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Sleep disturbances have far-reaching effects on the neuroendocrine and immune systems and may be linked to disease
manifestation. Sleep deprivation can accelerate the onset of lupus in NZB/NZWF; mice, an animal model of severe systemic
lupus erythematosus. High prolactin (PRL) concentrations are involved in the pathogenesis of systemic lupus erythematosus in
human beings, as well as in NZB/NZWF, mice. We hypothesized that PRL could be involved in the earlier onset of the disease
in sleep-deprived NZB/NZWF, mice. We also investigated its binding to dopaminergic receptors, since PRL secretion is mainly
controlled by dopamine. Female NZB/NZWF, mice aged 9 weeks were deprived of sleep using the multiple platform method.
Blood samples were taken for the determination of PRL concentrations and quantitative receptor autoradiography was used to
map binding of the tritiated dopaminergic receptor ligands [*H]-SCH23390, [3H]-raclopride and [3*H]-WIN35,428 to D, and D,
dopaminergic receptors and dopamine transporter sites throughout the brain, respectively. Sleep deprivation induced a
significant decrease in plasma PRL secretion (2.58 + 0.95 ng/mL) compared with the control group (25.25 + 9.18 ng/mL). The
binding to D4 and D, binding sites was not significantly affected by sleep deprivation; however, dopamine transporter binding was
significantly increased in subdivisions of the caudate-putamen - posterior (16.52 + 0.5 vs 14.44 + 0.6), dorsolateral (18.84 + 0.7
vs 15.97 + 0.7) and ventrolateral (24.99 £ 0.5 vs 22.54 + 0.7 pCi/g), in the sleep-deprived mice when compared to the control
group. These results suggest that PRL is not the main mechanism involved in the earlier onset of the disease observed in sleep-
deprived NZB/NZWF mice and the reduction of PRL concentrations after sleep deprivation may be mediated by modifications
in the dopamine transporter sites of the caudate-putamen.
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Introduction

Systemic lupus erythematosus (SLE) is a prototype
autoimmune rheumatic disease, which presents many im-
munological abnormalities, such as B cell hyperactivity,
antinuclear antibodies (ANA), and immune complex depo-
sition that can lead to arthritis, skin rash, and glomerulone-
phritis. The strongest risk factor for the development of
SLE is gender, since it tends to develop or is exacerbated
during pregnancy and the postpartum period (1). The
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autoimmune-prone NZB/NZWF; mouse is an excellent
model for SLE. Like humans with SLE, these mice display
a pathognomonic ANA response that includes anti-double-
stranded DNA, and they spontaneously develop fatal glo-
merulonephritis. Also, similar to humans, the disease is
most frequent in female mice (2).

Accumulating evidence suggests that prolactin (PRL) is
involved in the pathogenesis of SLE. PRL plays a significant
role in the regulation of the humoral and cellular immune
responses in physiological as well as pathological states,
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such as autoimmune diseases (3). Increased serum PRL
levels have been reported in lupus patients of both genders,
and have been associated with accelerated disease expres-
sion in lupus-prone mice (4,5). The primary signal for PRL
secretion is under tonic inhibitory control by hypothalamic
dopamine (for a review, see Ref. 6). Since elevated secre-
tion of PRL is common in SLE, we hypothesized that this
endocrine imbalance is a consequence of impaired dopa-
minergic regulation in the central nervous system. The re-
sults of some studies are consistent with the hypothesis that
lupus-like disease compromises dopaminergic neurotrans-
mission in the central nervous system (7,8).

SLE patients display a variety of neurologic manifesta-
tions, which may include sleep disturbances (9). Accord-
ing to Valencia-Flores and colleagues (10), these patients
are sleepier during the day by virtue of sleep fragmenta-
tion, with more arousals and sleep stage transitions. In
addition, the disease is exacerbated by sleep disruption.
Recent data from our laboratory indicated that the NZB/
NZWF mice subjected to sleep deprivation (SD) show an
earlier onset of the disease reflected by increased num-
bers of ANA (11). There is evidence to support the view
that sleep disturbances lead to hormonal, neurochemical
and immunological alterations that may be linked to dis-
ease manifestation (12-16). Forinstance, we recently dem-
onstrated that there was an increase in circulating levels of
corticosterone in NZB/NZWF animals as the disease pro-
gressed, and this effect was more evident in sleep-de-
prived mice (17).

