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Nuclear calcium signaling: a cell within a cell
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Calcium (Ca?*) is a versatile second messenger that regulates a wide range of cellular functions. Although it is not established
how a single second messenger coordinates diverse effects within a cell, there is increasing evidence that the spatial patterns
of Ca?* signals may determine their specificity. Ca?* signaling patterns can vary in different regions of the cell and Ca?* signals
in nuclear and cytoplasmic compartments have been reported to occur independently. No general paradigm has been
established yet to explain whether, how, or when Ca?* signals are initiated within the nucleus or their function. Here we highlight
that receptor tyrosine kinases rapidly translocate to the nucleus. Ca?* signals that are induced by growth factors result from
phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate formation within the nucleus rather than within

the cytoplasm. This novel signaling mechanism may be responsible for growth factor effects on cell proliferation.
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Introduction

Intracellular Ca2* can regulate cellular processes as
distinct as cell death and proliferation (1). To achieve this
versatility, there is increasing evidence that the spatial
patterns of Ca?* signals may determine their specificity (2).
Ca?* signals in nuclear and cytoplasmic compartments
occur independently in several different cell types (3).
However, the mechanisms and pathways that promote
localized increases of free Ca2* levels in the nucleus have
not been entirely defined.

Recently, ligand-dependent translocation of receptor
tyrosine kinases (RTKs) to the nucleus has been reported
(4-7). RTKs can activate phospholipase C (PLC) that hy-
drolyzes phosphatidylinositol 4,5-bisphosphate (PIP,),
generating two intracellular products: inositol 1,4,5-tris-
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phosphate (InsPs3), a universal Ca2*-mobilizing second
messenger, and diacylglycerol, an activator of protein
kinase C (PKC) (8,9). It has also been reported that the
interior of the nucleus has all the Ca2* signaling machinery
necessary to produce nuclear Ca?* signaling (10-15). The
translocation of RTK to the nucleus indicates a new mech-
anism by which RTK increases Ca?* in the nucleus and a
new paradigm to explain the mechanism and pathways
that promote nuclear Ca2* signaling. This review highlights
the recent advances in this area.

The nucleus contains the machinery needed
to locally increase Ca?*

PLC hydrolyzes PIP, to generate InsP5 (16), and InsP;
then binds to the InsP; receptor (InsP3R) to release Ca2*
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from internal stores. It is well established that components
necessary for InsPs;-mediated Ca?* signaling are present
in the plasma membrane and the endoplasmic reticulum,
and there is evidence that these components are also
present in the nuclear envelope as well. These compo-
nents include PIP kinase (PIPK) (17,18), which synthe-
sizes PIP,, plus PLC (19) and the InsP3R (20-22). InsPsR is
found on both the cytoplasmic and the intranuclear side of
the nuclear membrane (11,23), and the nuclear envelope
contains sarco/endoplasmic reticulum Ca?*-ATPase
(SERCA) pumps for Ca?* reuptake as well (24). The nucle-
us, therefore, is equipped to produce InsP; and to release
and take up free Ca?*, independent of cytosolic InsP; or
Ca?*. Although Ca?* can spread passively from the cytosol
into the nucleus under certain circumstances (25-27), in-
tranuclear InsP3 can increase Ca2* directly within the nu-
cleus as well, both in isolated nuclei (12,20,28) and in
nuclei within intact cells (23,29,30). Moreover, RTKs may
selectively activate nuclear isoforms of PLC (18,31). How-
ever, until recently it was not known whether such recep-
tors use this mechanism to increase Ca?* in the nucleus.
Two additional details about nuclear Ca?* signaling have
recently been established. First, the relative distribution of
InsP3R isoforms in the nucleus and cytosol can differ
among cell types (21). Because each InsP3R isoform has
distinct sensitivities to InsP5 (32) and to Ca?* (33,34), this
differential distribution provides a mechanism by which the
nucleus may be more sensitive than the cytosol to InsP5-
mediated Ca?* release in certain cell types (21). Second,
InsP;-gated Ca?* stores are found not only within the
nuclear envelope, but also along a nucleoplasmic reticu-
lum (23). PIPK and PIP, are present in the interior of the
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Figure 1. The insulin receptor translocates to the nucleus. Con-
focal immunofluorescence images of the insulin receptor (IR)
after 5-min stimulation with insulin (10 nM). Isolated rat hepato-
cytes were double-labeled with a polyclonal antibody against
insulin receptor B (BD Biosciences, USA) and a monoclonal
antibody against the nuclear membrane marker Lamin-B1
(Abcam, USA) and then incubated with secondary antibodies
conjugated to Alexa 488 and 555 (Invitrogen, USA), respective-
ly. Images were collected with a Zeiss LSM 510 confocal micro-
scope using a 63X, 1.4-NA objective lens with excitation at 488
nm and observation at 505-550 nm to detect Alexa 488 (green),
and excitation at 543 nm and observation at 560-610 nm to
detect Alexa 555 (red).
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nucleus (14), and insulin and hepatocyte growth factor
(HGF) can induce InsP3 production in nuclei (6,7,35).
These findings suggest that Ca?* signaling machinery is
present not only along the nuclear envelope but within the
interior of the nucleus as well, which may provide an
additional level of spatial control of nuclear Ca2* signaling.
In fact, Ca?* signals induced by HGF and insulin begin in
the nucleus (6,7); nuclear Ca?* signals are initiated in both
SKHep-1 cells and primary hepatocytes when PIP, is
hydrolyzed to form InsP; (6,7). Moreover, both the HGF
receptor (c-met) and insulin receptor translocate to the
nucleus (Figure 1). Translocation of the HGF receptor to
the nucleus depends upon the adaptor protein Gab1, that
contains a nuclear localization sequence and importin-p1,
and the formation of Ca2* signals depends upon this trans-
location (6). Transport of proteins through the nuclear pore
complex typically involves importins o/ and exportins.
Specifically, importin-B binds to the classical lysine-rich
nuclear localization signal in the cargo, and importin-3
interacts with the importin-B/cargo complex to guide it
through the nuclear pore (6). Together, these data indicate
that RTKs can activate the calcium signaling machinery
within the nucleus.

