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Abstract

The present study investigated the protective effect of N-acetylcys-
teine (NAC) against oxygen radical-mediated coronary artery injury.
Vascular contraction and relaxation were determined in canine coro-
nary arteries immersed in Kreb’s solution (95% 0,-5% CO,), incu-
bated or not with NAC (10 mM), and exposed to free radicals (FR)
generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM).
Rings not exposed to FR or NAC were used as controls. The arteries
were contracted with 2.5 uM prostaglandin F2¢.. Subsequently, con-
centration-response curves for acetylcholine, calcium ionophore and
sodium fluoride were obtained in the presence of 20 pM indometh-
acin. Concentration-response curves for bradykinin, calcium iono-
phore, sodium nitroprusside, and pinacidil were obtained in the pres-
ence of indomethacin plus N®-nitro-L-arginine (0.2 mM). The oxida-
tive stress reduced the vascular contraction of arteries not exposed to
NAC (3.93 +£3.42 g), compared to control (8.56 = 3.16 g) and to NAC
group (9.07 £4.0 g). Additionally, in arteries not exposed to NAC the
endothelium-dependent nitric oxide (NO)-dependent relaxation pro-
moted by acetylcholine (1 nM to 10 M) was also reduced (maximal
relaxation of 52.1 + 43.2%), compared to control (100%) and NAC
group (97.0 £ 4.3%), as well as the NO/cyclooxygenase-independent
receptor-dependent relaxation provoked by bradykinin (1 nM to 10
uM; maximal relaxation of 20.0 + 21.2%), compared to control
(100%) and NAC group (70.8 + 20.0%). The endothelium-independ-
ent relaxation elicited by sodium nitroprusside (1 nM to 1 pM) and
pinacidil (1 nM to 10 uM) was not affected. In conclusion, the
vascular dysfunction caused by the oxidative stress, expressed as
reduction of the endothelium-dependent relaxation and of the vascular
smooth muscle contraction, was prevented by NAC.
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Introduction

The vascular endothelium is intimately
involved in the pathophysiology of ische-
mia-reperfusion injury. Consequently, strat-

egies to avoid or minimize the resulting en-
dothelial dysfunction after ischemia-reper-
fusion have gained interest, and among them
the use of antioxidants is promising (1).
N-acetylcysteine (NAC) has been used
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for almost half a century to treat congestive
and obstructive lung diseases, and since the
mid-1970’s it has also been used to treat
paracetamol intoxication (2). Several recent
reports have suggested that its use may be
extended to manage clinical conditions as
diversified as ischemia-reperfusion injury
(3), inflammation-related complications af-
ter cardiopulmonary bypass (4) and renal
damage provoked by radiographic contrast
(5).

As an extensively used and relatively
safe drug (6), NAC may be a useful adjuvant
for the protection of the myocardium in car-
diac surgery, for example as an additive to
the cardioplegic solutions. Therefore, given
the role of the vascular endothelium in the
control of vascular function and its ability to
attenuate ischemia-reperfusion-related inju-
ries to the myocardium (7), the present study
was carried out in order to determine the
effects of oxidative stress on the vascular
reactivity of canine coronary arteries, as well
as the protective role of NAC in an in vitro
model of oxidative stress (8).

Material and Methods

Animal preparation

Heartworm-free mongrel dogs (25-30 kg)
of either sex were anesthetized with intrave-
nous sodium thiopental (30 mg/kg; Abbott
Labortatories, Chicago, IL, USA) and ex-
sanguinated by cutting the carotid arteries.
The chest was quickly opened and the beat-
ing heart was harvested and immersed in
cool oxygenated physiologic Kreb’s solu-
tion of the following composition: 118.3
mM NaCl, 4.7 mM KCl, 1.2 mM MgSO,,
1.22 mM KH,PO,, 2.5 mM CaCl,, 25.0 mM
NaHCO;3, and 11.1 mM glucose. The proce-
dures and handling of the animals were in
compliance with the Guide for the Care and
Use of Laboratory Animals published by the
US National Institutes of Health (NIH Publi-
cation No. 85-23, revised 1996) and in agree-
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ment with the Institutional Animal Care and
Use Committee of the Mayo Foundation.

