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Effects of acid-base imbalance on vascular
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Acid-base homeostasis maintains systemic arterial pH within a narrow range. Whereas the normal range of pH for clinical
laboratories is 7.35-7.45, in vivo pH is maintained within a much narrower range. In clinical and experimental settings, blood pH
can vary in response to respiratory or renal impairment. This altered pH promotes changes in vascular smooth muscle tone with
impact on circulation and blood pressure control. Changes in pH can be divided into those occurring in the extracellular space
(pH,) and those occurring within the intracellular space (pH;), although, extracellular and intracellular compartments influence
each other. Consistent with the multiple events involved in the changes in tone produced by altered pH,, including type of
vascular bed, several factors and mechanisms, in addition to hydrogen ion concentration, have been suggested to be involved.
The scientific literature has many reports concerning acid-base balance and endothelium function, but these concepts are not
clear about acid-base disorders and their relations with the three known mechanisms of endothelium-dependent vascular
reactivity: nitric oxide (NO/cGMP-dependent), prostacyclin (PGl,/cAMP-dependent) and hyperpolarization. During the last
decades, many studies have been published and have given rise to confronting data on acid-base disorder and endothelial
function. Therefore, the main proposal of this review is to provide a critical analysis of the state of art and incentivate researchers

to develop more studies about these issues.
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Introduction

Acid-base homeostasis maintains systemic arterial pH
within a narrow range. Whereas the normal range of pH for
clinical laboratories is 7.35-7.45, in vivo pH is maintained
within a much narrower range. This degree of tight regula-
tion is accomplished by chemical buffering in extracellular
and intracellular fluids and regulatory responses that are
controlled by the respiratory and renal systems. Changes
in pH can have profound, yet poorly understood, influence
on pulmonary and systemic vascular resistance and reac-
tivity to pressor agents.

Changes in pH can be divided into those occurring in
the extracellular space (pH,) and those occurring within
the intracellular space (pH;), although, extracellular and
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intracellular compartments influence each other. Cell stud-
ies have shown that changes in pH, cause only small and
slow changes in pH;; as a result, pH, and pH; have usually
been considered separately (1). For example, in cardiac
myocytes the change in pH; was only around 30% of the
pH, change and occurred slowly (10-40 min) (2,3). How-
ever, in rat mesenteric resistance vessels the situation is
different; changes in pH, cause large (70% pH, changes)
and rapid (<2 min) changes in pH; (4). Therefore, it appears
that not all vascular smooth muscles behave in a similar
manner when pH, is changed, which may be a conse-
quence of differing permeabilities to protons or mechan-
isms of regulating pH;.

Consistent with the multiple events involved in the
changes in tone produced by altered pH,, including type of
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vascular bed, several factors and mechanisms, in addition
to hydrogen ion concentration, have been suggested to be
involved. Prostanoids, purines, sensory neuro-transmit-
ters (5-7), hyperpolarization, and changes in intracellular
calcium concentration ([Ca®'];) are candidates as well as
the recently demonstrated vasoactive molecule nitric ox-
ide (NO) (5). The most common manner to study NO action
has been to interfere with the enzymatic production of
this gas and the same experimental approach has been
used in studies involving NO and metabolic vasodilation
(8-10).

There are many reports concerning acid-base imbal-
ance and endothelium function, but these concepts are, in
general, too specific. The effects of pH and its mechanism
of action may be expected to vary between vessel types.
The effects of pH may alter with time or separate acute and
chronic pathways may be evoked. The endothelium may
well activate a different pathway from that of the smooth
muscle and extracellular matrix and there is extensive
literature on the important role played by the endothelium
in mediating vascular responsiveness. This review ana-
lyzes how vascular tone can be regulated by endothelial
and smooth muscle function under the influence of changes
of pH.

