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Abstract

Gastrointestinal surgical procedures have the potential to disrupt
motor activity in various organs of the gastrointestinal tract or, indeed,
throughout the entire alimentary canal. Several of these motor effects
have important clinical consequences and have also served to advance
our understanding of the regulation of gastrointestinal motor activity.
This review will focus, in particular, on the effects of surgery on the
small intestine, and will attempt to emphasize the implications of these
studies for our understanding of small intestinal motility, in general.
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Gastrointestinal motor activity:
an overview

The gastrointestinal motor apparatus in-
cludes intestinal smooth muscle, the enteric
nervous system, autonomic nerves and gan-
glia, and the central nervous system (Figure
1). Therefore, contractile activity, generated
by the intestinal smooth muscle, may be
regulated at any one of a number of levels.
The generation of motor activity relies, in the
first instance, on the basic electrophysiologi-
cal properties of intestinal smooth muscle.
Thus, intracellular electrophysiological re-
cordings from intestinal smooth muscle have
revealed an omnipresent slow wave which
represents the continual depolarization/re-
polarization of the membrane potential of
intestinal smooth muscle cells. Under basal
conditions, this depolarization does not reach
the critical level for firing and generation of
an action potential - slow waves are not,
therefore, associated with contractile activ-
ity. Further depolarization beyond the level

achieved by the slow wave, triggered by
either electrical or chemical stimuli, leads to
the generation of the action potential and
smooth muscle contraction. In this way, slow
waves regulate the phasic contractile fre-
quency for any particular site in the gas-
trointestinal tract. A second intrinsic prop-
erty of smooth muscle cells, fundamental for
the generation of coordinated motor activity,
is the presence of areas of electrical close-
contact between cells - nexuses. By virtue of
these low resistance areas, electrical signals
can be transmitted between smooth muscle
cells leading them to act as a functional
syncytium. In this manner, impulses can be
transmitted both longitudinally and circum-
ferentially over considerable areas of the
intestine without needing to invoke any neu-
ral transmission. In the same way, areas of
greater excitability or spontaneous activity
can serve as pacemakers - the electrical sig-
nal which originates in these areas can be
transmitted to and will entrain adjacent
smooth muscle cells. It is now thought that
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complexes can be identified at the ileocecal
sphincter and even in the proximal colon
(Figure 3), MMC activity tends to peter out
in the distal ileum in man. Phase 3 of the
migrating motor complex is also associated
with intense phasic contractile activity in the
gastric antrum (Figure 2), and tonic contrac-
tion of the proximal stomach, lower esoph-
ageal sphincter and gall bladder. Secretory
components have also been identified and
include increases in gastric acid and pepsin
output as well as increased pancreatic and
biliary flow in association with duodenal
phase 3. Following meal ingestion, MMC
activity is abolished and is replaced by in-
tense, apparently irregular contractile activ-
ity throughout the stomach and small intes-
tine (Figure 4). This apparently random ac-
tivity could well be visualized as subserving
the important mixing functions associated
with meal ingestion. The duration of this fed
pattern is variable and depends on the size
and caloric content of the meal, lasting any-
where from 2 to 5 h after a typical meal.

Throughout this review reference will be
made to the effects of various surgical proce-
dures on these principal motor phenomena:
the slow wave, the MMC and the fed pattern.
Studies of the regulation of these motor pat-
terns have revealed how various levels of
control are exerted in the regulation of motor
activity. It is now evident, for example, that
the migrating motor complex is generated
and propagated entirely within the gut wall
by the enteric nervous system. It can be
influenced by autonomic and central input -
phase 2, in particular, appears to be depend-
ent on central input, and disappears in man
during sleep. The fed response, in contrast,
is dependent on the integrity of autonomic
innervation and the vagus, in particular. Hor-
monal factors also play a role. Thus, motilin
released from endocrine cells in the duode-
nal mucosa during the intense contractile
activity of phase 3 leads to the generation of
intense contractile activity in the antrum -
and together with a vagal mechanism, or-

Longitudinal
muscle

Submucous
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Myenteric
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Extrinsic nerves

Figure 1 - A schematic presenta-
tion of the gut illustrating the
components of the motor appa-
ratus that may be disrupted by
surgical procedures. These in-
clude the intestinal muscle lay-
ers (circular and longitudinal), the
enteric nervous system (submu-
cous and myenteric plexuses)
and extrinsic autonomic nerves.

the slow wave originates in specialized
muscle cells located in the plexus muscularis
profundus and closely related to the deeper
layers of the circular muscle layer - the inter-
stitial cells of Cajal - and is then transmitted
to the smooth muscle layers. Recent research
has also served to emphasize the complexity
and importance of the enteric nervous sys-
tem, which appears capable of generating
complex neuronal responses and, thereby,
highly organized motor patterns, entirely in-
dependent of the autonomic or central ner-
vous systems.

