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In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during
vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of
reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/
forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements
predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941). For all other movements,
prediction was low (range, 0.0316-0.8302). Results suggest that the proposed algorithm is successful in generalization over
similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from
voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with
motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic
systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with
spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers,
developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose,
training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent
and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The
results underlie the important issue of upper-limb coordination.
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Introduction

The recovery of the functional use of upper limbs by
patients after spinal cord injuries (SCI) or stroke is one of
the main goals of rehabilitation. Classical treatments pri-
marily rely on the use of physiotherapy, which depends on
the trained therapists and their past experience. Evidence
shows that additional early exercise training in SCI and

stroke patients may be beneficial (1,2). Independent and
repetitive exercises could directly strengthen arms and
legs, and may help patients recover more quickly (3,4).

Patients with SCI at the C5/C6 level retain normal
control of their upper arm movements, they have some
control of their elbow flexion, wrist flexion/extension and
supination/pronation; however, they lack volitional control
of elbow extension and fingers. Comparable limitations
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can be found among patients with motor impairments
resulting from other neurological disorders such as stroke.
In recent years, several neural prostheses (NP) have been
developed and tested as orthoses or as therapeutic sys-
tems for hemiplegic and tetraplegic subjects aiming to
improve the function of the upper extremities. Several
systems with surface and implanted electrodes have been
used for restoring motor functions by use of functional
electrical stimulation (FES) (5-7) and by applying synergis-
tic control mechanisms (8-14). The use of NP has demon-
strated that targeted groups of subjects could significantly
benefit from FES that is integrated in goal-directed move-
ments (15). The controller for such stimulation needs a
source of command signals indicating what the user is
attempting to do. Various sources exist such as elec-
tromyogram (16), electroencephalogram and/or brain-com-
puter interface (17,18), or body segment motion (8) to
control FES. Several groups (14,19-22) have attempted to
use the motion of one segment of the upper limb to control
the other (i.e., the upper arm to control forearm).

In a previous study (21), we proposed this simple
strategy to guide reaching in quadriplegic humans lacking
elbow extension and flexion. An experimental study of
reaching in the horizontal plane by able-bodied humans
allowed us to reduce the dimensionality of the control
vector from two to a single variable. This was accom-
plished by detailed analysis of the synergy between shoul-
der and elbow joint angles. The same experimental setup
in quadriplegics with retained shoulder movement showed
that natural synergism was preserved even though the
motor and sensory components were reduced or absent.
Based on these findings, we proposed that an assistive
system for the elbow may be volitionally controlled only
from ipsilateral shoulder movements. For this we applied
an inductive learning technique for determining synergies
between movements of the shoulder and elbow joints
while reaching (14). Once the task and preferred strategy
for movement are selected, the voluntary control drives the
proximal segment (upper arm) and the synergistic (artifi-
cial) control drives the distal segment (forearm). We ex-
panded this approach to an automatic method for synthe-
sizing the control for NP that could also augment prona-
tion/supination in persons with quadriplegia (19). With a
well-chosen reduced set of data from the upper arm and
the forearm, the group (20) succeeded improving the con-
trol algorithm designed as the command signal for pow-
ered prostheses and FES in patients with transhumeral
amputations and C5/C6 quadriplegia, respectively. They
planned to deploy this algorithm in FES control systems to
predict the movement of the paralyzed joint from the move-
ment of the joints still under voluntary control. However, to

the best of our knowledge, no results have been reported
in the literature. Tresadern et al. (22) was the first group to
use machine learning for upper limb FES triggering based
on forearm accelerations. A neural network that they trained
on various datasets generalized well over test sessions
and (to a lesser extent) patients. Generalization over mo-
tion was demonstrated for similar motions and less for
dissimilar ones.

In the present study, we evaluated the possible use of
upper arm accelerations for synergistic control of the fore-
arm. This approach was selected on the basis of our
previous research (13-15,19,21,23,24). We have demon-
strated that upper arm and forearm movements are strongly
coupled in the space formed by angular accelerations of
the shoulder and elbow joints (19,25). To observe segment
movements, micro-electro-mechanical systems-based
accelerometers may be used (26-28); however, thus far,
accelerometers were never used efficiently for the assess-
ment of joint angles with sufficient precision in upper
extremities. We therefore used tangential angular accel-
erations instead. For this study we selected to use artificial
neural networks (ANN), a currently popular method to
generate control signals from multiple, fuzzy sensory infor-
mation (29-32).