Effect of pH, on pH;

In vitro studies about the measurement of pH, are
generally simple, occurring in perfusate; however, the
measurement of pH; is problematic and publications did
not appear until the 1980’s. This was because there was
no suitable technique for measuring pH; in small, contrac-
tile preparations. Presently, two main techniques are avail-
able: magnetic resonance and fluorescent indicators (us-
ing 2'7’-bis-carboxyethyl-5(6)-carboxyfluorescein (BCECF)
and 5-(and-6)-carboxy SNARF®-1, acetoxymethyl ester,
acetate).

Low pH values induce vessel dilation. When extracel-
lular pH is 7.4, the corresponding intracellular value is 7.1
to 7.2 when actually it should be 6.4. This implies that
protons are actively extruded from the cells against an
electrochemical gradient (11-13). The main proton trans-
porters are the Na*/H* exchanger and the sodium coupled
bicarbonate. The type 1 Na*/H* isoform is localized in the
vascular smooth muscle and can be activated by vasocon-
strictors and growth factors, glucose, and hyperosmotic
stress leading to increased rate of acid recovery, increased
influx of sodium and restoration of cell volume. It is likely
that intracellular concentration of calcium modulates the
activation of this transporter, as well as a mechanism
dependent on or independent of protein kinase C. Like-
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wise, cGMP has also been implicated in the control of the
exchange activity as a result of pH alterations. Unlike the
Na*/H* transporter, the Na-/HCO;~ exchanger may vary
between smooth muscles. It appears that this exchanger
has a plethora of different expressions and the exact
physiological importance of each is challenging. The con-
sensus is that this transporter accounts for a significant
role in the control of pH;, except for the guinea pig femoral
artery where it has a very small fraction of acid extrusion.
Additionally, there is a very consistent finding that smooth
muscles have an Na*-independent CI-/HCO;- exchange
pathway that has been shown in cultured and intact vascu-
lar preparations (14-16).

It is possible that the response to low pH, values is
mediated through the decrease in pH;. Furthermore, most
intracellular biochemical reactions of excitation-contrac-
tion coupling are potentially affected by low pH; and often in
the direction that favors relaxation. On the other hand, in
most vascular beds, the immediate response to a selective
decrease in pH; is increased tension and some may re-
spond with acute alkalinization, which may cause para-
doxical relaxation of an agonist-induced response or have
little effect on vascular tone. Thus, reduction of extracellu-
lar pH is probably more important for vasodilation than the
associated reduction in pH;. It is becoming clear that the
reduction of [Ca?*]; is involved significantly, although the
role of membrane potential is not yet understood (14).

Control of vascular smooth muscle by external stimuli
involves the generation of intracellular H* signals, which
are transduced by the concerted action of a variety of
cellular H* sensors. Intracellular pH sensors form signal
complexes, which are able to convert H* signals to intracel-
lular Ca?* signals thereby enabling both homeostatic re-
sponses to acidosis and alkalosis as well as control of
smooth muscle function (17).

Respiratory acidosis

The pH has marked effects on the blood flow of several
vascular beds but the underlying mechanisms are incom-
pletely understood. It is still not agreed, for example,
whether it is the fall in pH, or pH; that is responsible for
changes in tone resulting from hypercapnic acidosis. This
issue has been further complicated by the recent discov-
ery that NO may also be involved in vasodilator responses
to hypercapnia. This finding has led some laboratories to
divert attention away from vascular smooth muscle.

The role of NO is best investigated in the cerebral
circulation where it plays an important role in modulating
response to acidosis, and where it is probably of extravas-
cular origin (6). Several studies have shown increased
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coronary blood flow during hypercapnia (18,19). Whether
PCO2 or pH exerts a direct effect on the smooth muscle of
coronary vessels or whether the vascular response is
mediated through other mechanisms is currently not known.