In vitro experiments

The left circumflex coronary artery was
carefully dissected and vascular rings (4-5
mm in length) were obtained. The vascular
rings were suspended in organ chambers
(25 ml) filled with oxygenated Kreb’s solu-
tion maintained at 37°C and bubbled with
95% 0,-5% CO,, pH 7.4. Each ring was
suspended on two stainless steel clips passed
through its lumen. One clip was anchored
to the bottom of the organ chamber, and
the other was connected to a strain-gauge
for measurement of isometric force (Statham
UC 2, Gould, Cleveland, OH, USA). After
stabilization, they were progressively
stretched to the length-tension of 10 g. In
order to ensure that the endothelium of
the rings was not damaged during handling,
the rings were contracted with 20 mM KCI.
After reaching a plateau of contraction, the
relaxing response to 1 uM acetylcholine was
tested. The endothelium was considered
to be functional when the vessel was relaxed
by at least 90% (considering the plateau
of contraction as 0% relaxation). Subse-
quently, the rings were allowed to equili-
brate in Kreb’s solution without any drug for
a period of 30 min before the addition of any
drug.

Experimental design

The experiments were carried out with
sets of three rings for each drug tested. One
ring was not exposed to the free radicals or
NAC (control) and one ring was incubated
with 10 mM NAC for 60 min before the
oxidative stress (NAC group). NAC was
maintained in the bath during exposure to
the oxygen-derived free radicals. The third
ring was not exposed to NAC before or
during exposure to the oxygen-derived free
radicals (non-NAC group).
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Exposure to oxygen-derived free radicals

Xanthine oxidoreductase is a molybdoen-
zyme capable of catalyzing the oxidation of
hypoxanthine and xanthine in the process of
purine metabolism. It reduces NAD" and
leads to the production of superoxide anion
(Oy) and hydrogen peroxide (H,0,) (8).
Oxygen-derived free radicals were gener-
ated by incubating all vascular rings, except
the controls, for 90 min in oxygenated Kreb’s
solution containing xanthine oxidase (100
mU/ml) and 0.1 mM xanthine. The vascular
rings were then washed four times with
Kreb’s solution without any drug and al-
lowed to stabilize for 30 min before drug
addition.

Vascular contraction study. Contraction
was stimulated with 2.5 pM prostaglandin
F2o and the relaxation study was started
after the vessel reached a stable tonic con-
traction.

Vascular relaxation study. In order to
assess the effects of oxidative stress on the
endothelium-dependent relaxation promoted
by nitric oxide (NO-dependent relaxation),
all experiments were carried out by blocking
the synthesis of relaxing prostaglandins (cy-
clooxygenase-dependent relaxing factors),
mainly prostacyclin I,, by adding 20 uM
indomethacin, a cyclooxygenase inhibitor,
to the organ chambers.

We also determined the effects of the
oxidative stress on the endothelium-depend-
ent relaxation not related to the release of
NO and relaxing prostaglandins (NO- and
cyclooxygenase-independent relaxation)
caused by the hypothesized endothelium-
derived hyperpolarizing factor (EDHF) by
adding to the organ chambers the NO syn-
thase (NOS) inhibitor 0.2 mM N®-nitro-L-
arginine in addition to indomethacin.

All enzyme blockers were added to the
chamber at least 45 min before starting the
determination of the concentration-response
curves. Rings that did not present a plateau
of contraction of at least 1 g of tension were

excluded from the relaxation study.
Endothelium-dependent relaxation

Receptor-dependent NO-dependent re-
laxation. In order to study the receptor-de-
pendent NO-dependent relaxation the rings
were exposed to increasing concentrations
of acetylcholine (1 nM to 10 uM).

Receptor-independent NO-dependent re-
laxation. In order to appraise the receptor-
independent NO-dependent relaxation, con-
centration-response curves for calcium iono-
phore (1 nM to 10 pM) and sodium fluoride
(0.5 to 9.5 M) were constructed. Sodium
fluoride, a drug that activates G-proteins
directly (9), was used in order to determine if
the impairment of G-proteins may partici-
pate in receptor-dependent impairment of
the production and release of relaxing fac-
tors by the endothelium.