It has been established from motor control studies that
the biomechanical structure of the arm is used in different
ways to provide movements in different directions. The
control of arm joints varies during hand movements in
different directions despite the common movement char-
acteristics of the hand (bell shape of velocity, close to
straight path). Most published studies (6,15,22,33-35) re-
port results while analyzing hand movements in horizontal
workspace, commonly the surface of the table in front of
the subject. This can restrict the performance of the activi-
ties of daily living (ADL). Upper limb movements in the
vertical direction belong to a free-living environment (36)
that implies a need for the development of a control meth-
od that will provide upper limb vertical movement. In this
study, we propose an approach to control forearm motion
in a selected class of ADL that require a relatively large arm
elevation. Such arm motion is of interest always when the
hand and arm are initially in a relaxed position at the side of
the body. The same holds true when the hand is placed on
a table, but somewhat less arm elevation is necessary to
perform ADL. These situations occur frequently (e.g., us-
ing a telephone, personal hygiene and grooming, switch-
ing light on/off on the wall, taking an object from a table and
placing it on a shelf above the table). Thus, we evaluated
reaching movements between different height levels in a
para-sagittal plane (36).

Traditional assessment methods lack an objective stan-
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dardized analysis for evaluating a patient’s performance
and an estimate of the effectiveness of a therapy. To
address this problem, trajectories during the rehabilitation
course after a stroke have to be quantified, and hence
appropriate instruments for quantitative measurements
are desirable to capture motion trajectories. The method
that we designed for the control of NP may be applicable
for the quantitative assessment of the discrepancy from
normal movement.

Subjects and Methods

Subjects
Seven healthy adults (3 male and 4 female) with a

mean age of 29 ± 7.8 years (range 23-41 years) and a
mean height of 179 ± 11.8 cm (range 167-194 cm) partici-
pated in the study. All subjects were right-handed by self-
report and were either students or employees at the School
of Electrical Engineering, University of Belgrade.

All subjects were naive as to the experimental purpose
and gave informed consent to participate in the study. The
experimental procedures were approved by the Institu-
tional Ethical Review Board of the University of Belgrade
and were in accordance with the declaration of Helsinki.

Experiment
The testing environment was standardized as much as

possible. During testing, a healthy subject sat in front of a
table with his/her hand and arm hanging in a relaxed
position at the side of the body (Figure 1). The table was at
such a height as to permit the subject to comfortably place
his/her hand on the table without moving the torso. The
chair was armless and its height was adjusted so that the
subject’s feet could be flat on the floor.

Participants performed reaching tasks to three targets
located in a para-sagittal plane passing through the shoul-
der. The first three tasks were initiated from the relaxed
arm in a hanging position, while the remaining two were
started with the hand placed on the table and the arm
relaxed.

For the first three tasks, the subjects were instructed to
reach: a) forward and place their hand on the surface of the
table, b) upward and touch the ear with their hand, and c)
upward to attain their highest hand position. After complet-
ing each task the subjects were instructed to retract the
arm back to the starting position. For the two additional
tasks, the subjects were instructed to perform the same
motion as described above in b) and c), however, by
starting with their hand on the table. The subjects were told
not to move the trunk. These were the only instructions
given to subjects. Their pace of movement and their strat-

egy to perform each of the tasks were arbitrary. Note that
this experimental paradigm was designed to require rela-
tively large arm elevation. Movements involved shoulder
adduction and/or flexion and elbow extension during reach-
ing or shoulder abduction and/or extension and elbow
flexion while retracting the hand depending on subjects’
own strategy.

Each task was performed five times consecutively
within one cycle and each cycle was repeated five times.
Therefore, 125 movements were recorded per subject (5
tasks x 5 trials x 5 cycles). To avoid fatigue and lack of
concentration, the subjects were instructed to pause for a
few minutes after each cycle.