Recordings of intestinal motor activity
from a number of species, including man,
have demonstrated that motility is organized
into two basic patterns - fasting and post-
prandial (1,2). During fasting, motor activity
is organized into a recurring cycle of events:
the migrating motor complex (MMC) (Fig-
ure 2A-C). Each migrating motor complex
comprises three cycles which occur in se-
quence and continue to recur as long as the
individual remains fasted. In man, each cycle
lasts 90-120 min and begins with a period of
motor quiescence, phase 1. This is followed
by irregular phasic contractile activity, phase
2, and culminates in a burst of uninterrupted
rhythmic, phasic contractions, phase 3. Phase
3 is the most distinctive component of the
cycle and is often utilized as a surrogate for
the entire cycle (Figure 2A,B). Phase 3 is
thought to originate in the proximal duode-
num and migrate slowly in an aboral fashion
along the small intestine to the distal ileum
(Figure 2C). While in the dog, a commonly
used model of in vivo motor activity, phase 3
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chestrates the antral, gastric, lower esoph-
ageal, gall bladder and secretory compo-
nents of phase 3.

The effects of surgery on motility:
an overview

Surgical procedures may exert several
effects on motor activity. The most common
manifestation is postoperative ileus, which
can be regarded as almost a physiological
response to intra-abdominal surgery (3). The
duration and severity of postoperative ileus
appear to be directly proportional to the
extent of the surgical procedure and to ma-
nipulation of the intestines, in particular.
The pathophysiology of postoperative ileus
has been the subject of extensive study -
details of this important topic are beyond the
scope of this review. Our focus, instead, is
on the potential effects of extrinsic denerva-
tion, transection and reanastomosis, resec-
tion, interposition and transplantation on in-
testinal motor activity (4).

Effects of transection and reanasto-
mosis on small intestinal motor
activity

While an incomplete transection of the

Figure 2 - The migrating motor complex (MMC).

A, Recording of intraluminal pressure activity from the
proximal small intestine in man. Note the various com-
ponents of the migrating motor complex which include
phase 2, irregular phasic contractions (seen on the left
of this figure), phase 3, a band of rhythmic phasic
contractions that slowly migrates through the gut (seen
in the center of the figure), and phase 1, motor quies-
cence (on the right hand side of this figure). This cycle
comprising phases 1-3 will continue to occur as long as
the individual remains fasted.

B, Migrating motor complex. Recording of myoelectri-
cal activity from a dog. Note phase 3, represented by
an uninterrupted band of spike activity, migrating
through the proximal small intestine.

C, Schematic presentation of an entire 4-h-fasting re-
cording from a dog. Each dot denotes phase 3 of the
migrating motor complex. Note that phase 3 recurs at a
regular interval of approximately 90 min and migrates
through the small intestine.
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bowel wall does not appear to be associated
with any effects on the transmission of myo-
electrical signals along the small intestine, a
complete transection has clear effects on
motor function (5-7). Following a conven-
tional transection and reanastomosis, the
transmission of slow wave activity along the
small intestine is interrupted (4,7). Loss of
myogenic continuity (Figure 5A) means that
the intestine distal to the site of transection is
no longer entrained by the normally domi-
nant pacemaker located in the proximal
duodenum, and now operates at its own
intrinsic slow wave frequency (Figure 5B).
As a consequence, a sharp drop in slow wave
frequency will be observed across the anas-
tomosis. These observations have, indeed,
led to the concept of longitudinal, myogenic
transmission of slow wave activity. Accord-
ingly, meticulous approximation of the
muscle layers at the time of surgery has been
shown to preserve myogenic transmission
and a normal slow wave gradient (8). Obser-
vations on the propagation of migrating mo-
tor complex activity across a transection and
reanastomosis have produced variable re-
sults. In general, there appears to be some
evidence of motor asynchrony across the site
of transection, though long-term studies sug-
gest reasonable apparent coordination of the
MMC across the transection. In interpreting
such data, one needs to exert caution and to
resist the temptation to describe complexes
on either side of an anastomosis as synchro-
nized, when in fact they are merely coinci-
dent. If propagation does indeed “recover”
across anastomoses, does this reflect regen-
eration of enteric nerves or a role for extrin-
sic nerves in the coordination of motor activ-
ity (9)? This issue remains unresolved. Re-

