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Abstract

Accumulating evidence suggests that angiotensin-(1-7) (Ang-(1-7)) is
an important component of the renin-angiotensin system and that the
actions of the peptide may either contribute to or oppose those of Ang
II. Ang-(1-7) can be converted directly from Ang I bypassing prereq-
uisite formation of Ang II. Formation of Ang-(1-7) is under the control
of at least three endopeptidases depending on the tissue compartment
and include neprilysin, thimet oligopeptidase and prolyl oligopepti-
dase. Both neprilysin and thimet oligopeptidase are also involved in
the metabolism of bradykinin and the atrial natriuretic peptide. More-
over, recent studies suggest that in addition to Ang I and bradykinin,
Ang-(1-7) is an endogenous substrate for angiotensin converting
enzyme. These enzymatic pathways may contribute to a complex
relationship between the hypertensive actions of Ang II and various
vasodepressor peptides from either the renin-angiotensin system or
other peptide systems. Ang-(1-7) is devoid of the vasoconstrictor,
central pressor, or thirst-stimulating actions associated with Ang II. In
fact, new findings reveal depressor, vasodilator, and antihypertensive
actions that may be more apparent in hypertensive animals or humans.
Thus, Ang-(1-7) may oppose the actions of Ang II directly or as a result
of increasing prostaglandins or nitric oxide. In this review, we exam-
ine the mechanisms by which Ang-(1-7) may contribute to cardiovas-
cular regulation.
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Introduction

It is well recognized that the renin-angio-
tensin system plays an important role in the
overall control of water and salt homeosta-
sis. The generation of angiotensin II (Ang II)
from angiotensin I (Ang I) has long been
considered the final product of this system.
Ang II induces a variety of actions in the
vasculature, brain, pituitary, adrenal and kid-
ney to augment blood pressure. These ac-

tions include vasoconstriction, cellular hy-
pertrophy, salt and water retention and stim-
ulation of drinking. Indeed, the inhibition of
the renin angiotensin system has been shown
to be a powerful strategy to lower blood
pressure in the clinical setting.

Recent studies have revived the possibil-
ity that angiotensin peptides other than Ang
II may either contribute to or actually oppose
the cardiovascular actions of Ang II, endow-
ing this hormonal system with a greater flex-
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ibility than originally imagined. The charac-
terization of angiotensin-(1-7) (Ang-(1-7))
as the first amino terminal angiotensin pep-
tide product possessing biological actions
provided a foundation for the pursuit of a
new concept regarding the regulation of car-
diovascular function by the renin-angiotensin
system. The accumulating evidence suggests
that Ang-(1-7) may serve to counterbalance
the actions of Ang II (1). This review up-
dates the progress that has been made in the
development of this concept by examining
the diverse actions of Ang-(1-7) and the
receptors that mediate these actions.

Pathways of angiotensin-(1-7)
formation and degradation

Illustrated in Figure 1 are the major
bioactive components of the renin-angio-
tensin system. As shown, the enzymatic cas-
cade diverges with the processing of Ang I to
either Ang II via converting enzyme (ACE )
or to Ang-(1-7). Ang II is then N-terminally
metabolized to the smaller bioactive frag-
ments Ang-(2-8) and Ang-(3-8) by peptidyl
(AP) or dipeptidyl (DAP) aminopeptidases.

Conversely, Ang I can be directly converted
to Ang-(1-7) bypassing formation of Ang II
(2). This pathway is potentially under the
control of three endopeptidases which form
Ang-(1-7) including neprilysin (NEP), thimet
oligopeptidase (TO) and prolyl oligopepti-
dase (PO) (2), as well as ACE. Although the
generation of Ang-(1-7) from Ang II has not
been fully investigated, PO and prolyl car-
boxypeptidase (PCP) both cleave the Pro7-
Phe8 bond of Ang II.