In view of these considerations, the aim of the present
study was to examine the impact of SD on the pattern of PRL
secretion as well as the regulation of dopaminergic recep-
tors in multiple brain regions in NZB/NZWF, mice. We were
particularly interested in the hypothesis that SD may lead to
hormonal and neurochemical changes since these factors
are associated with lupus onset. To this end, we employed a
well-established procedure for producing SD and examined
its effects on PRL secretion. This was complemented by
quantitative autoradiographic analyses of [*H]-SCH23390,
[H]-raclopride and [3H]-WIN35,428 binding in order to de-
tect possible changes in Dy and D, receptors and in dopa-
mine transporter (DAT) sites, respectively, throughout the
brain of sleep-deprived mice after SD.

Material and Methods

Animals

New Zealand black (NZB, females) and New Zealand
white (NZW, males) mice were obtained from Universida-
de of Sao Paulo (Sao Paulo, SP) and were mated in our
Research Laboratory to produce NZB/NZWF; hybrids.
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After weaning, NZB/NZWF; mice were housed in groups of
6 in plastic cages filled with hardwood bedding, receiving
water and rodent chow ad libitum. The animals were kept
in a room with controlled lighting (12-h light/dark cycle) and
temperature (24 = 2°C). Due to the fact that murine lupus
shows a preponderance in females, only this gender was
used in the present study. All procedures were approved
by the Ethics Committee of UNIFESP (CEP #1163/01) and
carried out in accordance with the rules and regulations on
animal care of the National Institutes of Health (http:/
www.nih.gov/).

Sleep deprivation

Female NZB/NZWF; mice aged 10 weeks (a period
when they were considered to be healthy) were subjected
to SD using the platform method. The method of SD used
was an adaptation of the multiple platform method, origi-
nally developed for rats (18). The technique is based on
the muscle atonia that accompanies paradoxical sleep
(19). Briefly, 12 narrow circular platforms (3 cm in diam-
eter) were placed inside a tiled tank (41 x 34 x 17 cm) filled
with water to within 1 cm below the upper border of the
platform. Groups of 6 mice were placed on the platforms in
each tank, an arrangement that allowed them to move
inside the tank, jumping from one platform to the other. In
this procedure, the animals are aroused from sleep when
the loss of muscle tone leads them to fall off the platform.
This method produces a consistent amount of sleep reduc-
tion in mice (20).

Mice were randomly assigned to two groups containing
12 mice each: control mice remained in their home-cages
in the SD room and sleep deprivation (SD) mice were
deprived of sleep for two periods of 96 h each separated by
an interval of three days. During the interval, mice were
placed back in their home-cage. Throughout the study
both groups had free access to food and water. This
experimental protocol was carried out in an attempt to
simulate a chronic condition of SD (similar to that which is
observed in chronic inflammatory disease) (11).

Effect of SD on PRL secretion in NZB/NZWF, mice
(Experiment 1)

Immediately after the end of SD, the animals (N = 12)
were rapidly decapitated and trunk blood was collected
into tubes containing EDTA.

Hormone determination. Immediately after sampling,
blood was centrifuged at 2500 rpm at 4°C for 10 min and
plasma was separated and stored at -80°C. Radioimmu-
noassay for mouse PRL was performed by the National
Hormone and Peptide Program (USA). The detection limit of
the assay was 1.0 ng/mL and intra-assay variation was 7%.
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Assessment of D, and D, receptors and DAT binding
after SD in NZB/NZWF; mice (Experiment 2)

Immediately after the end of SD and decapitation of the
animals in Experiment 1, the brain was rapidly removed,
frozen over dry ice, and stored at -80°C.

Autoradiography procedures. Coronal cryostat sections
(20 um) were cut at -18°C from the olfactory bulbs to the
substantia nigra, mounted onto lysine-coated slides and
then stored at-80°C. Binding assays for D4 and D, receptors
and DAT followed the procedures of Nobrega et al. (21) and
Wilson etal. (22). Briefly, to remove the endogenous ligands,
the slide-mounted sections were pre-incubated at room
temperature in 50 mM Tris buffer, pH 7.4, for 30 min for D4
binding; in 50 mM Tris buffer, pH 7.4, for 15 min for D,
binding, and in 25 mM Tris buffer, pH 7.7, for 20 min for DAT.
To label D; sites, sections were incubated with 2 nM [3H]-
SCH23390 (Perkin Elmer, USA; 85 Ci/mmol) for 90 min at
37°C. For D, receptors, the sections were incubated with 2
nM [3H]-raclopride (Perkin Elmer; 87 Ci/mmol) for 120 min at
room temperature. For DAT sites, the sections were incu-
bated with [3H]-WIN35,428 (Perkin Elmer; 85.6 Ci/mmol) for
120 min at room temperature.