Figure 3 - Fasting motor activity of canine ileo-colonic junction. Note phase 3 of the
migrating motor complex migrating through the distal ileum, across the ileocecal
sphincter (ICS) into the colon.
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flecting the primacy of extrinsic innervation
in its regulation, transection and reanasto-
mosis have little effect on the fed response
(7,9). From a clinical point of view, these
various effects of transection and reanasto-
mosis on motor activity appear to have little
impact on intestinal homeostasis and have
not been associated with any significant ef-
fects on digestion or absorption.

Extrinsic denervation

The model of autotransplantation has pro-
vided considerable insights into the role of
extrinsic innervation in the regulation of in-
testinal motor activity. It has also served to
provide insights into the potential effects of
intestinal transplantation on motor activity.
In our own studies in the dog, autotransplan-
tation involved the complete removal of the
entire jejunoileum and its subsequent reim-
plantation into the animal (9). All nerves,
blood vessels and lymphatics were, there-
fore, severed (Figure 6A,B). As expected,
and given the presence of an anastomosis at
the proximal and distal ends of the trans-
planted segment, slow wave frequency fell
within the transplanted intestine, and indeed,
when followed for up to 18 months after the
surgical procedure showed no evidence of
recovery to normal levels.

Studies of migrating motor complex ac-
tivity revealed several interesting points. In
the immediate aftermath of autotransplanta-
tion, migrating motor complexes were se-
verely disrupted, perhaps reflecting ischemic
or reperfusion injury to the enteric nervous
system. With time, however, MMC activity
recovered within the transplanted segment,
and by 18 months normal appearing phase 3
complexes could be identified in all animals
and were shown to propagate in an orderly
fashion through the transplanted segment
(Figure 6C). Coordination with the proximal
intact intestine did not, however, recover
and abnormal patterns continued to be evi-
dent within the transplanted segment. These
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Figure 5 - Effects of intestinal transection on intestinal motor activity.

A, Schematic presentation illustrating the effects of transection on intestinal motor appara-
tus. A complete transection disrupts the longitudinal continuity of intestinal muscle and the
enteric nervous system.

B, Effects of transection on slow-wave frequency in the canine small intestine. Graphic
representation of slow wave frequency along the canine small intestine in control animals
and in three groups of animals who had undergone jejunoileal autotransplantation (AT) and
were studied at varying intervals following the procedure. Electrode at 5 cm was located in
the intact duodenum. All other electrodes were distal to the site of transection and
reanastamosis in autotransplanted bowel. Note sharp drop at slow wave frequency distal to
site of transection and reanastamosis in all groups.
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Figure 6 - Effects of autotransplantation (total extrinsic denervation) on intestinal motor activity in a canine model.

A, Autotransplant model. Note that autotransplantation involved removal and reimplantation of the entire jejunoileum with heterotopic vascular
anastamoses and complete disruption of all nerves and lymphatics to the autotransplanted segment.

B, Schematic presentation of the effects of autotransplantation on the intestinal motor apparatus. Autotransplantation involves disruption of
longitudinal continuity of intestinal muscle and the enteric nervous system, as well as complete extrinsic denervation.

C, Effects of autotransplants on migrating motor complex. In this part of an entire fasting recording from an autotransplanted dog, note retention and
normal propagation of phase 3 of the migrating motor complex (denoted by filled circles) through the autotransplanted segment. Phase 3 also
recognized in intact proximal duodenum but there is a complete lack of coordination between phase 3 activity in the intact duodenum and the
autotransplanted segment. Open circles represent propagating phasic bursts.