Calcium ionophore increases the sarco-
plasmic concentration of Ca?" without stimu-
lating a membrane receptor, resulting in the
activation of NOS and the production of NO
(10).

Receptor-dependent NO- and cyclooxy-
genase-independent relaxation. In order to
study the receptor-dependent NO- and cy-
clooxygenase-independent relaxation, N®-
nitro-L-arginine (0.2 mM), an NOS blocker,
was used in addition to indomethacin. After
reaching the plateau of contraction the rings
were exposed to increasing concentrations
of bradykinin (1 nM to 10 uM). In the pres-
ence of indomethacin and N®-nitro-L-argi-
nine the stimulation of the bradykinin recep-
tors promotes the release of EDHF (11).

Receptor-independent NO- and cyclooxy-
genase-independent relaxation. In the pres-
ence of indomethacin and N®-nitro-L-argi-
nine, the calcium ionophore also promotes
the release of EDHF independent of the NO
or cyclooxygenase pathways. Therefore, the
vessels were exposed to increasing concen-
trations of calcium ionophore (1 nM to 10
uM) in the presence of 0.2 mM N©®-nitro-L-
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arginine in addition to 20 M indomethacin.

Endothelium-independent relaxation.
Two different mechanisms of endothelium-
independent relaxation were studied, the cy-
clic GMP (cGMP)-dependent pathway and
smooth muscle hyperpolarization. The rings
were incubated with 20 uM indomethacin
plus 0.2 mM N®-nitro-L-arginine before con-
traction with 2.5 pM prostaglandin F2a.
After reaching the plateau of contraction,
concentration-response curves for sodium
nitroprusside (1 nM to 1 uM) and pinacidil
(1 nM to 10 uM) were constructed.

Sodium nitroprusside is metabolized by
blood vessels to its active metabolite, NO,
independently of the presence of a function-
ing endothelium. Therefore, the resulting
relaxation is a consequence of the formation
of ¢cGMP in vascular smooth muscle (10).

Pinacidil directly activates ATP-sensi-
tive potassium channels, resulting in smooth
muscle hyperpolarization. The hyperpolar-
ization closes voltage-dependent Ca”* chan-
nels, resulting in the reduction of intracellu-
lar Ca?* ([Ca?"];) concentration and vasodi-
lation (10).

Drugs

The following drugs were used: acetyl-
choline, bradykinin, indomethacin, N®-ni-
tro-L-arginine, prostaglandin F2o., sodium
nitroprusside, sodium fluoride, xanthine,
pinacidil, DMSO, and calcium ionophore,
all from Sigma-Aldrich, Inc. (St. Louis, MO,
USA). Xanthine oxidase was from Calbio-
chem (San Diego, CA, USA). All drugs were
prepared with distilled water, except indo-
methacin which was dissolved in 5 M
NaHCOj; in distilled water, and pinacidil
that was dissolved in DMSO according to
the manufacturer instructions.

Statistical analysis

Data are reported as means + SD. Vascu-
lar relaxation is reported as the percentage of

A.J. Rodrigues et al.

the plateau of contraction, with the plateau
of contraction being 0% relaxation. Data
were analyzed statistically by ANOVA, two-
way analysis of variance and Bonferroni
post-tests (GraphPad Prism 3.0 Software),
with the level of significance set at P <0.05.

Results
Vascular contraction

Oxidative stress provoked a significant
impairment of vascular contraction in non-
NAC coronary arteries (3.93 +3.42 g, N =
42), compared to the control and NAC groups
(P<0.001, Figure 1). However, there was no
significant difference between the plateau of
contraction of rings incubated with NAC
(9.07£4.0 g, N=44) and control rings (8.56
+3.16 g, N =44). In two sets of experiments
the rings from the non-NAC group presented
no contraction at all and therefore were ex-
cluded from the vascular relaxation study.

Vascular relaxation study
Endothelium-dependent relaxation

Receptor-dependent NO-dependent re-
laxation. The receptor-dependent NO-de-
pendent relaxation (Figure 2) promoted by
acetylcholine was significantly impaired in
non-NAC (N = 7) coronary arteries. There
was no significant difference between the
concentration-response curves of the control
group (N = 7) and the NAC group (N = 7).