NO was proposed as a mediator of hypercapnia-evoked
coronary vasodilation in the in situ dog heart (20) and
findings in isolated aortic strips suggest that vasorelaxa-
tion in this artery in response to CO, may be partially
mediated by NO (21). A number of publications have
implicated NO in the vasodilatory response of the cerebral
vasculature to hypercapnia (22), although more recent
evidence suggests that the role of NO may be “permissive”
rather than “causative” in this vascular bed (23).

Evidence from studying in situ dog hearts (20) came
primarily from experiments in which the dilatory effects of
hypercapnia on the coronary vasculature were attenuated
(though not abolished) by prior exposure to the NO syn-
thase (NOS) inhibitors L-NAME and L-NMMA. Further-
more, the coronary hypercapneic-induced vasodilation
component that was sensitive to NOS inhibition was not
secondary to increased blood flow, indicating that the re-
lease of NO was likely due to a direct effect of CO, (or H*) on
the vascular endothelium rather than to a shear stress-
induced increase of coronary flow rate. No effect of the NOS
inhibitors was observed on basal coronary flow, excluding
the role of NO in the regulation of basal coronary vascular
tone. This observation conflicts with in vitro findings in guin-
ea pig Langendorff heart preparations, in which NOS inhibi-
tion reduced basal coronary vascular flow (21-23).

The role of NO in rat coronary flow regulation during
acidosis was evaluated in isolated perfused rat Langen-
dorff heart preparations exposed to brief periods of hyper-
capnic acidosis. Respiratory acidosis resulted in increased
coronary flow, in conjunction with decreased contractile
tension. Heart rate remained unaltered. The NOS inhibitor,
L-NAME (100 pM), failed to attenuate the increases in
coronary flow during hypercapnia or metabolic acidosis,
even though it significantly reduced basal flow. These
results suggest that, although NO contributes to the regu-
lation of basal coronary vascular tone, it is not a mediator
of the vasodilatory effects of hypercapnia and acidosis in
this type of preparation (24).

Hypercapnia evokes responses that are both NO de-
pendent and independent. One possible mechanism is
hypercapnia-induced NO production via the L-arginine/
NO pathway. However, NO donor restores the response to
hypercapnia after prior attenuation with L-NAME. This
would suggest that the production of NO may not be
increased during hypercapnia and that the role of NO is
merely permissive for the direct effect of pH change in
vascular smooth muscle cells (23).
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Respiratory alkalosis

Hyperoxia and alkalosis produce pulmonary vasodila-
tion independent of endothelium-derived NO in newborn
lambs; however, their mechanisms of action are unknown
(25). NO is an important modulator of pulmonary vascular
tone and produces potent pulmonary vasodilation during
pulmonary hypertension. In vitro evidence suggests that
NO may mediate the vasodilating effects of oxygen. To
investigate whether NO synthesis mediates pulmonary
vasodilation produced by hyperoxia, 100% oxygen normo-
capnic ventilation, arterial oxygen tension >450 torr (60
kPa) and alkalosis (hyperventilation with 21% oxygen, pH
>7.55) were studied in 8 intact newborn lambs during
similar degrees of pulmonary hypertension. It was re-
ported that hyperoxia and alkalosis can produce pulmo-
nary vasodilation independent of NO synthesis in the intact
newborn lamb with pulmonary hypertensive disorders in-
duced by U-46619 (a thromboxane A2 mimic) or N-omega-
nitro-L-arginine (an inhibitor of NO synthesis) (25).

It has been reported that alkalosis-induced vasodila-
tion is mediated by NO in newborn piglet pulmonary artery
and vein rings precontracted with U-46619. In contrast,
prostacyclin or K* channel activation contributed to the
response of in situ pulmonary vessels. A study that sought
to identify factors contributing to the difference in reactivity
between isolated and in situ pulmonary vessels found that
NOS inhibition fully blocked alkalosis-induced relaxation
of piglet artery and vein rings in isolated pulmonary prepa-
rations ventilated with a gas mixture containing 3% CO,
(pH ~7.6) (26,27). In contrast, NOS inhibition alone had no
effect on alkalosis-induced pulmonary vasodilation in iso-
lated piglet lungs ventilated with gas mixture containing
0% CO; (pH ~7.6) (28). These data indicate that investiga-
tion of other factors, such as perivascular tissue (e.g.,
adventitia and parenchyma) and remote signaling path-
ways, should be carried out to reconcile this discrepancy in
reactivity between isolated and in situ arteries (29).

