension cultures of rice. A β-1,3-pentaglucan obtained
from the algae Laminaria digitata was reported as an
active elicitor of defense responses in suspension-
cultured tobacco cells (Klarzynski et al. 2000). Chitin
and chitosan oligomers with DP from 4-6 have also been
described as potent inducers of the phenylpropanoid
biosynthetic pathway in soybean leaves (Khan et al.
2003).

Plants have the capacity to recognize and respond
to a variety of carbohydrate structures present in
microbes to activate plant defense responses regardless
of whether they come from a pathogen or a non-
pathogen (Hahn & Albersheim, 1978, Asiegbu et al.
1994, Costa & Dietrich 1996, Hahn 1996).  They are
also able to perceive neutral molecules from marine algae
(Klarzynski et al. 2000) and acidic oligomers obtained
from plant cell walls (Hahn et al. 1981, Nothnagel et al.
1983). In tobacco, neutral glucans derived from brown
algae and oligogalacturonides obtained from apple pectin
were perceived by suspension-cultured cells as distinct
chemical stimuli but had similar elicitor effects
(Klarzynski et al. 2000). Soybean tissues can also
recognize microbial glucans and uronic acid-containing
elicitors derived from plants (Hahn & Albersheim 1978,
Nothnagel et al. 1983) to activate the same defensive
responses.  Therefore, the Mucor elicitor, which contains
uronic acids and seems to be structurally unrelated to
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any of the previously described fungal or plant elicitors,
represents a new and distinct class of carbohydrate signal
molecules.

How plants recognize different elicitors to activate
the same defense responses remains to be elucidated.
Evidence of synergism between different elicitors in
several systems suggest that different but interacting
signaling pathways exist in plant cells for several of the
carbohydrate elicitors identified to date (e.g. Davis &
Hahlbrock 1987, Klarzynski et al. 2000, Yamaguchi et al.
2000, 2002). Further research will be required to
determine what receptor(s) in soybean bind the mucoran
elicitor fragments, and how the mucoran-induced
signaling pathway interacts with the glucan and
oligogalacturonide signaling pathways to activate
phytoalexin synthesis.
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