Non-specific binding was defined as binding in the
presence of 2 uM butaclamol (Sigma, USA), 10 uM sulpi-
ride (Sigma) or 30 uM cocaine (Sigma), for D4, D, and DAT
sites, respectively. Slides were then rinsed in cold buffer,
followed by cold distilled water, then air-dried and exposed
to Kodak Biomax (Scientific Imaging Film) for 4 weeks for
[BH]-SCH23390 and [3H]-WIN35,428, or 5 weeks for [3H]-
raclopride in the presence of calibrated standards. Densi-
tometric analyses were performed using an M2 MCID
system (Imaging Research, Canada) on coded films. Ana-
tomical regions were defined according to the atlas of
Franklin and Paxinos (23) and analyzed without knowl-
edge of the group membership of the animals.

Statistical analysis

In both experiments, data were analyzed by the Stu-
dent t-test. Data are reported as means + SEM. A P value
< 0.05 was considered to be statistically significant.

Results

Effect of SD on plasma PRL secretion in NZB/NZWF; mice

Figure 1 shows that PRL concentrations were ten times
lower (2.58 ng/mL) in sleep-deprived mice compared to
control mice (25.25 ng/mL; P < 0.02).

Assessments of D; and D, receptors and DAT binding

after SD in NZB/NZWF; mice
[PH]-SCH23390 and [*H]-raclopride binding to D; and
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D, receptors. Binding to D, and D, receptors did not differ
statistically among sleep-deprived mice and the control
group in any of the brain regions analyzed (Tables 1 and 2).

[PH]-WIN35,428 binding to DAT sites. As shown in
Table 3, [?H]-WIN35,428 binding was significantly increased
in three subdivisions of the caudate-putamen in the sleep-
deprived mice when compared to the control group. Figure 2
illustrates increased binding in three subdivisions of the
caudate-putamen (posterior, dorsolateral and ventrolateral).

40 -
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20+

Prolactin (ng/mL)

10

*

I
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Figure 1. Plasma prolactin concentrations in sleep-deprived (SD)
and control (CTR) NZB/NZWF 1 mice. Data are reported as means
+ SEM. *P < 0.02 compared to control (Student t-test).

Table 1. Sleep deprivation has no effect on [3H]-SCH23390
binding to D1 receptors.

Control Sleep
(N=28) deprivation
(N=10)

Caudate putamen
Anterior 29.58 + 0.98 29.41 £ 0.65
Posterior 24.30 £ 0.48 2237 £ 0.74
Dorsomedial 26.42 + 1.02 26.70 £ 0.79
Dorsolateral 26.92 £ 0.94 27.40 = 0.71
Ventrolateral 28.49 + 1,11  29.32 + 0.80
Nucleus accumbens 23.72 £ 1.05 25.61 £ 0.49
Core 26.57 £ 0.92 27.53 £ 0.62
Shell 2277 £ 1.12 23.54 £ 0.69
Olfactory tubercle 26.52 + 1.09 28.78 + 0.77
Substantia nigra 15.16 £ 0.56  15.58 = 0.39
Reticular part 15.80 £ 0.68 16.50 + 0.35
Compact part 13.00 £ 040 13.26 + 0.43
Lateral part 6.82 + 0.32 8.00 £ 0.65
Ventral tegmental area 247 + 0.25 2.71 £ 0.15
Nucleus of the ansa lenticularis 9.44 + 0.27 8.77 + 0.32
Globus pallidus 3.20 £ 0.17 2.86 £ 0.17
Amygdala 12.10 £ 0.32  12.55 + 0.58

Data are reported as means + SEM (pmol/g tissue). There were
no statistical differences between sleep-deprived and control
mice (Student t-test).
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Table 2. Sleep deprivation has no effect on [3H]-raclopride bind-
ing to Do receptors.

Control Sleep deprivation
(N=28) (N=10)
Caudate putamen
Anterior 8.30 £ 0.15 8.79 £ 0.27
Posterior 9.46 £ 0.19 9.32 £ 0.22
Dorsomedial 8.52 + 0.19 8.46 + 0.26
Dorsolateral 11.53 + 0.19 11.48 + 0.38
Ventrolateral 11.53 £ 0.19 12.75 + 0.46
Nucleus accumbens 5.57 + 0.19 579 £ 0.21
Core 5.68 + 0.37 6.18 + 0.20
Shell 5.21 + 0.32 5.34 + 0.30
Olfactory tubercle 6.14 £ 0.16 6.25 £ 0.16
Substantia nigra 3.41 £ 0.12 3.13 £ 0.17

Data are reported as means + SEM (pmol/g tissue). There were
no statistical differences between sleep-deprived and control
mice (Student t-test).