Instrumentation
Four dual-axis ADXL203 (Analog Devices, Norwood,

MA, USA) accelerometers with appropriate signal condi-
tioning circuitry were secured to the ends of two lightweight

Figure 1. Experimental design. Five tasks (Tj, j = 1-5) were
performed using target hand locations at three different height
levels: table, ear and the highest hand position (dashed lines).
The first three tasks (T1, T2, T3) were initiated from the relaxed
hanging position (first initial position - thick line), while the re-
maining two (T4, T5) were started with the hand placed at a
relaxed position on the table (second initial position - thick line).
All hand movements were performed in para-sagittal plane pass-
ing through the shoulder (reference system xOy). One bar with
two dual-axis ADXL203 accelerometers at proximal and distal
positions was attached per upper arm and forearm.
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bars. The two bars were attached along the upper arm and
forearm using Velcro straps (Figure 1). The accelerom-
eters were positioned so that one direction of the sensor
pointed along the length of the bar, while the other direction
pointed perpendicular to it. Both sets of data were consid-
ered. The data used in this study were collected from the
measurements in the direction perpendicular to the axes of
upper arm and forearm only. The leads from the four
accelerometers were fastened to the upper arm and fore-
arm, leaving enough slack so as not to hinder motion.

The voltages from the accelerometers (eight signals in
total) were recorded by a laptop computer using the National
Instruments DAQCard-6062E acquisition card. The soft-
ware used for acquisition was developed using LabView 7.1.

Data collection
Data from all eight recorded channels were sampled at

50 samples per second. The signals from the channels,
which were recording accelerations perpendicular to the
long axis of the upper arm and forearm, were considered
as tangential. Accelerations along the long axis were de-
fined as radial (not analyzed in this paper). This resulted in
pairs of relative radial and tangential accelerations associ-
ated with the forearm and upper arm in local coordinate
frames (Figure 1) for proximal (p) and distal (d) sensor
placements:

                                               (Eq. 1)

                                                   (Eq. 2)

where, rp and rd are proximal and distal distances to
the accelerometers from an arbitrary reference point, ω 2

is the square of the angular velocity, α is the absolute
angular acceleration of the bar,  and  are the absolute
accelerations experienced by the sensors, and  is
the unknown acceleration of the reference point. The vec-
tors  and  are unity vectors denoting the radial and
tangential directions, respectively, for the segment in the
relative segment reference system. As stated above, we
present only the results obtained from the tangential com-
ponents.

Data processing
All data processing stored during acquisition was within

MatLab (ver. 7.3.0.267 (2006b), MathWorks, Inc., USA).
The difference between the voltages from two outputs of
sensors (p and d ) attached to the same segment (Equa-
tions 1 and 2) yielded four acceleration components, two
for the forearm and two for the upper arm:

                (Eq. 3)

where D is the distance between the sensors.
The radial component of the acceleration is propor-

tional to the square of the absolute angular velocity while
the tangential component is proportional to the absolute
angular acceleration. The coefficient of proportionality for
both components is the distance between the two accom-
panied sensors (D, identical for the upper arm and fore-
arm).

Signals representing movements to targets from tan-
gential components were extracted and used for further
analysis. Data were low-pass filtered with a 4th order
Butterworth filter using a cutoff frequency of 2.5 Hz.

Reaching synergies were formed as a relationship
between the forearm and upper arm tangential angular
accelerations. Their changes were plotted for movements
across the para-sagittal plane. The phase plots with reach-
ing synergies from all the movements were also inspected
visually.

Neural network design
The subjects’ data were arbitrarily divided into two groups.

One group had five subjects whose data were used for
training (5 of 7), while the other group had 2 subjects whose
data were used for validation (2 of 7). Most of the data (75%)
from the first group were used for training while the rest of it
was used for validation of the generalization.

ANN was implemented using the Neural Network
Toolbox in MatLab. We selected a radial basis function
ANN (RBF ANN) with an input layer using the radial basis
function and hidden layers of pure linear functions. The
networks were trained using the newrb function where the
constants (goal and spread ) were empirically evaluated
for each ANN.

Although it is possible to use raw signals as input to the
ANN, we used filtered signals. Signals used in this study
were tangential angular accelerations. The ANNs were trained
by using upper arm data as input and forearm data as output
signals. Five different RBF ANNs were trained, in which
each network related to a different task. Pearson’s correla-
tion coefficients (kij, i,j = 1-5) between desired (actual) trajec-
tory and predicted with RBF ANN were computed. One
coefficient was estimated for each RBF ANNi to each task j.
For a good correlation the threshold was set at 0.9.