Hypocapnic alkalosis-mediated relaxation is signifi-
cantly blunted in piglet pulmonary venous rings without
functional endothelium and in rings treated with NOS or
guanylate cyclase inhibitor, suggesting that dilation is me-
diated by the NO-cGMP pathway (26) rather than by PGl,
as reported by Hammerman et al. (30). In contrast to piglet
pulmonary vessels, NO did not contribute to alkalosis-
induced vasodilation in the rabbit (31) or rat (32) lung. PGl,
synthesis, like NO synthesis, is enhanced by increased
endothelial cell cytosolic Ca2* (33). These findings reflect
the interspecies differences in dominant endothelium-de-
rived modulator synthesis.

Alkalosis causes a reduction in pulmonary vascular
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resistance at normal and elevated tone conditions with the
response limited primarily to the small arteries, which is not
mediated by NO (32). The effects of alkalosis are abol-
ished when vascular tone was increased with a low dose of
KCI, suggesting that vascular response to pH may also
involve changes in membrane potential.

Metabolic acidosis

Formore than a century, it has been known that changes
in pH are determinant of tone. Gaskell (34) demonstrated
that acid solutions evoke vascular smooth muscle relax-
ation and more recent studies have shown that reduction
of blood pH increases blood flow (35). This phenomenon,
the so-called ‘acidic-metabolic vasodilation’, has been sug-
gested to contribute to the regulation of local blood flow,
mediating vasodilation that occurs during hypoxia or is-
chemia or during increased metabolic activity in order to
fulfill the need for energy and oxygen.

A well-known phenomenon is that reduction of perivas-
cular pH in acidemia decreases the responsiveness to
vasoconstrictors and results in difficulty to maintain sys-
temic blood pressure (36). Perivascular pH can affect
many cellular processes (4), but the precise mechanisms
of vascular hyporesponsiveness remain uncertain. Low
pH has been shown to reduce Ca?* influx (37), to inhibit
myofilament contractility (38) and to alter receptors on the
cell surface (39), accounting for the attenuation of vaso-
constrictor responses.

Although these actions were observed with relatively
large changes in pH, modest acidification (i.e., from pH 7.4
to 7.0) has also been demonstrated to cause substantial
inhibition of vascular smooth muscle contractility (40),
which has been in part associated with hyperpolarization
(41) and an increase in intracellular Ca%* sequestration. In
addition to these direct actions of H* on smooth muscle, it
has been demonstrated that endothelium-derived NO plays
an important role in the hyporesponsiveness to vasocon-
strictors elicited by acidemia (42).

Hattori et al. (43) examined the effects of modest acidifi-
cation (pH, 7.4 to 7.0) on the dilatory responses of isolated
rat thoracic aorta and showed that modest acidification
increases NO-mediated relaxation in rat aorta, probably due
to an enhancement of cGMP-dependent pathway. In an
acidic environment, NO seems to be more stable; addition-
ally, relaxation was unrelated to K channel mechanisms.
NO is also implicated in cerebral arteriolar dilation because
this was partially inhibited by L-NMMA and endothelial im-
pairment. There are two possible explanations for endothe-
lial NO-mediated vasodilation: 1) acidosis may activate NOS
and 2) acidosis protects spontaneously released NO be-
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cause NO is stable in acidic media (44).