D, Effects of autotransplantation on postprandial motor response. Note the complete absence of postprandial motor response in the autotransplanted
segment.
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observations are perhaps the most dramatic
demonstration of the ability of the enteric
nervous system to independently generate
and propagate the migrating motor complex
(10,11). Differences were observed in the
coordination of the migrating motor com-
plex across the transection between trans-
planted animals and those who had a tran-
section and reanastomosis alone, suggesting
a role for extrinsic nerves in the coordination
of MMC activity along the length of the
intestine. Another important observation in
these studies was the complete and perma-
nent abolition of the typical fed motor re-
sponse, confirming the important role of
extrinsic nerves in the mediation of this mo-
tor pattern (9-11).

In these studies, recordings from control
animals suggested that the response to a
meal included an immediate, brief, rapidly
migrating motor event in the proximal intes-
tine, followed by the typical fed pattern which
migrated more slowly and persisted. In the
auto-transplanted animals, the typical fed
response was consistently abolished; a de-
layed and relatively transient pattern of fed-
type motility was observed, however, per-
haps reflecting a luminal phase of the fed
response (Figure 6D). Morphological stud-
ies confirmed the integrity of the enteric
nervous system within the transplanted seg-
ment (12) and studies of circulating and
tissue peptide levels, though demonstrating
significant changes following transplanta-
tion, did not reveal any significant correla-
tion between these changes and the observed
motor events (13).

Similar, though less dramatic, effects have
been documented following either truncal
vagotomy or sympathetic denervation (4).
Vagotomy leads to loss of the accommoda-
tion reflex and will, therefore, tend to accel-
erate liquid emptying; impaired antral con-
tractility, in contrast, will lead to delayed
gastric emptying of solids. When combined
with an emptying procedure such as a py-
loroplasty or gastroenterostomy, however,

the net effect is little change in the rate of
emptying of a mixed meal (2,4). Vagotomy
has also been associated with a shortening of
the interval between MMC cycles and with
an impaired fed response, phenomena which
may contribute to some of the observed clini-
cal effects of vagotomy on transit and ab-
sorption (4).

The intestinal motor response
to resection

While the biochemical, immunological,
hormonal and morphological responses of
the small intestine to extensive resection
have received considerable attention (14),
little is known of the motor response to
removal of extensive parts of the small intes-
tine. To address this issue, we have recently
completed a series of studies, in the dog, on
the motor response to resection. In the first
of these studies, we compared motor activity
in the intestinal remnant following resection
of 25, 50, and 75% of the distal intestine
(15). In the short-term, resection was associ-
ated with dramatic changes in motor activity
in the remnant, these changes being most
evident in animals that had undergone a 75%
resection. In the distal remnant, in the 25 and
50% resection groups, and throughout the
remnant in the 75% resection animals, motor
activity was dominated by intense clustered

21
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from pylorus
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75% Resection

50 mmHg
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Figure 7 - The motor response to an extensive intestinal resection. Recordings of motor
activity from the intestinal remnant in an animal following resection of the distal 75% small
intestine. Note the dominance of intense “cluster” activity throughout the intestinal rem-
nant.
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contractions (Figure 7). These clusters (de-
fined as periods of rhythmic phasic activity
separate from phase 3 of the migrating motor
complex) appeared disordered, and, though
sometimes propagated in an aboral direc-
tion, were often simultaneous or even retro-
grade (16). Clustered activity has been dem-
onstrated in a number of pathological condi-
tions in man and has been associated with
such symptoms as abdominal cramping and
pain. This clustered activity is also reminis-
cent of the contractile pattern which nor-
mally dominates motor activity in the most
distal small intestine in both dog and man
(6,17,18), and raises the possibility that its
presence in the more proximal intestine fol-
lowing resection could represent exposure
to a luminal environment normally associ-
ated with the distal ileum. While cluster
activity dominated following resection, phase
3 of the migrating motor complex was pre-
served. Indeed, in a subsequent comparison
of the effects of distal and proximal resec-
tion, there was no significant difference in
the prevalence of MMC phase 3 complexes
in the remaining intestine in either group
(19). There was, however, some evidence
for disruption of aboral propagation follow-
ing distal resection. Of further interest, the
proximal resection was not associated with
the development of any of the abnormal
patterns associated with distal resection.