Receptor-independent NO-dependent re-
laxation. A significant reduction of the re-
ceptor-independent NO-dependent relaxation
provoked by sodium fluoride (N = 6) was
observed in the non-NAC group (Figure 3A).
Even though the concentration-response
curve for the NAC group (N = 7) presented a
shift to the right, the difference was signifi-
cant only for the concentration of 5.5 M
compared with control arteries (N = 7). The
maximal receptor-independent NO-depend-
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Figure 1. Contraction of canine coronary arteries of the
control (N = 44), N-acetylcysteine (NAC, N = 44) and
non-NAC (N = 42) groups stimulated with 2.5 uM pros-
taglandin F2c. The concentration of NAC in the bath
was 10 mM. Data are reported as means + SD. *P <
0.001 for the non-NAC group compared to the control
and NAC groups (ANOVA and Bonferroni’'s multiple
comparison test). There was no difference between
control and NAC.

Figure 2. Concentration-response curves for acetyl-
choline (receptor-dependent NO-dependent relaxation)
of canine coronary arteries from the control (N = 7), N-
acetylcysteine (NAC, N = 7) and non-NAC (N = 7)
groups. The coronaries were incubated with 20 uM
indomethacin and contracted with 2.5 uM prostaglan-
din F20. Data are reported as means + SD. *P < 0.001
for the non-NAC group compared to control and P <
0.01 for the non-NAC group compared to the NAC
group (two-way analysis of variance and Bonferroni
post-tests).

Figure 3. Concentration-response curves for sodium
fluoride (A; receptor-independent NO-dependent relax-
ation) and for calcium ionophore (B; receptor-independ-
ent NO-dependent relaxation) of canine coronary ar-
teries from the control (N = 7), (NAC, N = 7) and non-
NAC (N = 6) groups. The coronaries were incubated
with 20 uM indomethacin and contracted with 2.5 M
prostaglandin F2c. Data are reported as means + SD.
(A) *P < 0.05 for the non-NAC group compared to the
NAC group; *P < 0.001 for the non-NAC group com-
pared to control. (B) *P < 0.001 for the non-NAC group
compared to the NAC and control groups (two-way
analysis of variance and Bonferroni post-tests).
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Figure 4. Concentration-response curves for bradyki-
nin (receptor-dependent NO- and cyclooxygenase-in-
dependent relaxation) on coronary arteries from dogs
of the control (N = 6), N-acetylcysteine (NAC, N = 6)
and non-NAC (N = 6) groups. The coronaries were
incubated with 20 uM indomethacin plus 0.2 mM N®-
nitro-L-arginine and contracted with 2.5 uM prostaglan-
din F20. Data are reported as means + SD. *P < 0.001
for the non-NAC group compared to the control and
NAC groups (two-way analysis of variance and Bonfer-
roni post-tests).

Figure 5. Concentration-response curves for calcium
ionophore (receptor-independent NO- and cyclooxy-
genase-independent relaxation) on coronary arteries
from dogs of the control (N = 6), N-acetylcysteine
(NAC, N = 6) and non-NAC (N = 6) groups. The coronar-
ies were incubated with 20 pM indomethacin plus 0.2
mM  N®-nitro-L-arginine (receptor-independent NO-in-
dependent) and contracted with 2.5 pM prostaglandin
F20. Data are reported as means + SD. There were no
statistical differences in the concentration-response
curves of the three groups (two-way analysis of vari-
ance and Bonferroni post-tests).

Figure 6. Concentration-response curves for pinacidil
(A; N = 5 for each group) and sodium nitroprusside (B;
N = 6 for each group) on coronary arteries from dogs of
the control, N-acetylcysteine (NAC) and non-NAC
groups (endothelium-independent relaxation). The
coronaries were incubated with 20 pM indomethacin
plus 0.2 mM N®-nitro-L-arginine and contracted with
2.5 uM prostaglandin F2o. Data are reported as means
+ SD. There was no difference between groups in the
concentration-response curves (two-way analysis of
variance and Bonferroni post-tests).
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ent relaxation elicited by calcium ionophore
(Figure 3B) was not significantly affected by
oxidative stress, although a significant right
shift of the concentration-response curve for
intermediate concentrations (30 to 300 nM)
was observed.