Our hypothesis was that for specific movements, the
trained ANN would predict output with a high correlation
(>0.9) when compared to the desired output each time the
network was exposed to a new input. For all other move-
ments, the trained ANN will predict output with a low
correlation coefficient (<0.9).
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Figure 2. An example of the raw data: signals
in tangential direction from sensors attached
to upper arm proximally (full line) and distally
(dashed line) and from sensors attached to
forearm proximally (dotted line) and distally
(dot-dashed line). Eight accelerations were
measured during a movement; four used for
this study are shown. After completing each
task, the subjects were instructed to retract the
arm back to the starting position. Only trajecto-
ries from initial to target position were plotted.
Note that movement duration was approxi-
mately 1.3 s.

Figure 3. A, One representative example of
the processed data: filtered differences of tan-
gential components of angular accelerations
(αD) are calculated according to Equation 3
(see text). The data are divided by the dis-
tance D between accelerometers and used as
input and output, respectively, for radial basis
function artificial neural network training and
validation. Full line is for upper arm and dashed
line for forearm. B, Examples of phase plots
formed by angular acceleration of upper arm
(UA) and forearm (FA). Five different tasks (Ti,
i = 1-5) performed by one subject are shown.
One trial for each of five tasks is presented.
Notice different shape and size of reaching
synergy patterns.

Results

A typical arm movement to a target for task 2 is shown
in Figure 2. Movement duration ranged from 1.1 to 1.5 s. All

signals were processed according to Equation 3. After
filtering, representative signals are shown in Figure 3A.
Phase plots formed by tangential angular acceleration
data from upper arm and forearm reaching synergies for
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one subject and one trial per task for five different tasks are
illustrated in Figure 3B.

We visually inspected all phase plots and found that as
subjects moved to different areas in the workspace, the
shape and orientation of reaching synergies varied sub-
stantially. Other variations were also noticed. For example,
subject 3 performed all of the trials of task 2 in a similar way
(Figure 4A) but not of task 1 (Figure 4B). Subjects 1 and 2
performed task 1 in a similar way (Figure 4C), but subjects
3 and 4 performed task 2 differently (Figure 4D).

After visual inspection of all phase plots, signals were
ready for ANN training. A total of 75% of data sets from the
training group (5 subjects) were used to train RBF ANNs.
Upper arm and forearm tangential angular accelerations for
one task were the inputs and outputs to the network, respec-
tively. One RBF ANNi corresponded to one task Ti (i = 1-5).

For the remaining 25% of data sets, forearm angular
accelerations were predicted by RBF ANN and compared
to the actual (desired) accelerations. Figure 5 illustrates
the computed correlation coefficients that were obtained
with varying degrees of success. The left panels show
ANN outputs with high correlation in the case of testing
with training data (Figure 5A) and validation data (Figure
5C). On the contrary, the panels on the right are for the
cases with less success in testing with training data (Fig-
ure 5B) and validation data (Figure 5D).

In the overall correlation coefficient analysis, we calcu-
lated the mean (k) and standard deviation (SD) for the 25%
of data from the training group that were not used for
training (Table 1). High mean values for correlation coeffi-
cients (0.9303 < ki,i < 0.9709, i = 1-5) and low standard
deviations (0.0247 < SD < 0.0449) were obtained for all

Figure 4. Phase plots formed by angular ac-
celerations (α) of upper arm (UA) and forearm
(FA). Various examples of acquired data are
shown: A, One subject (#3) repeating task 2
similarly in four trials. B, The same subject
(#3) repeating task 1 differently in four trials.
C, Task 1 performed by two subjects (#1 and
#2) in a similar way; full line is for one trial of
subject #1 and dashed line is for one trial of
subject #2. D, Task 2 performed by two sub-
jects (#3 and #4) in different ways; full line is
for one trial of subject #3 and dashed line is for
one trial of subject #4.