Given the intensity of this motor response
following distal rather than proximal resec-
tion and its relationship to the extent of the
resection, it was tempting to speculate that it
might be mediated by altered luminal con-
tents. Given the prior demonstration that
distal ileal-type motor patterns such as clus-
ters and prolonged propagating contractions
(giant migrating contractions) could be in-
duced by the installation of volatile fatty
acids into the intestinal lumen (20), bacteria
and their products were especially attractive
candidates. We did not, however, observe
any relationship between bacteria or volatile
fatty acid content and the motor response in

the above-mentioned comparison between
distal and proximal resection. To evaluate
this further and also to examine the possible
role of the ileocecal sphincter, we compared
the motor response to distal resection among
animals with an intact ileocecal sphincter
and in those in which the ileocecal sphincter
was bypassed by direct ileocolonic anasto-
mosis (21). While the latter group demon-
strated, as expected, more steatorrhea and
increased intraluminal concentrations of bac-
teria and volatile fatty acids in the distal
ileum, we could not demonstrate any differ-
ence in the motor response to resection be-
tween the two groups. These observations
suggested firstly that, in contrast to the mu-
cosal response (22), the motor response to
resection was not mediated by the presence
of a colonic-type flora in the distal remnant
(23,24), nor by exposure to increased con-
centrations of volatile fatty acids (a product
of bacterial metabolism of undigested car-
bohydrate), and, secondly, that the presence
or absence of the ileocecal sphincter did not
influence the motor response to resection.
The impact of loss of the ileocecal sphincter
on the digestive and absorptive function of
the intestinal remnant was again confirmed.

Our studies to date, therefore, do not
support a role for bacteria or their products
in the generation of this motor response.
This does not exclude an effect of other
bacterial products such as conjugated bile
acids, for example. It is also possible, with
reference to the ileocecal bypass studies,
that loss of the distal ileum rather than the
ileocecal sphincter may be more relevant to
the motor changes. Thus, all of our distal
resection studies involved loss of the most
distal ileum, a region which has important
and unique absorptive and motor functions.
Loss of the receptor site for bile salt absorp-
tion, for example, could lead to bile salt
deficiency and to motor changes. There is
some evidence to suggest a role for bile salts
in maintaining the migrating motor complex,
for example (25). Similarly, loss of the unique
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motor properties of the distal ileum could
precipitate motor dysfunction in the intesti-
nal remnant (26,27). Other factors could
also be relevant. Extensive resection of the
distal small intestine is associated with sig-
nificant changes in circulating peptides of
enteric origin, and, in particular, with in-
creased basal and postprandial levels of the
peptides gastrin, CCK, glucose-dependent
insulinotropic peptide (GIP), peptide YY
(PYY), and enteroglucagon (28). None of
these changes appear, however, to correlate
with the motor events. The relationship to
PYY is deserving of further study, however.
PYY appears to mediate the ileal brake - a
homeostatic reflex whereby the instillation
of fat into the terminal ileum retards gastric
emptying and small intestinal transit (29).
Studies of tissue levels of peptides revealed
reduced levels of vasoactive intestinal pep-
tide (VIP) and increased levels of calcitonin
gene-related peptide (cGRP) in mucosa and
muscle (28). The reduced levels of VIP, an
important inhibitory peptide, might well ex-
plain the prominence of motor disruption
following resection.

We have also studied the possibility that
these motor responses could reflect a funda-
mental change in the morphology or physiol-
ogy of the intestinal muscle layer (30-32). In
a separate evaluation of the morphology of
the various layers of the intestinal muscula-
ture (32), as well as in in vitro studies of
length-tension relationships and the response
to a cholinergic agonist (31), we have failed
to identify any abnormalities in these param-
eters of remnant smooth muscle structure
and function.

To date, therefore, these studies have
demonstrated that extensive resection of the
distal small intestine is associated with sig-
nificant disruption in the proximal remnant -
this disruption does not, however, appear to
be mediated by changes in intraluminal bac-
terial or volatile fatty acid content nor is it
related to changes in circulating or enteric
peptides. Some preliminary evidence sug-

gests that this motor response may adapt
(33). Thus, when studied over three months,
transit seems to slow in the distal remnant
and cluster activity tends to diminish, sug-
gesting that adaptation may occur in a man-
ner analogous to that seen in the mucosa
(33). The time scale of this adaptation ap-
pears, however, to be different, with motor
adaptation occurring over months, rather than
days or weeks. Studies in man also suggest
motor adaptation; recordings performed years
following resection do not reveal active clus-
ter activity, but rather a shortening of the
MMC period and of the relative durations of
phases 1 and 2 (34,35). The postprandial
motor response was also significantly shorter
following extensive distal resections.