Receptor-dependent NO- and cyclooxy-
genase-independent relaxation. The recep-
tor-dependent NO- and cyclooxygenase-in-
dependent relaxation induced by bradykinin
(Figure 4) was significantly impaired in cor-
onary arteries of the non-NAC group (N =
6). There was no significant difference be-
tween the concentration-response curves of
the control group (N = 6) and the NAC group
(N=06).

Receptor-independent NO- and cyclooxy-
genase-independent relaxation. The recep-
tor-independent NO- and cyclooxygenase-
independent relaxation provoked by calcium
ionophore (N = 6 for each group; Figure 5)
was not affected by oxidative stress since
there was no difference between the concen-
tration-response curves of the three groups
of coronary arteries.

Endothelium-independent relaxation

Figure 6 shows the endothelium-inde-
pendent relaxation elicited by sodium nitro-
prusside (N = 6 for each group) and pinacidil
(N =5 for each group). There was no impair-
ment of the endothelium-independent relax-
ation elicited by the activation of the ATP-
sensitive potassium channels (pinacidil; Fig-
ure 6A) and by the cGMP-dependent path-
way (sodium nitroprusside; Figure 6B).

Discussion

The data presented here demonstrate that
oxidative stress impaired not only the arteri-
al contraction, but also endothelium-depend-
ent relaxation, mainly the NO-dependent re-
laxation. It is also evident that NAC pre-
vented the injury promoted by oxidative
stress.

The reduction of endothelium-depend-
ent relaxation (8,12-14) and of vascular
smooth muscle contraction (15,16) caused
by oxidative stress is well known. There are
several sources of reactive oxygen species in
vascular cells, three of which have been
extensively studied (12): a) xanthine oxi-
dase, b) NADH/NADPH oxidase, and c)
endothelial NOS (eNOS). As already ob-
served, xanthine oxidase leads to the pro-
duction of O, and H,0,. Ischemia and hy-
poxia are situations in which the activity of
xanthine oxidase is increased. O, reacts with
NO to form peroxynitrite, a less effective
activator of guanylyl cyclase, resulting in a
marked reduction in NO bioactivity (17).
Another important source of O, in many
cardiovascular diseases isan NADH/NADPH
oxidase (12). Finally, a third source of inter-
est is eNOS. There is evidence that in the
absence of either L-arginine or tetrahydrobi-
opterin, eNOS can produce O, and H,0,, a
phenomenon called NOS uncoupling, whose
mechanism is not completely understood
(12). Therefore, NOS uncoupling may result
in endothelial dysfunction by reducing the
production of NO and contributing to the
oxidative stress.

The direct effect of free radicals on the
endothelial cells is not the unique factor
responsible for the reduction of endothelial
function. Oxidized low-density lipoproteins
are cytotoxic to endothelial cells (18) and
there is evidence that oxidized low-density
lipoprotein and products of lipid peroxida-
tion can react directly with NO and abolish
its biological activity (19). In addition, lipid
peroxidation may interfere with signal trans-
duction and receptor-dependent stimulation
of NOS activity (20) and with the activation
of guanylyl cyclase (21).

The results obtained here with sodium
nitroprusside and pinacidil rule out the ex-
planation that the incapacity of the vascular
smooth muscle to relax is due to a dysfunc-
tion of the cGMP pathway or to the impair-
ment of the hyperpolarizing mechanisms of
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smooth muscle. Since receptor-dependent
relaxation elicited by acetylcholine and re-
ceptor-independent NO-dependent relaxation
provoked by calcium ionophore and sodium
fluoride were equally affected, we must con-
sider that oxidative stress impaired the NO-
dependent relaxation probably by disturbing
several steps of the NO pathway.