Figure 5. The output (angular acceleration (α)
in rad/s2 vs number of samples) predicted
from radial basis function artificial neural net-
work (full line) and the desired (actual) trajec-
tory (dashed line). Correlation coefficients (k)
reported in the upper right-hand corners for
each desired/predicted pair. Left panels are
examples of high correlation (A and C) and
right panels are for low correlation (B and D).
Upper two panels (A and B) are for the data
not used for network training in the training
group (25% of data from 5 of 7 subjects) and
lower two panels (C and D) are for validation
data (from 2 of 7 subjects). FA = forearm.
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Table 1. Person’s correlation coefficients (ki,i, i = 1-5) between desired (actual) and predicted by radial basis function (RBF) artificial
neural network (ANN) forearm angular accelerations computed for training and validation data.

Data set Pearson’s correlation coefficient

Training group (25% of data not used for training) Validation group

Mean ± SD Minimum Maximum Mean ± SD Minimum Maximum

RBF ANN1 0.97090.97090.97090.97090.9709 ±±±±± 0.02470.02470.02470.02470.0247 0.89510.89510.89510.89510.8951 0.9908 0.9410 ± 0.0610 0.7533 0.9928
RBF ANN2 0.9685 ± 0.0405 0.8473 0.99820.99820.99820.99820.9982 0.9149 ± 0.0571 0.7639 0.9854
RBF ANN3 0.9612 ± 0.0415 0.8414 0.9955 0.94970.94970.94970.94970.9497 ± 0.0448 0.83220.83220.83220.83220.8322 0.99360.99360.99360.99360.9936
RBF ANN4 0.9512 ± 0.0301 0.8873 0.9954 0.9174 ± 0.0569 0.7663 0.9892
RBF ANN5 0.9303 ± 0.0449 0.8464 0.9825 0.9276 ± 0.04340.04340.04340.04340.0434 0.8125 0.9896

The ANNs were trained by using upper arm data as input and forearm data as output signals. Five different RBF ANNs were trained
in which each network related to a different task. Data are reported as means ± SD for the summary of all data for five trained
networks, each for one task. Values in bold indicate the best ANN performance.

Table 2. Pearson’s correlation coefficients (ki,j, i,j = 1-5) between
desired (actual) and predicted by radial basis function (RBF)
artificial neural network (ANN) forearm angular accelerations
computed for validation data.

Pearson’s correlation coefficient

Task 1 Task 2 Task 3 Task 4 Task 5

RBF ANN1 0.9410.9410.9410.9410.941 0.7512 0.7068 0.3919 0.1787
RBF ANN2 0.6871 0.91490.91490.91490.91490.9149 0.8302 0.5725 0.4959
RBF ANN3 0.7003 0.8791 0.94970.94970.94970.94970.9497 0.6543 0.63
RBF ANN4 0.3999 0.5781 0.4032 0.91740.91740.91740.91740.9174 0.4637
RBF ANN5 0.0316 0.3432 0.4612 0.648 0.92760.92760.92760.92760.9276

The overall classification accuracy was tested in cross-correla-
tion analysis between each ANN and each task. Data are re-
ported as a summary means of all data for 5 trained networks
and for 5 tasks. Mean values in bold type are for validation group
from Table 1.

comparisons. The highest mean value and the lowest SD
were obtained for ANN1. The opposite was found for
ANN5. Minimal and maximal correlation coefficients ranged
from 0.8414 (ANN3) to 0.8951 (ANN1) and from 0.9825
(ANN5) to 0.9982 (ANN2), respectively.

The same computations were analyzed for the data from
the validation group (2 subjects; Table 1). In comparison to
the training group all of the mean values for the validation
group were slightly lower, but always greater than 0.9. The
mean values of the correlation coefficients ranged from
0.9149 to 0.9497 and the SD ranged from 0.0434 to 0.0610.
Minimal varied from 0.7533 (ANN1) to 0.8322 (ANN3) and
maximal varied from 0.9854 (ANN2) to 0.9936 (ANN3).