Figure 2. lllustration of increased dopa-
mine transporter binding in the caudate-
putamen nucleus after sleep deprivation.
A, Control; B, sleep deprivation. CPu Post
= posterior caudate-putamen; CPu DL =
dorsolateral caudate-putamen; CPu VL =
ventrolateral caudate-putamen.

Discussion

There is increasing evidence that PRL can exacerbate
SLE, particularly, in experimental models (5). Previous
data from our laboratory indicated that the NZB/NZWF
mice subjected to SD had an earlier onset of the disease as
reflected by an increased number of ANA (11). In the
present study, we had hypothesized that the SD could
increase PRL secretion, and this would be involved in an
earlier onset of the disease. However, we observed a
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Table 3. [3H]-WIN35,428 binding to dopamine transporter.

Control Sleep deprivation
(N=28) (N=10)
Caudate putamen
Anterior 15.05 + 0.53 16.12 + 0.69
Posterior 14.44 + 0.65 16.52 + 0.51*
Dorsomedial 15.84 + 0.88 16.40 = 0.67
Dorsolateral 15.97 £ 0.72 18.84 + 0.73*
Ventrolateral 22.54 £ 0.71 2499 + 0.54*
Nucleus accumbens
Core 14.68 + 0.60 15.15 + 0.67
Shell 7.25 £ 0.26 7.30 = 0.29
Olfactory tubercle 12.36 + 0.48 13.06 = 0.39
Substantia nigra
Compact part 7.90 £ 0.30 7.69 £ 0.40
Reticular part 3.09 £ 0.15 2.76 £ 0.14
Ventral tegmental area 7.95 £ 0.09 7.92 + 0.41

Data are reported as means + SEM (pmol/g tissue). *P < 0.05
compared to control (Student t-test).

significant reduction in plasma PRL concentrations in sleep-
deprived mice.

To our knowledge, the present study provides the first
quantification of PRL in NZB/NZWF; mice subjected to SD.
Previous studies had already reported the effects of SD on
PRL secretion. Everson and Crowley (24) reported de-
creased PRL concentrations in sleep-deprived rats, while
Andersen et al. (25) found that the rats subjected to 96 h of
SD had higher PRL concentrations than controls. Factors
that may contribute to these inconsistencies may be the
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use of different animal species and gender or different
methods and durations of SD.

There are different possible explanations for the de-
creased PRL secretion observed after SD in the current
study. First, sleep itself is involved in PRL secretion. PRL
concentrations are elevated during sleep, even if sleep is
delayed (26). Moreover, short periods of SD and sleep
fragmentation in humans are associated with lower noctur-
nal PRL levels in comparison to normal sleep (27). Sec-
ond, several lines of evidence support the notion that SD is
a stressful stimulus (28,29). Thus, SD can be considered a
type of biological stress given that sleep is essential to life
and to health. It is well known that stress in a number of
forms induces PRL secretion (for a review, see Ref. 6).
Although PRL reliably increases in response to acute
stress, PRL responses to chronic stress become inhibited
over continuous exposure (30). The reduction in PRL in
this condition is presumably due to an increase in dopa-
mine release at the level of the median eminence (31). Our
results agree with the notion that SD, as a type of chronic
stress, leads to a reduction in PRL secretion.

Another point that needs to be considered is the fact
that PRL secretion is inhibited by an increase of dopamin-
ergic activity (for a review, see Ref. 6). Since this is the
main mechanism of PRL secretion (32), we speculated
whether altered dopaminergic activity could be involved.
Indeed, previous SD studies have reported dopaminergic
alterations, including augmented responses to dopamin-
ergic agonists (33,34) and upregulation of brain D, dopa-
mine receptors (35). With respect to quantitative receptor
autoradiography, we observed that D, and D, binding sites
were not significantly affected by SD in any brain region
analyzed in NZB/NZWF, mice. However, we observed that
DAT binding was significantly increased in subdivisions of
the caudate-putamen in sleep-deprived mice. The increase
in DAT binding observed in the present study could reflect
increased extracellular dopamine concentrations and, as
such, could be related to the observed decrease of PRL
levels. However, it is important to mention that the regula-
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