In addition to the mechanisms mentioned
above, dysfunction of other cellular pro-
cesses may contribute not only to the impair-
ment of the endothelium-dependent vasodi-
lation, but also to the impairment of the
vascular smooth muscle contraction. It has
been demonstrated that receptor-stimulated
Ca?" influx into endothelial cells is biphasic.
There is an initial increase in [Ca?"]; provid-
ed by the endoplasmic reticulum, followed
by a second sustained elevation of [Ca?"];
due to a Ca?" influx from an extracellular
source (22). Impairment of agonist-stimulat-
ed Ca?" signaling pathways provoked by
peroxides has been demonstrated in endo-
thelial cells (23). It seems that such impair-
ment is due to the inhibition of the mechan-
isms responsible for intracellular Ca*" re-
lease and extracellular Ca?" influx (23). Con-
sequently, disorders of Ca?" homeostasis pro-
voked by oxidative stress may impair the
Ca?" signaling pathway necessary to pro-
duce and release endothelium-dependent re-
laxing factor and to contract smooth muscle
(16,24-26). In addition, Na™-pump dysfunc-
tion caused by oxidative stress has been
described as a cause of smooth muscle dys-
function as well (27,28).

Dysfunction of G-proteins is another
mechanism that may also have contributed
to the impaired receptor-stimulated activa-
tion of the pathways leading to the produc-
tion and release of endothelium-dependent
relaxing factor, as suggested by our results
with sodium fluoride and by previous inves-
tigations (8,13,14).

As is the case for NO, the release of NO-
and cyclooxygenase-independent endotheli-
um-dependent relaxing factor by coronary
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arteries also relies on a Ca?" signaling-de-
pendent pathway. There is evidence suggest-
ing that in the coronary arteries of a variety
of species such factor may be an epoxyeico-
satrienoic acid (29) or even a hydroxyeico-
satetraenoic acid (30), both produced by
enzymatic pathways that share with the cy-
clooxygenase pathway the enzyme phospho-
lipase A2, a known calmodulin-dependent
enzyme (11). In the present experiments we
observed that only the receptor-dependent
NO- and cyclooxygenase-independent relax-
ation evoked by bradykinin was significant-
ly impaired, although our results do not al-
low us to propose a detailed mechanism.

Few studies have focused on the effects
of oxidative stress on EDHF, but EDHF-
mediated vascular relaxation resistance to
oxidative stress has been described (31-33).
The precise mechanism by which the EDHF-
mediated vascular relaxation may resist to
the deleterious effects of oxidative stress is
not known, but up-regulation of EDHF pro-
duction, as a consequence of NOS inhibition
or reduction of NO bioactivity, and less in-
terference of oxidative stress with the EDHF
mechanisms of relaxation have been sug-
gested (31-33).

As addressed before, there are compel-
ling data suggesting that oxidative stress is
an important trigger of the complex events
leading to endothelial dysfunction after is-
chemia and in other cardiovascular diseases.
Therefore, the use of drugs to prevent oxy-
gen radical-mediated injury has been exten-
sively investigated. NAC, whose the antioxi-
dant properties are well know (2,34,35), has
been extensively investigated for decades as
an adjuvant for the treatment of cardiovascu-
lar disorders (35-39). Because of'its SH group,
NAC has the potential to interact directly
with oxidants such as H,0, to form H,O and
0, (34), and like many thiols, such as re-
duced glutathione (GSH), is a hydroxy radi-
cal scavenger (40). In addition, thiol NAC is
readily deacetylated in the cells to yield L-
cysteine, thereby promoting intracellular



Protective effect of NAC on oxidative stressed coronary arteries

GSH synthesis (35), one of the most impor-
tant cellular defenses against oxidative stress.
It has also been proposed that NAC may
improve endothelial function, enhancing the
bioavailability of NO by spontaneously form-
ing nitroso-N-acetylcysteine and S-nitroso-
cysteine that could act as diffusion-limited
NO adducts (36).

In the present experiments NAC was
added 60 min before the addition of xanthine
and xanthine oxidase and was not removed
during the period of exposure to free radi-
cals. Therefore, NAC may have prevented
the endothelial injury by its direct antioxi-
dant effects. However, we also should con-

sider that it might have increased the intrin-
sic endothelial mechanisms of defense against
oxidative injury.

Our results show that NAC prevents the
vascular injury provoked by oxidative stress.
The vascular injury is expressed as impair-
ment of endothelium-dependent relaxation
and of vascular smooth muscle contraction.
Impairment of the NO pathway is more pro-
nounced, with several steps being affected.
The EDHF pathway seems to be more resis-
tant to oxidative stress since only the recep-
tor-dependent EDHF-mediated relaxation
was affected.
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