Finally, to test the overall classification accuracy, the
forearm tangential angular accelerations predicted by one
RBF ANN were compared to the actual (desired) for all
tasks (RBF ANNi vs Tj, where i,j = 1-5). The correlation
coefficients were analyzed for validation data only. The
classification results for all five of the RBF ANNs for each
task are reported in Table 2. As already described in the
previous paragraph, high correlation coefficients (0.9149
< ki,i < 0.9497) were obtained (values in Table 2 in bold
forming a diagonal) for all RBF ANNi vs Ti comparisons. As
expected, the remaining correlation coefficients (ki,j, i ≠ j)
were lower than 0.9. They ranged from k5,1 = 0.0316 for
ANN5 applied to data collected in task 1 to k2,3 = 0.8302 for
ANN2 used for the data measured during task 3.

Performance differences among five of the ANNs were
variable for each task. We calculated the critical differ-
ences between the mean correlation coefficients for the
same task. They ranged from 0.04 for task 2 between
ANN2 and ANN3 to 0.47 for task 5 between ANN5 and
ANN2. For Tasks 1, 3, and 4, the critical differences were
0.24, 0.11, and 0.26, respectively.

Discussion

We propose a method for the control of neural prosthe-
ses that can be used with available systems that apply
either surface or implantable interfaces to sensory-motor
systems. The control strategy was based on mimicking an
output space model of natural control, determined from
motor synergies of reaching movements of healthy hu-
mans. It is specifically designed for neuro-rehabilitation.
Hand movement was performed in the sagittal plane com-
prising elbow and shoulder joints. We constrained our
setup to a sitting position and considered five different
horizontal levels. The starting point and movement direc-
tion were controlled, rather than selected by the subjects.

We evaluated five different tasks using various shoul-
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der motions, ranging from substantial to those with less
amplitude. The selected tasks required the coordination of
both shoulder and elbow joint movements (35). The influ-
ence of the shoulder on the elbow motion is much more
powerful than vice versa (34). This is due to specific inertial
properties of the upper arm and forearm, as well as to the
more proximal position of the upper arm in the chain of
segments comprising the arm. These movements are of
particular interest for the rehabilitation of patients with a
paralyzed/paretic arm and hand as they belong to the
repertoire of ADL. Selected reaching tasks led to combin-
ing “elbow extension and shoulder adduction and/or flex-
ion” or “elbow flexion and shoulder abduction and/or ex-
tension”.

We selected a radial basis function network as the
universal function approximator (37), since it is able to
model any continuous function between the inputs and
outputs for a given number of sufficient training samples
and unlimited hidden units. Our findings indicate clear
differences in the correlation coefficients for ANN1, ANN4
and ANN5 from other ANNs; however, better results are
desired for ANN2 and ANN3.

An objective measure of the discrepancy of hand move-
ments is clinically important for assessment and diagno-
sis, as well as for rehabilitation outcome to allow for evi-
dence-based practice (1,2). The method described in this
study was primarily designed for the active-assistance
control of the forearm (3,4). It may also be applicable for
the quantitative assessment of the deviation from normal
movement. Trained RBF ANN with data from healthy sub-
jects may be used for movement evaluation of individuals
whose data were not used for the training. The relationship
between the correlation coefficient k (Tables 1 and 2) and
clinical scales (e.g., Fugel-Mayer scores, Aschworth

grades) could be evaluated in another study with stroke
survivors. As such, coefficient k could be used for estima-
tion of preserved motor skills based on kinematics (38,39).

We modeled a reaching task as a two-link mechanism.
The upper arm and forearm motion trajectories during
vertical arm movements were estimated from the meas-
ured tangential angular accelerations, and their correlation
was documented by using RBF ANNs. Our results suggest
that the proposed method successfully discriminates be-
tween different motions. This approach to control forearm
motion from upper arm kinematics is of great significance
particularly for humans with SCI in a free-living environ-
ment.

The measurement system of using dual-axis acceler-
ometers, developed for this study, could also be used for
an objective assessment of upper limb activity. For this
purpose, training-related changes in synergies apparent
from movement kinematics during rehabilitation would char-
acterize the extent and the course of recovery. As such, a
simple system using this methodology is of particular im-
portance for stroke patients.

Limitations of this study include the use of a small
number of participants and the use of only non-impaired
participants. The selection of movements evaluated in this
study was based on our personal opinion of functionally
useful actions. Other heights for initial and target hand
positions would extend the repertoire of activities that
could be achieved. Future studies should incorporate full
body reaching tasks (40).
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