The biosynthetic pathways for the forma-
tion of Ang-(1-7) from Ang I are well under-
stood; however, the route for the degrada-
tion of the peptide has not been elucidated.
Several mechanisms have been postulated
for the removal of peptides from the circula-
tion including receptor-mediated processes
(3,4) and enzymatic metabolism. We and
others have recently shown that Ang-(1-7) is
hydrolyzed to Ang-(1-5) by ACE in vitro
(5,6). Initial evidence that Ang-(1-7) was a
substrate for ACE arose from a comparison
of the potencies of various angiotensin and
bradykinin peptides to inhibit ACE activity.
Ang-(1-7) was a more potent competitor of
ACE than bradykinin, Ang I or substance P

Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu

ACE NEP, PO, TO

PO, PCP

Asp-Arg-Val-Tyr-Ile-His-Pro

ACE

Ang-(1-5)
Asp-Arg-Val-Tyr-Ile

NEP

Ang-(1-4)
Asp-Arg-Val-Tyr

Asp-Arg-Val-Tyr-Ile-His-Pro-Phe

AP, DAP

Ang-(2-8)
Arg-Val-Tyr-Ile-His-Pro-Phe

Ang-(3-8)
Val-Tyr-Ile-His-Pro-Phe

Figure 1 - Pathways for the gen-
eration and metabolism of an-
giotensin peptides. Angiotensin
I (Ang I) is processed to biologi-
cally active products through dis-
tinct enzymatic pathways. Ang II
is formed by the hydrolysis of
the Phe8-His9 bond of Ang I by
angiotensin converting enzyme
(ACE). Ang II is further pro-
cessed by aminopeptidases (AP)
or dipeptidyl aminopeptidases
(DAP) to yield the active metabo-
lites Ang-(2-8) and Ang-(3-8).
Ang-(1-7) is formed by the hy-
drolysis at Pro7-Phe8 of Ang I by
several endopeptidases includ-
ing neprilysin (NEP), thimet oli-
gopeptidase (TO) and prolyl oli-
gopeptidase (PO) and from Ang
II by PO and prolyl carboxypepti-
dase (PCP). Ang-(1-7) is hydro-
lyzed at the Ile5-His6 bond by
ACE to yield Ang-(1-5); Ang II is
cleaved at Tyr4-Ile5 by NEP to
yield Ang-(1-4).

Ang I

Ang II Ang-(1-7)
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(Figure 2, top panel) (5,7). Interestingly, the
Ang-(1-7) antagonist D-[Ala7]-Ang-(1-7) in
which the carboxyl-terminal or C proline is
substituted with D-alanine did not compete
for activity (Figure 2) nor was the peptide
hydrolyzed by ACE (Chappell MC, unpub-
lished results). The complete inhibition with
di-nitrofluorobenzene (DNFB, Figure 2,
middle panel) and the greater potency of
lisinopril over captopril (2.1 nM vs 27 nM,
respectively; Figure 2, bottom panel) sug-
gest that the C domain of ACE is primarily
involved in the hydrolysis of Ang-(1-7) (8,9).
However, Deddish et al. (6) have recently
reported that Ang-(1-7) is a selective sub-
strate for the amino or N domain of human
ACE and may inhibit the C domain. Al-
though both canine and human ACE exhib-
ited similar kinetic values for Ang-(1-7),
there may exist species differences concern-
ing which domain participates in the hy-
drolysis of the peptide. The favorable kinetic
constants (Km = 0.8 µM, kcat = 1.8/s for
canine ACE) suggest an in vivo role for ACE
in the regulation of Ang-(1-7) and recent
studies demonstrate that lisinopril augments
the half-life of infused Ang-(1-7) by 4- to 5-
fold (10). Thus, the marked increase in cir-
culating levels of Ang-(1-7) following
chronic ACE inhibition reflects both in-
creased synthesis (due to higher Ang I lev-
els) and decreased metabolism.