Acidic vasodilation has mainly been suggested to be
endothelium independent, but it is the enzymatically pro-
duced NO that has been suggested to be involved, making
the origin of this NO unclear. In physiological concentra-
tion, nitrite evokes vasodilation, most likely through NO
release. This NO release and parallel vasodilation is in-
creased if the environmental pH is lowered to levels nor-
mally found in tissues after ischemia/hypoxia or increased
metabolic activity. NO formation from nitrite is increased at
low pH and acidic vasodilation by nitrite may involve cGMP.
However, it is possible that some effects of NO may be
related to other mechanisms such as direct interaction with
ion channels. This suggests that non-enzymatically de-
rived NO contributes to the “metabolic-acidic” local blood
flow regulation in rat aorta (45).

In systemic vessels, acidosis causes vasodilation due
to hyperpolarization of smooth muscles and it is possible
that a similar potential effect may be present in pulmonary
vessels. It has also been reported that acidosis inhibits
calcium influx through “leak” channels in endothelial cells
(46) and thus may inhibit NO synthesis. Activation of Krp
channels and subsequent inhibition of Ca2* influx via volt-
age dependent calcium channels is the mechanism by
which a decrease in pH (with HCI) produces relaxation in
denuded internal mammary artery (47).

Hypercapneic and eucapneic acidosis have different
mechanisms between vascular beds. However, both lead
to increased hydrogen ion concentration, and the direct
and/or indirect effects are related to acidosis-induced dila-
tion via potassium and calcium channels in vascular smooth
muscle. Smooth muscle Karp channels along with endo-
thelium Karp channels contribute to acidosis-induced dila-
tion. The activation of potassium channels by low pH is
responsible for cell membrane hyperpolarization. Other
types of potassium channels (Kcq,, Ki, K,) seem to have
varied roles in acidosis vasodilation depending on several
factors, such as species and organ studied.

Most studies have associated acidosis with vascular
dilatation attributed to cell hyperpolarization, decrease of
intracellular calcium concentration, activation of potas-
sium channels and NO. Although these may be the most
common findings, some investigators have described acidic
vasoconstriction in isolated aortas from rats. This indicates
that vascular smooth muscle responses to acidic condi-
tions are strain specific. Like strain specificity, the effects
of acidosis are vascular-bed specific.

Metabolic alkalosis

Investigation of the effect of metabolic alkalosis on the
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endothelium-dependent reactivity is rare. One paper men-
tioning possible effects of metabolic alkalosis relates the
important role that NO plays in the transition from intrauter-
ine to extrauterine life. If this transition fails, a condition
called persistent pulmonary hypertension of the neonate
may develop. The current treatment modalities for this
disease include induction of alkalosis by hyperventilation
or alkali infusion, inhaled NO and extracorporeal mem-
brane oxygenation (48). During hyperventilation, lower
PCO2 values resulted in respiratory alkalosis, relaxed pul-
monary vasculature and improved oxygenation. A similar
increase in pulmonary blood flow can be obtained by
intravenous infusion of alkaline solution that would in-
crease pH by inducing metabolic alkalosis (49). There is
evidence from animal studies that the elevated pH rather
than the low Pc02 is responsible for the resultant change in
vascular resistance (50,51). Nagy et al. (49) examined the
effect of pH on the activity and expression of endothelial
NOS (eNOS) in cultured bovine aortic endothelial cells as
a possible explanation for the pH-dependent drop in pul-
monary vascular resistance. They did not observe eNOS
expression after short- (4 h) and long-term (16 h) exposure
to alkalosis (pH 7.1 to 7.6). Mizuno et al. (52) showed that
increased extracellular pH activates eNOS via the influx of
extracellular calcium and that the sodium/calcium ex-
changer regulates eNOS activity during alkalosis, collabo-
rating for sustained activation of eNOS. Extracellular alka-
losis is suggested to be involved in the stimulation of NO
release via calcium influx. A close relationship exists be-
tween calcium uptake into endothelial cells and activation
of the Na*/Ca?* exchanger, as well as a tight interaction of
sodium/calcium exchanger with eNOS. Additionally intra-
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