Motor effects of restorative
procedures

Over the years, several surgical proce-
dures have been advocated to improve di-
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Figure 8 - Motor activity in the transplanted small intestine. Recording of intraluminal
pressure activity three weeks following transplantation of the entire small intestine in a
child. Note preservation of phase 3 activity in the transplanted intestine.
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gestive and absorptive function following
extensive resection of the distal small intes-
tine (36,37). Some of these procedures, such
as the creation of artificial valves or sphinc-
ters and the interposition of colonic or re-
versed intestinal segments, have attempted
to retard transit through the remnant, whereas
others, such as serosal patching and trans-
plantation, sought to increase mucosal sur-
face area.

In the intact intestine, placement of an
artificial sphincter in the form of an inverted
nipple valve promotes proximal cluster ac-
tivity (7). A detailed evaluation of the effect
of a similar sphincter in animals that have
undergone an extensive distal resection
failed, however, to demonstrate any influ-
ence of the sphincter on the frequency or
characteristics of motor patterns in the proxi-
mal remnant (38). The reported beneficial
clinical effects of a sphincter substitute do
not appear, therefore, to be related to a modi-
fication of the motor response to resection
but may simply reflect those of a low-grade
mechanical obstruction.

The interposition of a reversed jejunal
segment was associated with motor asyn-
chrony and with a reversal of propagated
motor events within the reversed segment,
but had relatively minor effects on motor
patterns in the proximal remnant (39). One
interesting observation was the occasional
recording of rapidly propagated, retrograde
events, reminiscent of those associated with
vomiting, in the intestine proximal to the
reversed segment.

Serosal patching, a procedure whereby a
defect is created in the small intestine and
then “patched” onto the colonic serosa, leads
to the ingrowth of neomucosa to fill the
defect, but does not result in any motor
disruption in the small intestine, nor is it
associated with the propagation of small in-
testinal myoelectrical patterns into the colon
(40).

Intestinal tapering and lengthening at-
tempts to increase absorptive surface area. A
segment of the intestinal remnant is divided
along its longitudinal axis and the divided
segments are joined by an end-to-end anas-
tomosis, thereby, in theory at least, effec-
tively doubling the length of the remnant.
This procedure was also not associated with
any major disruption or modulation of motor
patterns in the remnant (41,42).

Taken together, these findings suggest
that restorative procedures have relatively

Figure 9 - Morphology of the intestinal motor apparatus in the transplanted intestine. A,
Low-power magnification (hematoxylin and eosin stain) view of a cross-section through the
small intestinal wall obtained at the time of restoration of intestinal continuity, six months
following successful small intestinal transplantation. Note intact, normal-appearing, muscle
layers (circular above, longitudinal below). B, High-power view of the myenteric plexus from
the same specimen. Neuronal cell bodies in the myenteric plexus appear dilated and
vacuolated.

A

B
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minor effects on the motor response to resec-
tion and that their proposed beneficial influ-
ence on the adaptive response to resection is
not mediated through an effect on motility.

Relatively few studies have examined
the motor consequences of heterotopic, allo-
geneic transplantation of the small intestine
(9,43,44). In an animal model (44), as well
as in limited observations in man (45), intact
migrating motor complex activity has been
identified in the transplanted intestine (Fig-
ure 8), in accordance with the above-de-
scribed observations in the auto-transplanted
animal model. In a rat model of chronic
rejection, Bauer and his group (46) have
observed that, in contrast to acute rejection,
which primarily involves the intestinal mu-
cosa, chronic rejection appeared to be asso-
ciated with significant immune-mediated in-
jury to intestinal nerves and muscles. This
observation has not, as yet, been corrobo-
rated in man, though we have been con-
cerned by the identification of vacuolated
enteric neurons in full thickness specimens
obtained at the time of reconstitution of in-
testinal continuity in some of our patients
(Figure 9). If the observations in the animal
model hold true, chronic rejection could lead
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