Physiological actions of
angiotensin-(1-7)

There is substantial evidence available
now to demonstrate that the fragments formed
from Ang I and Ang II metabolism are bio-
logically active. Of the biologically active
fragments studied to-date, the physiological
actions of Ang-(1-7) have been most widely
investigated. This peptide has been shown to
be present in the plasma and a variety of
tissues in both humans and rats. Ang-(1-7)
elicits physiological effects that are similar
or opposite to that of Ang II. In the brain,

Ang-(1-7) stimulates release of vasopressin
(11,12) and facilitates baroreflexes (13-15).
However, unlike Ang II, the peptide does not
stimulate dipsogenesis (16) or elicit potent
vasoconstrictor actions. At the cellular level,
Ang-(1-7) stimulates release of PGE2 and
PGI2 (17-21), potentiates the hypotensive
effects of bradykinin (7,22-25), and stimu-
lates the release of nitric oxide (7,24,26).

Figure 2 - Top panel, Comparison of the potencies of angiotensin and
bradykinin peptides to compete for ACE activity determined with the
synthetic substrate Hip-His-Leu as described (5). Sub P, Substance P; Ang,
angiotensin; BK, bradykinin; [D-Ala], D-[Ala7]-Ang-(1-7). Middle panel, Ef-
fects of di-nitrofluorobenzene (DNFB) on the ACE-dependent hydrolysis of
Ang-(1-7) and Hip-His-Leu. Lower panel, Potencies of the inhibitors
lisinopril, enalaprilat and captopril to inhibit the hydrolysis of Ang-(1-7) by
ACE.
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Finally Ang-(1-7) exerts a vasodilatory ef-
fect which may account for its antihyperten-
sive effects that are manifested in vivo
(19,27,28). The fact that the physiological
effects of Ang-(1-7) are either identical or
opposite to those of Ang II indicates that this
is a pleiotropic fragment. Collectively, the
various physiological effects of Ang-(1-7)
mentioned above would favor a blood pres-
sure lowering effect under conditions of high
Ang II activity.

The biological function of the enzymes
forming Ang-(1-7) reinforces the idea that
this peptide is a component of a vasodepres-
sor system regulating blood pressure. The
two enzymes, neprilysin and thimet oligo-
peptidase that have been shown to form
Ang-(1-7) from Ang I (2,29) also cleave
bradykinin and the atrial natriuretic peptide
to smaller fragments (30). These observa-
tions suggest that the various angiotensin
products and other vasodepressor peptides
are intertwined through these enzymatic path-
ways, and this is a concept of importance.
Physiologists have always considered that
Ang II could indirectly lead to activation of
vasodepressor systems. However, the fact
that Ang-(1-7) may exhibit antihypertensive
actions and arises from Ang I points to its
existence within the renin angiotensin sys-
tem itself for mitigation of the actions of Ang
II. Thus, the role of the smaller fragments of
the renin angiotensin system in physiology
and pathology should not be examined inde-
pendently from Ang II.

The relationship between the status of
the renin angiotensin system and the antihy-

pertensive response to ACE inhibitors or
Ang II antagonists is not a simple one. Often,
these agents show good antihypertensive ac-
tivity in the presence of normal or even
suppressed renin activity (31,32). The argu-
ment has been posed that the chronic antihy-
pertensive action of ACE inhibitors may be
mediated by accumulation of tissue bradyki-
nin (33). However, Cachofeiro et al. (34)
reported that, in contrast to acute lisinopril
treatment, the kinin B2 antagonist HOE 140
did not reverse the antihypertensive effects
of chronic lisinopril treatment. We and oth-
ers have reported similar observations in
spontaneously hypertensive rats (SHR)
treated with lisinopril/losartan and in renal
hypertensive rats with ramipril treatment
(35,36).

In this regard, we began a series of stud-
ies to determine whether Ang-(1-7) contri-
butes to the antihypertensive effects of a
combined lisinopril/losartan regimen in SHR.
As shown in Figure 3, three strategies were
employed to attenuate the potential actions
of Ang-(1-7): 1) inhibition of Ang-(1-7) for-
mation with a neprilysin inhibitor; 2) neu-
tralization of the peptide by infusion of a
selective monoclonal antibody (mAb-Ang-
(1-7)), and 3) blockade of the receptor with
the non-selective antagonist [Sar1,Thr8]-Ang
II (Sarthran). The combined treatment with
an ACE inhibitor and AT1 antagonist should
favor the conversion of Ang I to Ang-(1-7)
by neprilysin (37) and block actions at the
AT1 receptor. Systemic administration of an
Ang-(1-7) monoclonal antibody at increas-
ing concentrations partially reversed the an-
tihypertensive response in SHR chronically
treated with lisinopril/losartan (Figure 4, top
panel) (38). Acute inhibition of the endoge-
nous synthesis of Ang-(1-7) by two different
neprilysin inhibitors (SCH 39370 and CGS
24592) resulted in a similar reversal of the
antihypertensive effect produced by the
lisinopril/losartan in SHR (Figure 4, lower
panel) (36). The increase in blood pressure
with the neprilysin inhibitor CGS 24592 was