Increases in Ca2* within the nucleus have
specific cellular effects

Nuclear Ca?* signaling directly regulates cellular func-
tions such as activation of kinases within the nucleus
(23,36), protein transport across the nuclear envelope
(11,37), and transcription of certain genes (38-40). For
example, nuclear Ca2* activates calmodulin kinase 1V (36)
and induces translocation of intranuclear but not cytosolic
PKC (23). Gene transcription mediated by either the cAMP
response element (CRE), CRE binding protein (CREB), or
CREB binding protein (CBP) specifically depends upon
increases in nuclear Ca?*, whereas gene transcription
mediated by the serum response element instead is medi-
ated by increases in cytoplasmic Ca2* (38,39). Transcrip-
tional activation of Elk-1 by epidermal growth factor also
depends upon nuclear rather than cytosolic Ca2* (40).
Moreover, Ca2* can bind to and directly regulate certain
nuclear transcription factors (41), and can affect DNA
structure as well (42). Nuclear Ca?* can negatively regu-
late the activity of transcription factors as well (43). This
was demonstrated by examining the relative effects of
nuclear and cytosolic Ca2* on the activity of the transcrip-
tion enhancer factor TEF/TEAD. Chelation of nuclear but
not cytosolic Ca?* increased TEAD activity to twice that of
controls, providing evidence that nuclear Ca?* negatively
regulates the activity of this transcription factor. Collec-
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tively, these findings show that nuclear Ca?* regulates the
expression of certain genes. Exogenous expression of the
Ca?* buffering protein parvalbumin has shown that intra-
cellular Ca?* regulates cell growth (44), but lack of effective
experimental tools has made it difficult to demonstrate
whether the effect of Ca2* on cell growth is due to nuclear
or cytosolic Ca?* signals. Initial functional studies of nu-
clear Ca%* on gene transcription relied on microinjection of
Ca?* chelators into either the nucleus or cytosol of indi-
vidual cells (39), but it is impractical to use this labor-
intensive approach to conduct biochemical, cell popula-
tion, or in vivo studies. However, a newer approach has
been developed in which cells are infected with adenovirus
to deliver Ca?* chelators such as parvalbumin that are
targeted to be expressed in either the nucleus or cytosol
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