NEPI
mAb-Ang-(1-7)

Ang I

Ang-(1-7)

NEP

Sarthran

Ang-(1-7)
Receptor

Vasodilation

Figure 3 - Strategy for the block-
ade of peripheral Ang-(1-7). Cir-
culating angiotensin I (Ang I) is
hydrolyzed to Ang-(1-7) by ne-
prilysin (NEP) situated on the
vascular surface. Attenuation of
the vasodilator actions of Ang-
(1-7) is achieved by either inhibit-
ing the synthesis of the peptide
with a neprilysin inhibitor (NEPI),
neutralization of the circulating
peptide with monoclonal anti-
body (mAb-Ang-(1-7)) or block-
ade of the putative receptor site
with the non-selective antago-
nist [Sar1,Thr8]-Ang II (Sarthran).
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associated with a 60% fall in the plasma
concentrations of Ang-(1-7) (36). Adminis-
tration of Sarthran also induced a pressor
response in the SHR that was not attenuated
by prior blockade with the AT2 antagonist
PD 123319 and indicates that the vasode-
pressor actions of Ang-(1-7) are mediated
via a non-AT1/AT2 receptor. In addition,
prior treatment with Sarthran prevented any
further increase in blood pressure with the
CGS compound (Figure 4). These data sug-
gest that the effects of ACE inhibitors may
be partially mediated by Ang-(1-7) and add a
new and important dimension to the under-
standing of the physiology of the renin an-
giotensin system.

Receptors mediating the
actions of ang-(1-7)

Accumulating evidence suggests that the
effects of Ang-(1-7) are mediated by a unique
angiotensin receptor (1,38). The stimulation
of prostaglandin E2 and I2 synthesis, and
nitric oxide release by Ang-(1-7) occur via
activation of a receptor subtype distinct from
AT1 and AT2 but recognized by the competi-
tive non-selective Ang II antagonist Sarthran
(1). Similarly, the in vivo vasodepressor ef-
fects of Ang-(1-7) have been shown to be
mediated, in part, by non-AT1/AT2 receptor
subtypes that are sensitive to Sarthran (38).
In addition, a high affinity binding site has
been described in bovine endothelial cells in
culture (39) and canine coronary artery en-
dothelium by in vitro autoradiography (1).
Thus, the majority of the data available sug-
gest that Ang-(1-7) may act at a novel non-
AT1/AT2 receptor, the signal transduction
pathway for which still remains to be eluci-
dated. However, it should be noted that,
under certain conditions, the effects of Ang-
(1-7) may be blocked by losartan or to a
variable extent by AT2 receptor antagonists
(17,18,40), suggesting a heterogeneity of
Ang-(1-7) receptors sensitive to either AT1

or AT2 antagonists. This may be particularly

evident regarding the actions of Ang-(1-7) in
the kidney (see below for further discussion
of sites within the kidney).

Renal actions of angiotensin-(1-7)

Renal infusion of Ang-(1-7) produced
marked diuresis and natriuresis in the iso-
lated (41) and intact kidney of Sprague
Dawley (SD) and Wistar rats, respectively
(42,43). In contrast to the potent renal ac-
tions of Ang II, Ang-(1-7) lacked any effect
on renal blood flow and tended to increase
the glomerular filtration rate (41,43). The
diuretic actions of Ang-(1-7) in the isolated
kidney were attenuated by the cyclooxy-
genase inhibitor indomethacin (44). In cul-
tured renal tubular epithelial cells from rab-
bit, Ang-(1-7) inhibited transcellular sodium
flux (45). Interestingly, the inhibition of so-
dium transport with Ang I was markedly
potentiated by the ACE inhibitor captopril.
The brush border of proximal tubules con-
tains high concentrations of neprilysin, an
endopeptidase which cleaves Ang I directly
to Ang-(1-7) (46). Ang-(1-7) also inhibited
transport-dependent oxygen consumption, a
marker for Na-K-ATPase activity in isolated
convoluted proximal tubules (43). This po-
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Figure 4 - Top panel, Peripheral
administration of an Ang-(1-7)
monoclonal antibody (Ab) in-
creases mean arterial blood
pressure (MAP) in chronically
treated losartan/lisinopril sponta-
neously hypertensive rats (SHR)
as described (38). Vehicle admin-
istration (Vehicle; normal mouse
IgG, 400 µg/min) did not affect
MAP. Bottom panel, Effect of
neprilysin (NEP) inhibitors and
angiotensin receptor antago-
nists on MAP from the losartan/
lisinopril-treated SHR (36). Ani-
mals were acutely treated with
the NEP inhibitors SCH 39370
(SCH), CGS 24592 (CGS) or the
antagonists [Sar1,Thr8]-Ang II
(SAR) or PD 123319 (PD).
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tent inhibition by Ang-(1-7) was partially
blocked by an AT1 antagonist and completely
attenuated by Sarthran while the AT2 an-
tagonist PD 123319 had no effect. However,
Ang-(1-7) exhibited biphasic effects on wa-
ter and bicarbonate transport in perfused
straight proximal tubules (47). A low con-
centration (1 pM) of Ang-(1-7) stimulated
water transport, while 10 nM inhibited fluid
absorption most probably by altering the
Na+/H+ exchanger. The biphasic actions of
Ang-(1-7) were completely blocked by lo-
sartan and the AT2 antagonist had no effect
(47).

The effect of various angiotensin antago-
nists and the tubular actions of Ang-(1-7)
suggest that this peptide may distinguish
multiple AT1 receptor sites in the kidney.
Santos and colleagues also report that Ang-
(1-7) may interact with a novel AT1 or losar-
tan-sensitive site in the kidney (12). Ang-(1-
7) promotes an anti-diuretic action in water-
loaded Wistar rats with a tendency for in-
creased plasma vasopressin (12,48). Both
the AT1 agent losartan and the Ang-(1-7)
antagonist D-[Ala7]-Ang-(1-7) attenuated the
anti-diuretic effects of Ang-(1-7) (49). The
D-[Ala7] antagonist has also been reported
to block the inhibition of water transport by
Ang-(1-7) in a collecting duct preparation
(12). The D-[Ala7]-Ang-(1-7) compound
does not inhibit Ang II binding at typical AT1

or AT2 sites in the adrenal or attenuate the
vasoconstrictor effects of Ang II (50).

The intriguing actions of Ang-(1-7) to
inhibit diuresis are completely opposed to
the effects observed in the perfused kidney
and deserve further comment. One obvious

difference in the studies with intact animals
was that the experiments were performed
after water loading. In human patients, dif-
ferential effects were observed with AT1

treatment following an acute water load (51).
Importantly, these data emphasize that the
overall state of sodium and water balance, as
well as the overall activity of the renin-
angiotensin system may greatly influence
the effects of Ang-(1-7) in the kidney. Per-
haps of equal importance, the dose of the
peptide, the route of administration and the
site of the nephron exposed to Ang-(1-7)
may also influence the actions of the pep-
tide.

Conclusions

The angiotensin fragments of the renin
angiotensin system cascade have been shown
to possess biological activity although their
role in the maintenance of the physiological
process is still not clear. Of all these metabo-
lites, Ang-(1-7) may be the most pleiotropic
as it exerts effects that either oppose those of
Ang II or comprise a subset of Ang II ac-
tions. The studies reported above provide a
new understanding to the contribution of the
renin angiotensin system in physiology and
pathology.
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